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Preface

The Wigner Symposia series emerged from an International Symposium "On Space Time
Symmetries". held in College Park. Maryland. 1988 organized by Y.S. Kim and W. Zachary
and commemorating the 50'th anniversary of Wigner's fundamental paper "On the Unitary
Representations of the Inhomogenous Lorentz Group". That symposium covered various
areas of physics. of theoretical and mathematical physics to which Eugene Paul Wigner
has contributed. It has shown how new and fruitful ideas connected with symmetries for
a mathematical modelling of complex physical systems developed under the influence of
Wigners work. The meeting displayed the unity of physics and it was this impression
which gave the idea to have a Wigner Symposium seiies (WIGSYM series) a remarkable
momentum.

The II. International Wigner Symposium. .uly 16-20. 1992, was organized jointly by
the Arnold Sommerfeld Institute, Technical University of Clausthal and the Department
of Mathematics. Florida Atlantic University. Boca Raton. with H.D. Doebner, Clausthal.
and F. Schroeck, Jr., Boca Raton. as organizers and W. Scherer. ('lausthal. as scientific
secretary.

Following the idea of the symposia to discuss new developernents in physics centered
around fundamental questions topics with emphasis on theoretical and mathematical physics
were chosen and new frontiers like neuronal networks and quantum holography, whose
origins can be traced back to Wigner's work. where included, The aim was to show the
unity of different parts in physics and to demonstrate the power of arguments which are
directly or indirectly related with mathematical realizations of symnimetries. In this spirit
the topics discussed in the symposium and appearing in this volume where

"* Foundations of Quantum Mechanics

"* General group Theoretical and Quantization Methods

"* Coherent States

"* Berry Phases

"* Phase Space and Wigner Distributions

"* Applications of Quantum Mechanics: From Channel Space to Wigner Crystal

"* Quantum Fields and Particles

"* ('-Algebraic and Methods

"* Differential Geometric Methods

"* Nonlinear Partial Differential Equations. Dynamical Systems and Neural Networks.

The volume collects plenary contributions and furthermore 132 research articles. Be-
cause of the limited page number of the volume we were not able to include all the material
presented at the symposium. We regret this. For the selection of the articles, there was a
refereeing procedure through the members of the advisory committee.
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The symposium was made possible, through support of the following institutions and
agencies

International Union for Pure and Applied Physics

International Association for Mathematical Physics

The United States Office of Naval Research.

The Department of MathI ,,,tic. at Florida Atlantic University

The Division of Sponsored Research at Florida Atlantic University

Niedersfichsisches Ministerium fiir Wissenschaft und Kultur

Deutsche Forschungsgemeinschaft

Alexander von Humboldt Stiftung

Deutscher Akademischer Austauschdienst

Fritz-Thyssen Stiftung

Stifterverband der Deutschen Wissenschaft

Technical University of Clausthal

Arnold Sommerfeld Institut at the Technical University of Clausthal

Zentrum fiir Technologietransfer und Weiterbildung der TV Claaslhal

We are very grateful for this support which in particular made it possible to have among
the participants many physicists and mathematicians from different parts of Eastern Europe.
The timing of the symposium placed it in a period of breathtaking historic changes in Europe
and this gave the II. WVigner Symposium a unique flavour.

Last but not least we would like to thank members and coworkers and especially the
students of the Arnold Sommerfeld Institute for their help in organizing this conference.

Special thanks are due to E.M. Herms for his dilligent work before and during the
symposium, to T. Miiller for his invaluable help in preparing t!.,ese proceedings and to the
conference secretary Susanne Gottschlich whose patience, reliability and efficiency deserve
a good deal of credit for the success of the II. International Wigner Symposium.

H.D. Doebner
F. Schroeck, Jr.
W. Scherer
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Eugene P. \Vigner Princeton, NJ
USA

July 7. i991

To the Participants of
the Symposium ixi Goslar

Greetings from Princeton!
I am grateful to the Organizers of the Second International Wigner Symposium for

inviting me to come to Germany. I would love to go there and to be among the participants.
I feel fine and strong. and. most of all, I am eager to discuss physics with you. However.
my physician tells me that I must not travel to Europe. I asked him why. His explanation
was that I might get sick there. How many of you have become sick there? I disagree with
him, and I would still like to join you.

I also disagree with the Organizers of the Symposium on the title of the meeting. It
is quite remarkable that we now have a conference series in which fundamental problems
in physics are discussed irrespective of which branch of physics one pursues. However. this
issue should not be associated with any particular person. Physics belongs to all physicists.
not to any single individual.

As some of you know, I was born and raised in Hungary and studied in Germany. I
learned German before English. I would therefore love to write this letter in German.
but am writing in English at the request of the Symposium Organizers. Indeed. when I
was spending my post-doctoral years in Berlin in the 1920s. part of my job was to visit
Goettingen regularly. I used to be on the steam-driven train going through the region
where the Symposium is being held. (;Gslar at that time was known as a town with clean
air. Arnold Sonimerfeld used to work at Claustlial. I assume that the rail service between
Goettingen and Berliu is now available after a long pause. I would really like to be on that
train again.

I read the Symposium poster very carefully. The topics of the SYmposium appear to
include many different subjects. I assume that they are discussed at one scientific meeting.
because they are based on the same set of fundamental principles. It is quite possible that
not everybody realizes this point. However, the direction of one's research effort should be
toward the view that there is only one physics. not toward further division of the subject.

If you are not able to appreciate this point, you do not have to disagree with me too
much. There is yet another avenue for working toward the same goal. Fortunately. the
same set of theoretical methods can be applied to many different branches of physics. For
instance. group theory is applicable to atomic. nuclear, particle, and condensed matter
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physics. My younger colleagues are telling me that group thcury plays an imoortant role
in modern optics. Those group theoretical methods are based on the same group theory.
If the theoretical methods for different branches of physics are the same, and if physicists
are able to appreciate this, then it would be easier for them to see that there is only one
physics.

While I was able to build my intellectual background first in Hungary and then in
Germany. I would say that I had the most productive years in the United States of America.
Indeed, I am grateful to Princeton University for providing such a wonderful environment
in which to live and work. During my years here. I have met many outstanding students
and colleagues. However, I should also mention two of my fellow Hungarian-born physicists
with whom I maintained very close contact while in the United States. They are John von
Neumann and Edward Teller. Their contributions to science are well known. I am grateful
to them for their unfailing friendship. I still call Edward Teller whenever I have problems
which I cannot solve alone.

As for von Neumann, I have a story to tell. It is my understanding that this Sym-
posium was generated from a topical meeting held at the University of Maryland in 1988
to commemorate the 50th anniversary of the paper which I wrote on the inhomogeneous
Lorentz group in 1937 and whch was published in 1939 in the Annals of Mathematics.
I originally submitted this article to one of the prestigious journals in mathematics (not
the Annals), which rejected my paper. At that time, von Neumann was the editor of the
Annals of Mathematics. Knowing that my article was rejected, von Neumann invited me
to publish the paper in the Annals. This means that your Symposium owes a great deal to
von Neumann.

I am very nappy to hear that the Organizers of this Symposium made a special effort
to invite many physicists from the Eastern European countries. There must be many
Hungarians. For the reasons mentioned above, Hungary should be given an opportunity to
host one of the future meetings of this Symposium series.

Even though I cannot go there, I feel as if I am there. Enjoy the meeting, and enjoy
Germany. My thanks to the Organizers of the Symposium. and my thanks to all. I am with
you!

Yours truly,

Eugene Wigner
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THE PHILOSOPHY OF EUGENE P. WIGNER

G1KRARD G. ENwtH

Department of Mathematics, University of Florida. Gainesville FL 32611 (USA)

To the richly diverse audience I am to address this evening I must say, from the
onset, that this lecture cannot be the authorized sumnnary, or even a critical account.
of a philosophical treatise systematically articulated by Wigner himself: unfortunately.
no such sum exists at this time. Consequently. this lecture will rather be an attempt to
collect and capture the common themes that run through the vast composition offered
by Wigner's contributions to our science.

Almost by its very nature, any such attempt will be colored by one's own personal i
encounters. I first met Wigner at the NATO 1962 Summer School in Istanbul where Josef

Jauch. my thesis adviser, had sent me -'to learn the World". Feza Gursev had assembled
there a most impressive collection of lecturers: several of them were subsequently elected
members of national Academies and/or awarded Nobel prizes: more importantly, tc-y
all made themselves immediately accessible. \Vigner was one Jf them. In m1y first
conversation with him. I started by trying to dc~cribe to him the place of superselection
rules in the Geneva programme on the foundations of quantimn mechanics, freely using
the langudge of projective geometry and lattice theory I had just learned. Wigner
however soon interrupted me with one of his inimitable remarks: *'You known. I am
a very ignorant man: you must start at the beginning": he then proceeded, that very
afternoon, to administer to me a 3-hour oral qualifying examination Needless to say. I
came out wishing I was that --ignorant": it must be said also that Wigner had brought
me. patiently but firmly, to what should have been the center of my argument. The
next year, the Committee of my doctoral defense at the University of Geneva comprised
Wigner's long-time collaborator Valentine Bargmann. Like Wigner, lie too first gave me
his own private examination to make sure that the mathematical results I had obtained
were not hiding the physics of the problem. As he then offered me to spend a year
as a postdoctoral research associate, at Princeton. close also to the group of another
of Wigner's long-time colleagues, Arthur \Vightnian. I was thoroughly trained, at first
only as a subject. to the gentle art of the maitutic which Wigner practiced with such
mastery. Just recently. I had another encounter with Wigner. this time with about
80 of his papers which I was asked to annotate for the forthcoming edition of Wigner's
Complete Works Arthur Wightman and Jagdish Mehra are preparing for Springer: most
of the papers I read at this occasion appeared in print after the 1930's.

From these perspectives I want to propose. as a sort of working hypothesis for this
evening, that three main threads are braided in the development of Wigner's thoughts:
(1) the guidance provided by invariance principles: (2) the elusive role of consciousnes,4
in physics: and (3) the uncomfortable responsibilities of the scientists.
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One way to gain entry in what will ultimatelv be known as "'Wigner's philosophy" is
to train one's sight first to his contributions to mathematical physics. noting inmedi-
ately that in the course of Wigner's life, the very territory of mathematical physics has
drastically changed: and this, to no small part. due to Wigner's own influence.

In the experience of most students in my generation, Wigner's name was first as-
sociated to the extraordinary success met by the systematic exploitation of invariance
principles for the theory of elementary particles, first the atoms, and then ever more
subtle subatomic particles. An early, but archetypical, representative of this approach is
"Wigner's 1931 book: Gruppentheorie und Ithre Anwendungen in der Quantenmechanik
decr Atomspektren. Soon afterwards, another seminal contribution appeared: his 1939
paper On Unitary Representations of the Inhornoqeneous Lorentz Group.

It would be tempting to dwell on their specific physical or mathematica1. merits.
Resisting this temptation here. I will focus along the following lines my commentaries
on these two pioneering works: (a) the novelty of their technical sophistication: (b)
their philosophical background: and (c) some of the events that moved these ideas to
the foreground of the foundation.s of our science.

My first commentary focuses on what Wigner later called the "unreasonable effective-
ness of niatbh-.rtics in the natural sciences" (1960). Other creative scientists reflected
also on this p'zzling effectiveness: Einstein. in his lecture On the Methods of Theoretical
Physics (1933): von Neumann. in his essay The Mathematician (1947): or Bochner, in
his book The Role of Mathematics in the Rise of Science (1966). As Wigner phrased it.
one could marvel on how it came about that "'we got something out of the equations that
we did not put in". Lest we may be led to think that this runs away from the positivist
tenets that the Founders of quantum mechanics often acknowledged were prevalent in
their motivations, and that this renewed emphasis on the power of abstract thought
could open to a reincarnation of a panlogism ý la Leibnitz. we should note three twists
which Wigner suggested we put to this overly simple idea. The first of these twists was
that we should tiot view this success as a manifestation of the power of abstract thought
but of the power of abstraction inherent to science, and most importantly to its trans-
mission: the equations are a manifestation of a deeper substrate, namely the invariance
principles which Wigner characterized as "the laws that the laws of nature must obey".
Even though the contents of Noether's theorem in classical mechanics, or of Stone's
theorem in quantum mechanics, fitted in this characterization, it should nevertheless be
remembered that many in the physics community - and among them. some otherwise
well enlightened spectroscopists -- were so unprepared for such a systernic onslaught.
that they referred to the disciples of this view as the "Gruppenpest". The second twist
was that we often conveniently forget how we chose the domain of applicability of our
theories: the roulette wheel does not violate the laws of Ineclianics but. as Hadamard
pointed out already at the end of the nineteenth century, the serene predictability of
mechanics evaporates when one considers non-linear systems with sensitive dependence
on initial conditions. The third twist was that any discussion on the internal beauty
and self-consistency of a physical theory is to be checked, not only against the experi-
menial data the collection of which is suggested by the theory, but also against those
data that may seem to lay outside its immediate purview. Wigner's comments were
not put forward as mere speculations on the essence of the process of theorizing: they
reflected his own sustained interest in the competing models of nuclear physics as well



4

as of his repeated attempts to look for a world picture that would encompass physics

in harmony with other sciences, such as psychology.
Let me also recall that while many physicists may have been neither ready for. nor

comfortable with. the new mathematization of their science heralded by Wigner's pre-
eminent use of symmetries, it is true that neither were most mathematicians inclined to
look in that corner - fortunately some of the best were. e.g. von Neumann. Wigner's
1939 paper on the Lorentz group had undoubtedly its roots in physics. specifically in the
work of Dirac and of Majorana. but Wigner himself warned that "the difference ... lies

... mainly in its greater rigor", a concern that one hears more often from mathemati-
cians. The paper. published in the Annals of Mathematics. showed a sure professional
knowledge of some of the exciting mathematics of the time. in particular of the lines
of research opened. just about then, by Murray and von Neumann and by Haar, to
mention only two of the most difficult, and mathematically pregnant, works cited in
the paper. In his paper, Wigner did work out from scratch two main problems, both
of which needed quite some time before they could be integrated in the standard body
of mathematics. The first was the theory of projective representations, which was later
systematically developed by Bargmann (1954), and can now be seen as an early example
of the theory of equivalence of (group) extensions. as formalized for instance in the book
of Cartan and Eilenberg (1956). The second was the genuine generalization to a Lie
group of the theory of induced representations of discrete groups which had been elabo-
rated originally at the turn of this century by Frobenius and Schur. Wigner's extension
of this theory found its general setting thanks to the work of Mackey in the 1950's:
that general setting in turn was used, both by Wigner and by Gelfand. to systemize the
study of the special functions of classical analysis. This progression provides a concrete
case study in which Wigner's aphorism could be reversed: one could indeed equally well
marvel at the amount of nice mathematics that came out from so specific a physical
problem as the enumeration of all systems that are elementary relatively to one very
particular group of invariance. Upon looking at these developments. one could almost
be tempted to conclude once again that Nature had chosen the best possible group for
the purpose of eliciting the imagination of mathematicians !

To continue my discussion of Wigner seminal contributions to the use of invariance
principles, namely their philosophical background, I will try to rely on Wigner's own
testimony, even though it came as an a posteriori reflection.

I think it is fair to say that Wigner's original works. and his later comments about
the positions to which they have led him, placed him squarely among the Natural
Philosophers, a lineage that started in the 17th century, gained wide currency in time
Enlightenment. and then led -- in part as a reaction to the 19th century's sometimes
extreme enthusiasms bordering on arrogance - to the painstaking vigilance of the pos-
itivist school. Some of the positivist methodology was certainly part and parcel of the
intellectual training of quantum mechanics' Founders; however, we sometimes tend to

forget that they had to readjust seriously some of the positivists' conclusions. Listen to

Wigner: "The first physics book I read said: Atoms and molecules may exist, but this
is irrelevant from the point of view of physics: and this was entirely correct - at that
time physics dealt only with macroscopic phenomena and Brownian motion was sort
of a miracle". While classical mechanics also stood for some drastic revisions as well,
Wigner credited its methodology with one major achievement: the separation between
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the accidental - the initial conditions - and the expression of regularities - the laws of
motion. He traced back the implementation of this basic distinction to Newton, whom
he contrasted with Kepler. noticing about the latter that although "'we owe [him] the
three precise laws of planetary motion, [he] tried to explain also the [individual] sizes
of the planetary orbits and their periods". As for the other beacons Wigner recog-
nized, he gave us a list in his paper on Two Kinds of Reality (1964): seminal: Freud.
Poincar6 and Hadamard: authoritative: Heisenberg. Schrddinger. von Neumann. Lon-
don & Bauer. and Einstein: challenging: Bridgman and Margenau. I am prepared to
accept that the importance of this list is contextual: it has however the value to be
as explicit and concise a testimony as we have: there is thus some sense in trying to
understand why these names are so singled out: and not others: individually, or even
as they are aggregated in these three groups. If you do not want to do this entirely on
your own. I can assure you that the paper makes good reading.

Finally. Wigner's 1939 paper on the Lorentz group was much more than a mere tour
de force: it prompted a new line of enquiries in theoretical phy,,ics. especially visible
after 1955: the spectacularly successful formulation of conservation laws for generalized
charges: the repercussions of the discovery of parity violation: and the exploration of an
axiomatic theory of quantum fields in interaction.

More could be said on this first thread in Wigner's thoughts: the synthetic power
of invariance principles: but we need to turn now to the second of these threads: the
elusive role of consciousness in physics.

The late 1930's and early 1960's mark the time when \Vigner. upon revisiting the
basic structures of quantum mechanics, started to express publicly his doubts on the
philosophical underpinnings of the enterprise. From an epistemological point of view.
we should distinguish three problems: (a) the limitations of the forrmalism of quan-
tum mechanics: (b) the limitations to its interpretation: and (c) the limitations oi, its
purview.

I happen to think that the udiderstanding of why it is so hard nowadays to question
the foundations of quantum mechanics requires some awareness to the history of its
development. In a very real sense, quantum mechanics is a solhtion which came before
the problem. In the first quarter of our century. solutions like the Bohr atom: the
photon (a particle in Einstein's photoelectric effect: both a particle and a wave in
Einstein's fluctuation formula for the electromagnetic radiation 1: the phonon (explaining
the temperature dependence of the specific heat in solids): all came as their own answers.
widely separate and certainly very pragmatic. The crisis was around the corner, and
it came to a head in the late 1920's, when an apparently general and self-consistent
theory came into existence through the labors of Heisenberg. of Schridinger. and of
Born. The theory could commend itself to the physicists by its good predictive power.
The mathematicians soon could recognize a definite structure in the presentation von
Neumann made of it in his Mathematische Grundlagen der Qaantenimeehanik (1932).
And still, some of the fundameutal features of the theory were in direct conflict with
the tenets of the rest of physics. what is called today classical physics. Wigner, who
was born in 1902. came of age in the midst of these events. We already discussed this
evening his contribution to some of the successful developments of quantum mechanics
in the second quarter of the century. It is now time to address what he increasingly saw
as some fundamental shortcomings of its formalism.
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Back in his G6ttinigeni days. W~igner had questioned some of the pragmnatic bases of

quantum mechanics when he worked with Jordan and von Neurnaan On an Algebraic

Generalization of the Quantum Mechanical Formnali,ýrn (1934). That paper however was

mathernatically too much ahead of its time. andl it came to life ofllv in the work of Segal

(19471). and of Haag &, Nastier (1964). This line of research was, prompted ii lpatt by
the indirect meaning of the Hilbert space- in which the wave functions, or state vectors.

are suipposedI to "live": this gap) has bothered XWipgoer munch beyond this earlyN paper. He

even entertained some questions as to whether the Hilbert space of quantum mnechanic."

should be constructed onl the complex inumbers, rathier than onl soini other field: that

question was largely laid to rest by the Geneva school in th., 19 60"'. Wigner's later

criticisms of the formalism expressed his iuneasiness, wvithI the ambihiguiities tolerated inl

the objective status of thle wave function. They evolvedI ili pa rt a rioiund the heretofore
unquiest ionedl validity of thle sulperposit ion p~rinciple. at c oncept boiroviwei dlirectly fEmil

the classical theory of (different ial equations. His answer. obt ainied in collaboration with

Wick and Wightmian ( 1952). was that the superposition principle is not linconditionally

valid inl quantumi mechanics, and fails to hol1( Ii thle presenice of 4 itper.ýclectzon riultnA.

This led also to the new concept of cAstn trial ob.,criialilp.i. ixe. noi-T rivial observables that

are comipa tiblde witl atll other observab1les,. and behave thierefoire as. clas-uical observa ibles

do. These are specific examples of the observalbles Xigmier had singled out. iii a paper

of the same year (1932). as those that at c preciscly ineasurabli': --nio observable which

does riot comitlote wvith the add~itive conserved qiiantite, i's uch ;(5 linear and aingular

niomehituni. or electtiic chiarge') cani be iiiasiir('d precisely" Referring to the obser% be

that (10 not satisfy thliis st rinmgent requoireiment . lw( adds:~ -in order to oilicrc;" se thle accu racy

of the nieasuremeiit one has to uie( at very large aploiratus . Tlisý argnemit, ~as elae

refined byAraki &- Yatiase (19601 amid, repeatedly revisited 1by Wigio r to elliplpa ... e the(
Po.smtiemist requiremneit that thlie elenients of the( fornialisiiii iiust have dlirect empirical

nileanling.
Wigner founiid it no st dlist urbing t hat at recolic ilia t i ii -cell~ 'toe vIli sive b et weenl hel

quant uni iiea-suiring hur ce'ss an ild th Borii statistical in terprt~u(tat io of ilft h wave- fi mnct o )n.

especially so sinice hbot h wvere inutegral part.s of thle -oi rtho do x" theoryn. as preseiitedI inl

the books of v-on Neumianni ( 1932) and of Loidonii &, Bauer ( 1939). 'This interpretat ionl

sttsthat the wcave-funiction (hoes not dlescribe reality 1)11t is, nierely a toiiol to det ermneii

the statistical relations between successive observatioiis,. I muist adniit . however. that I

ani not satisfied with this iinterpzetat ion-

XWigner (lid not svetii to, have entertained seriously aiiy theory of hu ddrn ilarzable.i

postulatinig a classical, as yet unattaiiiable. suhiquiaiitiii descript ionm. A. fuir ;(s I cani

make up. such constructions (lid not appeal to himiii s proposauls that would ad' -Iress,

squarely his p~roblemi. The experimental evidence latc ! obt ained by Aspect ( 1983). Oil
thle basis of Bell's inequalities ( 1963 &- 6). have born out Wigmiei's presumnption.

His problIeml was then with the collapse of the wave-packet. and thle infinite regre'ssion~

in von Neuinia flu's descri pt ion of the quantin unoiva~surin ig process'5. These I ( lii him toi (-onl-

jure upl the archetypical Wigner *.q friend in order to ilui~st rate the *'dreadfiil' solipsi-sni

to which one would be cornered by a strict adherence to the --orthiodox" initerpretattioii

The difficulties to which Wigner drew attenition were of three kinds. First' ýv. the word

-reality- was uised too light ly. Secondly. thle active part icipat ion of the observer was

not properly t aketri into accomuit. Thirdly. the orthodox faith appeared inadleq1uate toi



explain explicitly how an intrinsically statistical description could apply to a single sys-

tem or particle. Together with these three difficulties, lie later listed a fourth. when he

learned of the diligen~t, and yet original, remark made by Zeh (19 70) on how qur 1111n

fltctuations made illusory any abstraction involving supposedly isolated systems.

All these difficulties seemed to have conspired to turn Wigner towards dimands
that the phenomena of consciousne.s be taken into account more genuinely when the
foundations of the natural sciences are discussed. This increasingly became for him a

preeminent theme of personal and public reflections. I like to illustrate the direction
taken by his speculations by two quotes from his Reaiarks on the M!,!,-,,?-Body Qutestion

(1961): "regions ot." enquiry. which were long considered to be outside the province of
:cience. were drawn into this province ... The best known example is the interior of
the atom, which was considered to be a metalphysical subject ... When the province
of physical theory was extended to encompass microscopic phenomena. through the

creation of quantum mechanics, the concept of consciousness came to the fore again: it

was not possible to formulate the laws of quaiituni niechamiics in a fully consistent way
without reference to consciousness". For Wigner. there was an unresolved ideological

jump between classical and quari an theory. The shadows on the wall were not affected

by whether the platonic philosopher observed them or not: the classical physicist thought

that he could, at least in principle, rig his measuring devices in such a manner as
to make arbitrarily small any influence his measurements might have on the system
under investigatioii: a clean separation between the observer and the obs-,erved was a

justifiable abstraction. Contrast this with \iWigner's own words concerning the situation

encountered in quantum mechanics: 'event though the divi Iing line between thie observer
... and the observed ... can be shifted ... it cannot be eliminated." Wigner rebelled
against the idea that the description of the quantum measuring process involved. ii:
the 'orthodox" theory, a uniquely different scheme than that provided by the usual

evolution equations written to describe an isolated quatumin system: such a theory

had to be incomplete. and it was condenied to be incomplete as long iis the role of

consciousness was neglected.
The last batch of philosophical criticisms Wigno' .. irected to quantum mechanics

concerned its purview. -speci:,lly its connection with the theory of relativity. Here
again the first problems on which be would draw our attention are the empirical basis
for the most primary concepts: the existence of a positioii operator. the subject of his
early work with Newton (1949). or the limitations his work with Salecker (1958) had
shown to be imposed by quantum theory on the measurement of space-time distances oi
small scales. necessary to a direct experinmental deternmination of metrics and curvature,.

He also repeatedly protested (at least as late as 1986) that a reiativistic formulation

of the quantumni measurement process would nieed Souii' serious readjulstineniils sii -e.
in order to be satisfactory. it would in particular have to clarify how two observers ill
relative motion could agree on the nieaining of the collapse of the state vector. Oni
such developiients as the relativistic theory of qtiaiitinl fields, lie professed a cautious
optimnisrn: while he agreed that there was a "-great difference between the relation
of special relativity and quantum theory on the one band. aid general relativity and

quantum theory on the other', lie was pleased to note that "it is at least possible to

fornmulate the requirements of special relativistic invariance for qItantumi theories and to

ascertain whether these requirements are met. The fact that the answer is more nearly
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nto than yr.i. thait quanituml inechanics hat. not yet been folly- adjusted to the postulates
of thle special theo ry [of relat ivity][ is perhiaps irritating. It dtoes not alter the fact that
the question of couisistencev of the two t henries ... b now has mnore nearly the aspect

of a puzzle than that of a p~robIem"i ( 193 70. MY poin t inl this long quotation is not to
argue whet her that situation has fundamnaitally changed in thle intervening 33 years.
hut rather to illuist rate how Wigner. the p~hilosophe'r of science, was perenniially looking
for the full consistency of the broadest pictuore alid the general sense one had to find

beyond specific complutatijons aiid p~articular schemes.
This last remiark brings mne to the third thread that rouns through Wigner's thoughts:

the responsib~ilitv (If the scientist. He saw it bothI as, a task internal to the scientific
communityv. axle one that reaches ouitside t his commltiunityv.

XWigner's active scientific life rai thirough it period that saw extraordinary changes
in the way science was donie. One, of these changes. lie denounced us thle balkanization
of "Ceince that accompanied its growthi. Several of his publlic addresses in the 1970*s
were admioniit ions pleading for a react ion. Reflecting about the nature of science when
he entered the arenla, Ie( commnunted." 1t w-as possible at the time to know physics:
today it is dhifficu lt to kn ow nuclear phiysics ... Du rinig miy work on inuclear chain reac-
tions. I already becamle 'cared by thle increasing specialization" he had inideed noted
one dreaded result of this specializationi "The probhlem of communication is not only
external to phv' sics.: it t hreaten, also to develop into anl internal one". With others, such
as A lvini Wei nherg. he thlen ad vo ca ted a teellI dv t hat is wort h t hinkinmg about agaitn: "to
write our articles for at les~s sji('cialize(l readership, to dlevote mnore time andl energy to
the conipo si tion) of reviews, P.:1( to re'adinmg of inure If thle' reviews ecovernixg thle results, of
sister cines.le' t lve' fail to( recogncize th a t -scielice is a il e'difice. li(ot a pile of bricks''

The growth oicf >,cience has not been only iii a diversificatioti (If interests: it has also

involved increasing public fuindinig of large scieiititic pirojects - thec so-called big icmence
of niational or inite'rnat ional laboratories as wvell as the app~roprialtions (If vast resources
to liaria'ss, or contrilt . its applh~icai oni Bothi iieeded son he (xplainling tol the public and
soIiile list en in g toi th Ii'Poli ti(cianxs. Even thou11 ghi our puilrpose t his eveninig w~as toI focus
ont Wigxuer the p~hiloCsophier inl science.t we, should wanlt to renieniber thlit the scientific

eniterprise hiss known also(. another Wigie'r, the' policymnaker for scienice. W'hiile I aiii not
suethat this is ami enlt irely dlifferenit story, it is proiahlvl hilt one you still wN.,lt toI hear

tonlight.
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MEASUREMENT AND OBJECTIVITY IN QUANTUM MECHANICS

Jeffrey Bub
University of Maryland

College Park, Maryland, USA

THE PROBLEM
In quantum mechanics, not all physical quantities can be simultaneously

'objective,' i.e., for a system in a given quantum mechanical pure state, not all
physical quantities of the system can have determinate values in the state -
no assignment of values to all quantities is consistent with the quantum
mechanical functional relationships holding between these quantities. I
Quantities that are not objective in a given state, i.e., quantities whose values

are indeterminate (not merely uncertain or unknown), somehow become
objective, or obtain (or manifest) determinate values, when measured, while
other quantities, correspondingly, become nonobjective.

A classical system is described in terms of a commutative algebra of
physical quantities. These quantities are all real-valued functions on the
phase space of the system and take values at all times, even when the
system is interacting with other systems. A physical quantity is a magnitude
associated with a set of possible values. An idempotent quantity has only
two possible values, 0 or 1. The algebra of physical quantities can be
generated from the subalgebra of idempotent quantities, roughly because
each quantity, e.g., position, corresponds to a set of idempotents, in this case
the set of characteristic functions on phase space that assign 0, 1 values to
subsets associated with different ranges of position values. To assign a value
to the position of a particle is equivalent to assigning a I to every range of
positions containing the value and a 0 to every other range of positions, or
assigning the truth values 'true' and 'false' to the corresponding propositions.

I shall refer to the algebra of idempotent physical quantities of a system
as the 'property structure' of the system. The property structure of a
classical system is a Boolean algebra. It represents, through its ultrafilters, all
possible ways in which the system can manifest its properties, or all possible
ways in which the properties of the system can fit together as
simultaneously determinate.

The transition from classical to quantum mechanics involves the
transition from a commutative algebra of physical quantities to a
noncommutative algebra, equivalently the transition from a Boolean to a
non-Boolean algebra of idempotent quantities or properties. This is, in effect,
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the formal significance of quantization. The non-Boolean property structure
of a quantum mechanical system can be represented as a partial Boolean
algebra - a family of Boolean algebras that are 'pasted together' in a certain
way by identifying common elements.

Consider, for example, a quantum mechanical system associated with a
3-dimensional Hilbert space, K3. Each set of three orthogonal I-dimensional
subspaces defines an 8-element Boolean algebra generated by these
subspaces as atoms of the algebra. The algebra contains the three atoms, the
three planes spanned by these atoms pairwise, together with the zero
element (0) corresponding to the null subspace, and the unit element (1)
corresponding to the whole 3-dimensional space. It is isomorphic to the
corresponding algebra of projection operators, representing the idempotent
magnitudes of the system. Evidently, some of these 8-element Boolean
algebras have elements in common. For example, if we fix a 1-dimensional
subspace K i, and consider two choices for the remaining pair of orthogonal

lines - any initial pair XK2 , K 3 orthogonal to K 1, and any other pair K2', K 3'
orthogonal to K I- then the two 8-element Boolean algebras are pasted
together at the elements 0, K 1, K 11, 1, where K i I represents the plane

orthogonal to K 1.
There are two notions of state in classical mechanics: (1) the state s as a

point in phase space, assigning values to all dynamical quantities, and (2) the
state w as a probability measure on phase space. The first notion of state
(call this a 'property state') selects an ultrafilter of properties in the Boolean
property structure B (isomorphic to the set of Borel subsets of phase space),
associated with propositions (assigning ranges of vaues to the dynamical
quantities) that are true in s. This ultrafilter corresponds to the properties or
propositions represented by subsets of phase space containing s - these are
the properties possessed by the system in the state s. Properties represented
by subsets of phase space not containing s are not properties of the system
in the state s. Equivalently, s defines a 2-valued homomorphism on B, with 1
corresponding to 'true' or 'possessed,' and 0 corresponding to 'false' or 'not
possessed.' The second notion of state (call this a 'statistical state') assigns
probabilities to elements of 13 or, equivalently, to the ultrafilters or 2-valued
homomorphisms defined by the property states (hence, to the different
possible ways in which the properties of the system can fit together as
simultaneously determinate).

The property structure of a quantum mechaniral system, L, is not
embeddable into any Boolean algebra (except in the special case of system
with a 2-dimensional Hilbert space). This means that there are no 2-valued

homomorphisms on L in the general case, and the quantum state is defined

as a generalized statistical state assigning probabilities to elements of L. We
can express the difference between B and L this way: All the elements of B
can be determinate or objective simultaneously, i.e., every element can have



a definite truth value at all times, and the different possible sets of truth
values correspond to the different classical property states. This is not the
case for a quantum mechanical property structure L that is not embeddable

into a Boeean algebra - only a proper subset of elements of L can be
objective at any particular time.

The question I want to consider here is this: What principles govern the
selection of a subset of pioperties as objective or determinate, given that the
properties of a quantum mechanical system can not all be determinate
simultaneously (on pain of contradiction)? In effect, different interpretations
of quantum mechanics involve different principles of objectivity, different
proposals for defining the objective or determinate physical quantities for a
system in a given quantum state.

A PROPOSAL
The proposal sketched below is presented as capturing certaia minimal

aspects of what we require of a notion of objectivity, however we
understand this notion in a metaphysical sense. Just as classical mechanics
does not select what propositions are true and ".vhat propositions are false, or
what the values of physical quantities aie - the theory only tells us how
given values are transformed dynamically, or places restrictions on the
values of certain quantities given the values of other quantities, whicl-
ultimately come from c:.tside the theory - so quantum mchanics cannot be
expected to select what quantities are objective. i.e., what quantities have
determinate values. What the theory ought to be able to do is show how
objectivity is transformed, i.e., given that certain (Boolean algebras of)
properties are objective (and this information ultimately has to be stipulated
or come from outside the theory), the theory ought to yield information
about what other properties are objective, or place certain limits on what can
be taken as objective, or show how the set of objective properties is
transformed dynamically.

If the quantum state of an isolated system S is represented by a vector

V E 3is, and no properties are designated as objective, the proposal is to take

the objective properties of the system as the partial Boolean subalgebra in L

consisting of the set of Boolean subalgebras {(B} that intersect in the Boolean
subalgebra generated by the atoms PV and Py-', where PV is the projection
operator onto the I-dimensional subspace spanned by V and Pw' is the
projection operator onto the orthogonal complement of this subspace in Iiis. I

shall refer to the set of Boolean subalgebras {By} generated by a vector Wv in
this way as the 'fan' defined by W. Take the property state of the system as
the ultrafilter generated by 41 in the fan.

It is evident that (i) any two algebras in the fan intersect in an algebra
in the fan, (ii) all the algebras in the fan have the same minimum and
maximum elements (corresponding to the null space and the whole Hilbert
space, respectively), (iii) for any element or pair of elements in the fan that



12

belong tn the intersection of two algebras in the fan, the orthocomplements
and the infima or suprema (Boolean meets or joins) taken with respect to the
two algebras coincide, and finally (v) for any n elements in the fan, such that
for every pair of these elements there is an algebra in the fan containing the
pair, there exists an algebra in the fan containing all n elements. These
conditions define the 'pasting' required for a set of Boolean algebras to form
a partial Boolean algebra.

Notice that all the elements of the Boolean algebras in the fan are

assigned 0,1 probabilities by qi, and no other elements in L are assigned 0,1
probabilities by W,. So W, defines a 2-valued homomorphism on the fan, even
though the elements in the fan are not all mutually compatible in the
technical sense of quantum mechanics - the different compatible subsets
form the different Boolean subalgebras in the fan. In other words, a fan is a
partial Boolean algebra of properties that can all be taken as mutually
objective or determinate without violating the quantum mechanical
functional relationships holding betwen the projection operators
representing these properties. Notice, also, that every Boolean algebra in the

fan that is nonmaximal in L is a subalgebra of a Boolean algebra in the fan

that is maximal in U. So the fan is completely specified by the set of maximal
Boolean algebras in the fan.

If the quantum state of the system is Wv and some Boolean subalgebra B
in L is designated as objective, then the proposal is to take the objective
properties of the system as the properties in the set of Boolean subalgebras

{By)/1B, where BV/1 is defined, for each BV, as the extension of B obtained

by completion from B and the elements in B1. that are compatible (in the

technical sense of quantum mechanics) with B. That is, for each BW in {B },

we add to B everything in B 1 that is compatible with B, together with meets,

joins, and complements, and reject the remaining elements in Bts. (So the

operation '/T is a kind of conditionalization of (BV) with respect to B.)

If B is generated by n atoms Pi, where the Pi are projection operators

onto n mutually orthogonal subspaces KXi that span the Hilbert space of the
system, then (as I shall demonstrate below) the maximal Boolean agebras in

the set {]BV/}/B all intersect in the Boolean algebra generated by the atoms
IOi, Pi-Oi, i = 1 ... , n, where Oi is the projection operator onto the 1-

dimensional subspace or ray that is the projection of Wg onto Xi, and Pi-Oi is

the projection operator onto the relative orthocomplement of this ray in KXi.
It follows that {BJt)/B is also a partial Boolean algebra, a (generalized) fan of

properties of L. Again, every Boolean algebra in the fan that is nonmaximal

in L is a subalgebra of a Boolean algebra in the fan that is maximal in L. so
the generalized fan is also completely specified by the set of maximal
Boolean algebras in the fan.
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Take the property state of the system as one of the ultrafilters in {B1}/1
generated by the Oi, for some i = 1, ..., n. This is consistent with the property
state defined by W in the simple fan (BV4, in the sense that properties that

belong to the intersection of an algebra in (B./ 11B and an algebra in {BW}
retain their status of belonging, or not belonging, to the property state (i.e.,
elements that survive the transition from {JB1} to {Bv}i/B retain their truth
values). So, as in the simple fan, the property states define 2-valued
homomorphisms on the generalized tan, even though the elements in the fan
are not all mutually compatible, i.e., the generalized fan is also a partial
Boolean algebra of properties than can be taken as mutually objective or
determinate, without violating the quantum mechanical functional
relationships. The Born rule for the probabilities defined by XV can now be
interpreted as specifying probabilities in the classical (Kolmogorov) sense for
the different property states (ultrafilters) in {fBt}/B.

In the following section, I shall show that this proposal leads to a
reformulation and solution of the measurement problem.

MEASUREMENT
Consider a measurement as an interaction between two quantum

systems, the object system S and the measuring instrument M. Suppose the
indicator qu3ntity R ('pointer reading') of M is designated as objective (by
requiring, say, that superselection rules apply to M, which we can represent
formally by stipulating that R is in the center of the algebra of physical
quantities of M and so commutes with all physical quantities of M). Then it
follows from the above proposal that the Boolean subalgebra of measured
properties of S and indicator properties of M is selected as objective in the
property structure L of the composite system S+M. So if the indicator
quantity of the measuring instrument M is objective, it follows that the
measured quantity of S becomes objective in virtue of the correlations
induced by the measurement interaction.

As usual, assume that the measurement interaction between S and M
results in the state transition yl®po = Yciai®po --* a = Ycijai®pi, where 4f

Y-cici E ls is the initial (pure) state of S, P0 E WEM represents an eigenvector
of the zero value of the indicator quantity R of M, cti are eigenstates of the
measured quantity A of S, and pi are eigenstates of R. Then the objective

Boolean algebras are those in the set Bsa/PBR, where BR is the Boolean
algebra generated by the indicator properties l®Pi, i = 1 ... , n as atoms, the
Pi being projection operators onto the n subspaces of K'LM corresponding to
the n distinct eigenvalues of the indicator quantity R.

In general, K M and the subspaces corresponding to the projection

operators Pi will be oo-dimensional. To illustrate the construction (BMa/BR, it
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suffices to take 'ls and 3lM as 3-dimensional. All significant formal features
of the general case are present in the 3x3-dimensional case.

Consider, for the moment, a maximal measurement, i.e., three indicator
values for the three eigenvalues of A. B R is the 8-element nonmaximal

Boolean subalgebra in L generated by the three atoms I®Pi (where each
projection operator Pi, i = 1, 2, 3, projects onto a 1-dimensional subspace or
ray in JiM spanned by the vector pi). The final state a = Iciaiapi defines a
fan of Boolean subalgebras IBti in L that intersect in the Boolean subalgebra
generated by the atoms PC, Pol.

Some of the Boolean algebras in the fan are generated by the atoms
corresponding to the six orthogonal vectors ai®iPj, i# j, that span a 6-

dimensional subspace KE3-Ls+M orthogonal to a, and three orthogonal vectors
a, p, X, where 0, X are any two vectors orthogonal to a in the 3-dimensional

subspace K' orthogonal to K. Consider any one of these algebras. Call it B*.

What is Ba*/BR?
The six rays (spanned by the vectors) aiOpj in K are all compatible with

BR - taking the Boolean meet of a ray with an atom in B R yields the ray or

the null element. So these elements all belong to Ba*/BR, i.e., the atoms Pij, i
# j, belong to B ,*/BR, where Pij is the projection operator onto the ray
spanned by cti®Pj. None of the rays a, 0, X are compatible with BR. But PC + P0
+ PX = PHi + P22 +P33 = P,- where Pii is the projection operator onto the ray

a0®pi, is compatible with l®Pi, i = 1, 2, 3, hence with BR. Taking the meet of
this element with I®Pi, i = 1, 2, 3, yields the three remaining atoms of the
maximal Boolean subalgebra BAR, generated by the atoms Pij, i = 1, 2, 3; j =
1, 2, 3.

So (Bo}/BR contains BA,R. The question now is whether there are other

Boolean subalgebras in toI[./BR. I shall show that:
(1) No other maximal Boolean subalgebra, BB3.R, generated by the atoms

Qij, where Qij is the projection operator onto the ray P3i®pj, i = 1, 2, 3; j = 1, 2,

3, with P3i derived via a unitary transformation from {ai), belongs to MBo}/BR.
(2) There are other maximal Boolean subalgebras in tBa}/BR, but while

they all contain the subalgebra of indicator properties of M (by construction),
none contain any nontrivial subalgebra of properties of S. I shall refer to
such subalgebras as 'nonseparable.'

(3) The only nonmaximal Boolean subalgebras in {Ba}I/BR are all

subalgebras of BA,R, or subalgebras of one of the nonseparable algebras.
(4) All the maximal Boolean subalgebras in {BI 1/BR intersect in the

nonmaximal Boolean subalgebra generated by the atoms IP1 l, P2 1 v P31, P22,

P1 2 v P3 2 , P3 3 , P1 3 v P23 }, where the Pii are the projection operators onto the
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1-dimensional subspaces or rays that are the projections of a onto the
subspaces defined by I®Pi, i = 1, 2, 3, and the Pji v Pki are the projection
operators onto the relative orthocomplements of these rays in the
corresponding subspaces.

To see this, consider the speciai case where B1BR is generated by the
atoms Qij, where Qij is the projection operator onto the ray 13i®Pj, i 1, 2, 3; j
= 1, 2. 3, with P3i defined by the transformation in 3is:

01 = l [32 = IN2(a2 + cL3) 133 = 1/,2(at2 - at3)
Can we generate the required nine atoms 13i®pj, i = 1, 2, 3; j = 1, 2, 3,

from some (maximal) Boolean subalgebra in the fan {Bo} via /BR? Call this

hypothetical algebra Bt'. It must be related to no* (any one of the algebras
labelled Bo* above) by unitarily transforming ('rotating') some or all of the
vectors ai0pj, i • j, 0, X, about a, i.e., the atoms of B 0 'correspond to vectors
mhat are linear superpositions of oti®pj, i # j, 0, x.

The nine atoms of B B,R we want correspond to the vectors:

Plipi= aiOpi P1®P2= OI®P2 131®P3= aI®P3
132®P =l/'2(a2+ct3)®PI 1320P2=l/2(0a2+a3)®P2 P2®P3=l/I2(a-2+a3)®P3
133®p 1=1/q2(a2-O3)p t 133®P2=1A/2(O2-a3)®P2 133®p3= 1I'/2(O2-O3)0p3

The only atoms in this list that could belong to an algebra B10 ' derivable
in this way from some B a* are the four atoms corresponding to the vectors

f3PIP2, 301p3 (these belong to B0 *) and 3 2®0P, 133®PI (these can be obtained
from B * by rotating 020PI and a30PI through 450 in the plane spanned by

a20PI and a3®P1). These atoms are all compatible with the atoms l®Pi of BR.
The remaining five atoms correspond to vectors that all involve a term

of the form ai@pi and so cannot be derived by a unitary transformation of
the eight vectors cai@pj, i * j, 0, X in the plane orthogonal to a, since ai®Pi does
not lie in this plane (assuming none of the coefficients of a are zero). These
atoms would have to be generated from nonatomic elements of B "'
corresponding to multidimensional subspaces that are orthogonal to the span
of 13 iPP2, 13tPP3, 1320P, 1330PI, and also compatible with the atoms I®Pi of BR,
by taking the Boolean meets of these elements with liPi, i = 1, 2, 3 (i.e., by
intersecting the corresponding subspaces). But the only element of B .'
satisfying this condition is the element corresponding to the 5-dimensional
subspace orthogonal to the span of PI@P2, 13 1P3, 1320Pl, P3Pl. Since 131 = atl
and the span of 1320PI, 133®Pl is the span of c2GPl, 030Pl, this is the subspace
spanned by al&P2, Oc®P3, ct20Pl, a30Pl. So the orthogonal subspace is
spanned by the vectors aL20P3, O3®P2, a, o, X, equivalently by a20P3, a3®P2,
a 10p 1, a20P2, a30P3. Intersecting this subspace with the subspaces
corresponding to I®Pi, i = 1, 2, 3, yields the ray alOpl (= Plp Pl) and the
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elements corresponding to the two planes spanned by a2®P2, ca30P2
(equivalently 02®P2, 133®P2) and a2(P3, ca3®P3 (equivalently I32®P3,1 3®P3). So

we generate a nonmaximal, 7-atom Boolean subalgebra of B B.R, with 5 atoms

corresponding to the rays P3 1®Pl, 1I3P2,1 31®P3, f2®0P, P3®p1 and 2 atoms
corresponding to the planes spanned by P32®P2, 133®P2 and P22®P3, P330P3.

If we keep no vector fixed in the transformation from IcJi to 130j, then

none of the atoms in BBR could belong to an algebra Ila derivable from Bo*
by unitarily transforming the vectors orthogonal to a, and no nontrivial

subalgebra of such a maximal Boolean subalgebra is in {B0 }/BR.
In the nxn-dimensional case, we can keep more than one vector fixed in

the transformation (i.e., either one vector fixed, or two fixed, etc.). Consider a
unitary tranformation from {foi} to ({3j} where (i) Ctl = 131, or (ii) atl = P31, a2 =

P2, etc. In case (i), the n-I vectors 13 1®Pj (J = 1, ... n) and the n-1 vectors fPi®op

(i = 1. n) can all be derived from B * by a unitary transformation in the

plane orthogonal to (Y. This yields 2(n-1) vectors. The remaining atoms of PBBR
all correspond to vectors that are expressible as linear superpositions that
include a term of the form ai@pi, which does not belong to the subspace
orthogonal to c and so cannot be derived in this way. In case (ii), the same
2(n-1) vectors can be derived by unitary transformation in the plane
orthogonal to a, but now the n-2 vectors 020Pj (j = 3 ... , n) and the n-2
vectors Pi®P2 (i = 3 ... , n) can also be derived in this way, yielding 2(n-1) +
2(n-2) vectors. And so on. In each case, the remaining atoms of B1 B,R all
correspond to vectors that are expressible as linear superpositions that
include a term of the form ai®i and so cannot be derived in this way. We
can generate the atoms corresponding to (i) 13 i®pt, or (ii) 131®p1, 20P2, or ...
by intersecting the subspace orthogonal to the span of the (i) 2(n-l), or (ii)
2(n-l) + 2(n-2), or ... vectors with the subspaces corresponding to the atoms

(i) I®PI, or (ii) I®PI, I®P2 , or ... of BR. But intersecting this subspace with the

subspaces corresponding to the remaining atoms of B R in each case yields
elements corresponding to multidimensional subspaces, i.e., to the Boolean

join of atoms in BB.R. So, while {B I/BR contains the maximal Boolean

subalgebra B A.R, it does not contain any other maximal Boolean subalgebra

BB,R, where B is incompatible with A.

There are, clearly, other maximal Boolean subalgebras in (Bal/BR. The
nonmaximal Boolean subalgebras considered above were all derived from
maximal Boolean subalgebras Bt' by MBR, where Ba' differs from Ba* by a

unitary transformation in the plane orthogonal to Y in which (for the case of
a 3-dimensional Hilbert space) (a) the vectors ctt®P2 and al®P3 are unaltered

by the transformation, (b) the vectors a2®P1 and ct3®P are rotated in their
plane, and (c) the remaining vectors a2®P3, a13®P2, 0, X are transformed in
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some way (or some permutation of the transformation described in (a), (b),
(c), corresponding to which vector is kept constant in the transformation
from {czi} to {13j}).

Consider, now, the maximal Boolean subalgebra B," in the fan {Ba I that

differs from (any one of the) B,,* by the transformation in 1Es®HiM:

132®pI = l/N2(o20pl + a03®P1) 133®PI = l/'42(o2®pI -,3®pl)
In other words, Ba" is generated by the atoms O.I®P2, aI®p3, 132®01.

a2®P3, 133®P1, c03®P2, 0, 0, X. The atoms corresponding to the six vectors al®P2.
fxl®P3. 132®p1. a2®P3, l33®PI, a33®P2 are all compatible with IoPi, i = 1, 2, 3. As

before, Pa + P0 + Px = P 11 + P 22 +P33 = PX-, is compatible with lOPi, i = 1, 2, 3,

hence with BR. Taking the meet with 10Pi, i = 1, 2, 3, yields the three atoms

P 1 , P22, P33 associated with the vectors al®pl, Oa2®P2, 33®P3. So Bo"/'BR is the

maximal Boolean subalgebra %4 generated by the atoms corresponding to
the vectors ctl®Pl, al®P2, Cl®P3, 132®Pl, a22P2, ct2®P3, 133®P1, a3®P2, a3®P3.

Algebras like B1# contain the subalgebra of indicator properties of M by
construction, but do not contain any nontrivial subalgebra of properties of S.

Evidently, the nonmaximal Boolean subalgebras in {B o /BR are all

subalgebras of BA,R, or subalgebras of nonseparable algebras like B #. For
example, the nonmaximal Boolean subalgebra with five atoms corresponding
to the rays 1pP, 131®P2, 131®P3, 132®Pl, 1330PI, and two atoms corresponding
to the planes spanned by 132®P2, 133®P2, and 132®P3, 1330P3, where 13 = ai, 5t2 =

1/2(az2 + QZ3), 133 = 1/q2(a2 - o3), is a subalgebra of V#, because the plane
spanned by l32®P2, 133®P2 is spanned by at2®P2, cQ3 ®P2 and the plane spanned

by 132®P3, 13®P3 is spanned by a2®P3, ca3®P3. It should now be clear that the

different maximal Boolean subalgebras in tBa}/BR all contain the three atoms
Pii, i = 1, 2, 3, corresponding to the projections of the state a onto the three
3-dimensional subspaces defined by the projection operators TIPi, with the
remaining six atoms corresponding to projection operators onto (mutually
orthogonal) I-dimensional subspaces that span the planes orthogonal to the
Pii in these 3-dimensional subspaces.

Similar considerations apply to nonmaximal measurements. To illustrate,
it suffices to consider a 3-dimensional Hilbert space for S and a 2-
dimensional Hilbert space for M. The measurement interaction correlates,
say, the first and second eigenvalues of the measured quantity A of S with
the first indicator value (+), and the third eigenvalue of A with the second
indicator value (-), resulting in the final state aF = (Clal + c20c2)Op+ + c3a30p-.

The maximal Boolean subalgebras in {B al/BR are 6-atom Boolean
subalgebras that all coincide on the 4-atom Boolean subalgebra generated by
the two atoms corresponding to the two rays ctap+, ca3Op., where a is the
normalized projection of W onto the plane spanned by atl and o.2, and the two
planes spanned by CL3®p+, a'®p+ and by atlOp-, a20P. (equivalently, by atp.,
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ca'®p.), where cx' is orthogonal to cc and o3 in Its. The different 6-atom

algebras correspond to different decompositions of the two planes as the
span of orthogonal rays.

Quantum mechanics is conceptually puzzling because the theory
introduces statistical states without explicitly relating these states to
property states. The core dificulty in the way of defining property states for
a quantum mechanical system is the objectivity problem. An interpretation
of quantum mechanics should say something about property states, either by
introducing new structures (as in a hidden variable theory), or by proposing
some way in which quantum mechanics can be understood as sustaining a
conception of property states that resolves the objectivity problem.

The proposal sketched above is presented as a minimal interpretation
that suggests a reformulation and solution of the measurement problem. It is
traditional to see the measurement problem as that of explaining how
Schrodinger's cat can avoid the embarrassment of having its properties of
being alive and being dead become nonobjective after an interaction that
correlates these properties with certain properties of a microsystem. The
problem arises because the assumption that the cat is determinately alive or
determinately dead (i.e., that these properties are objective) is inconsistent
with the assumption that the only objective properties of the
cat+microsystem a-e those assigned probability I or 0 by the state of the
composite system (i.e., the properties in the simple fan defined by the state).
But if we take the objective properties of the cat+microsystem as those in the
generalized fan / where a is the final state of the cat+microsystem
after the interaction, then we can consistently maintain that the state of the
composite system is a linear superposition of tensor product states over alive
and dead states of the the cat after the interaction, and that the cat is
determinately alive or determinately dead.

What has been shown is that quantum mechanics can sustain a
consistent notion of objectivity. If we assume that some designated
subsystems in a quantum mechanical universe, including cats and systems
that can function as measuring instruments, are characterized by nontrivial
Boolean subalgebras of properties that are always objective (i.e., compatible
with all other subalgebras in L), then we see how properties (of other
subsystems) that are nonobjective at a particular time can become objective
in interactions that correlate these properties with the objective properties
of the designated subsystems. There remains something like a problem of
boundary conditions or initial conditions: providing an account of those
physical systems that are characterized by nontrivial Boolean algebras of
properties that are always objective. But this latter problem, surely, is not
the measurement problem.
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The Quantum Theory of Unsharp Measurements

PA7L Bi sc(I
Institut fiir Theoretische Physik. Universitiit zu Witn, Germany

Quantum mechanics allows for an observable concept more general than selfadjoint operators:
both theoretical inconsistencies as well as new experimental developments require an analysis
in terms of general POX' measures rather than only spectral (PV) measures Some of the
ensuing achievements in the quantum theory of measurement of such unsharp observables
are reviewed with particular emphasis put on new experimental possibilities.

1. Introduction

Ordinary quantum mechanics is incomplete in that it is based on too narrow a
concept of observable. Due to this limitation the theory had been facing conceptual
and interpretational problems. For the same reason, appropriate tools were lacking for
an adequate description of various physical phenomena. About twenty years ago sev-
eral lines of research have independently induced the consideration of the most general
notion of observables which is compatible with the probabilistic structure of quantttnt
mechanics. Observables are to be described as effect valtued. or positite operator valued
(POV) measures, representing generally unsharp observables and containing ordinary
(sharp observables as special cases (spectral measures). Some of the arguments will be
reviewed which show the physically compelling nature of this generalization. A survey
of applications will be given which have been worked out in various fields of quantuim
physics, like measurement theory, stochastic processes, quanttutm optics. signal detec-
tion, stochastic quantum mechanics. and others. In particular. the existence of phase
space representations of quantum mechanics. of statistically complete observables and of
joint measurements of noncommuting quantities. as well as further unexpected results.
provide a clear illustration of the idea of unsharpness inherent in the new conception of
quantum observables.

2. Unsharp Observables in Quantum Physics

The most remarkable point about untsharp observables in quanitutn mechanics is
that they have not been introduced in order to accoutnt for measurement inaccuracies
within the theory: on the contrary, the term unsharpness is intended to reflect an
ingenious exploitation of genuine quantum indeterininacies. which has led to unexpected
resolutions of longstanding theoretical problems as well as new applications of quantum
mechanics.
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2.1 Definition of subject.
The quantum theory of unsharpl measurenments shall be un(lersto(od just as Hilbert

space quantum nmechanics based on general observabh's, including nleasureinent theory.

Observables are to be represented generally as positive operator valued (POV). or effect

valued measures. The formal difference between projection valued ýPV). or spectral
measures and others corresponds to the distinction between "sharp- (ordinary) and
"'unsharp' observables.

2.2 What is an observable.
The formal representation of an observable should account for tile statistics of a;

given experiment. In other words, it should allow one to predict the probability listirilu-
tions of measurement outcomes for any given state. Together with the linear structure

of quantum mechanics, this operational requirement fixes the notion of observable in
the sense of a POV measure [Lud83, BusS7. BLM911:

(1) E : - (7-R). X - E(X).

with (Q, E) denoting a measurable space. the value space of the nmasurement under

consideration. E(H) = {o E L(H) : 0 < a < I} the set of effects. and E satisfving the

usual measure postulates (positivity. normalization, el-additivity). The probability for
an outcome in X G E in state p is given by the familiar trace formulla:

(2) E,(X) = Tr[p.E(X)].

As emphasized above, unsharpness of observables does not merely account for a kind of

classical measurement inaccuracy: rather it is intend-d to cover aso quantum mechan-

ical indetermninacies of measurement outcomes which arise from the quantmn features

of measuring devices. Thus, there are typically two cases: First. an unsharp observable

may be a kind of approximation to some sharp observable: in that case the interpreta-

tion of unsharpness> as inaccuracy or indeterminacy deternids on the construction of the

apparatus. Secondly. there are unsharp observables with no sharp counterpart. It is
this class of general observables which opens up new theoretical and experimental possi-

bilities. Among them one finds joint obsezvables for nonconnmuting sets of observables.

such as the phase space observable reviewed below.

2.3 Measurement theory.
Both. the theoretical analysis of experiments as well as the operational character-

ization of theoretical concepts. require the machinery of quantum measurement theory

[BLM91]. In the quantum theory of measurement the measuring device, or part of it.

is treated as a quantumn mechanical system. A measurement consists of an interaction

of finite duration between the object system S (Hilbert space RS) and the apparatus

A (Hilbert space 7hA), followed by a registration of the l)pointer observable PA of A.

The measurement coupling V' [a linear state transformation on T(",h 'HA). the state

space of the compound system S + A] is sup)posed to establish correlations between

the observable E to be measured and the pointer observable such that the probability

reproducibility condition [BLM91] holds for p, PA being the initial states of S and A.
X E E:

(3) EP(X) = Tr[pE(X)] = Tr[V(p pA)"- I :: PA(X)].
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Here it is assutiiicA- that the value spaces of E and[ PA4 coincide. Ali E-tia'astireiuitii
may be sumumarized as the quadruple M- = (H'A-.PA. PA -I). Giýeli such1 anAl li te
nmeasuredl ob~servab~le E is uniquely dletermined 'v (1). The physical problem in (devising
a nieasurenment of a given observable E consists of construictinig a suitable apparatus

('A PA. PA) and finding a suitable interaction ý ) such that (3) is satisfied.
Besides the probabilistic aspects of a ulieasueinent .0-hich are, related to the ieter-

Ifiniation (if thle state prior to rneaga remra t. it will be (if interes~t to finid out. or control.
the itifluenice of the measurenient onI the sYstetoi. that ýs. the state iclange (11lie to nes
uremrent. Aga~in, it turns out that the final object t ate is fixed by A~4. In fact. for atiji
X C- 1 there exists a unique state transformlation I) A) sat isfyitig the follu)wing for all
states /p. all effects a E C( 7(ý )

(4) Tr[ - I(XNqp)]' TPLV~p p)A (I PAL XI'll

This formula follows fromn the fact that after iortilialjzation by the factor Tr 1 N p it
give,, rise to th1 a pproptriate post -iiicasurineniet coi lditioi t.I Priobab iilitie-s for the oibject
systemn. The mnapping N I(X.V constitutte'- a st ate t raii-firiiiat i'ii (or iperation) val-
I ed mea sure, in shiort the inqt~(cimc aet indiut ced 1,N thei iii.asuhrenvlo lt A. The noea sured
obserychble E is associated toi thle instrnumnlit I ill a liliqtue a way via t lit condit litoni

(5) Tr [1) E( A 1 = Tr [I(X A p

which is stipuilated tot hold for arbitrary states 1). all sets N.

2.4 Three levels of measurement theory.
The quanitum t heiory of uislia rp niia sil Iicit iait ca i atild lias 1we a ipplied o in three

levels of abstractioni. Or, If orl ont. tL , ab stract scleinei of nieao-treltent t heory is
employed to yield an operational chltraetetizat h in if tilie basic conicepits of qi ia litnn
mnechanlics [lKraS3]. In particular, tw.\o way-s of intiterpretinig unsharp observables have
been spelled ou~t in a "st etiiat ic and rigoiroils mianniter: Ei ther one rinay refer to uin-
sharp measuremnurt values such that thle coi irtsiotidiiig unsharp observable -onsttltttes
a coarse grained version of somie slhar tioiiservai lvl. TIhiis tyvpe oif ii aut itii tislia rp -
niess inust riecessitrily lie butilt iit' po~sitioli and illitueit iitili iii ordetr to aichiieve their
:0i at inca surabli lity ( Sect ionl 3), Thus, r' r vxa tulilt. ii isia rp Ipodsi taion E`ýis iob t aie by(II

Cotnvolutition of sharp pie it aiii E-) w t I ac it iofidtiicne funt iiiotn i f.

EQ)) t A f)) /E(-(N±.cv ~ c +i

(6) Q =Ji~d~=fc~t~)

The underlying idlea of (cia rse grainiiitg oif ol servabllts I a s bielei a nalyzed . for t 'st alice.
Ati [Da\vTC. Liid83. M\190a. Pru86. Sclir-2]. The second interpret ation of tinls.. .rp oil-
servabhles lea .1, toi a relaxatPion of thle well-kiiown meliiasuremenot ltheoret ical tnotions if
ide~ality. pre'Iictahiility. and repieatabiility [DavTG}6. liti this war (tilt' obitainis a generalizai-

iitio of the' famou( is Linist iii - Podlos ky'- oseti cri teiriotn of rea lity vEPR351 into a criteironi
of tnishiarp reality which allows for a realistic indhiviidual iiietrpretai iou of tjtalittil i nit-
rhatiics pertailiiitg to general observables 1'13ti85a. BLS9].
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The "classical" topics of the quantum theory of measurement are the fundamental
problems arising with a quantum mechanical formulation of the measurement process.
This part of measurement theory typically entails both level-one as well as level-two
questions. On the abstract level one has found deep incompatibilities between the
dynamical description [BCL90] and the objectification of measurement outcomes, which
can be formalized in terms of rigorous no-go theorems; for a systematic review. cf.
[BCL91]. It seems that the only way out of these difficulties within quantum mechanics
is an approximate one which makes use of features of concrete quantum mechanics. The
basic task consists of understanding the quasi-classical level of quantum mechanics.
which again has been seen to require general - namely macroscopically unsharp -
observables [Oni9O. BLM91].

Further topics of level-two measurement theory are concrete physical problems and
model considerations. Investigations are concerned with limitations and conceptual
problems of conventional quantum mechanics [BCL90, Oza9l, BLM91I. but also with
analysis of new theoretical and experimental possibilities. In both areas considerable
progress has been made on the basis of general observables [BGL89]. An interesting
recent example is the operational definition of phase observables [Gra89.91a]. It is
well known that in ordinary quantum mechanics there exists no selfadjoint operator
corresponding to a phase quantity conjugate to some nulmber, or spin observable. Re-
markably a phase can be defined in the sense of a POV measure, which therefore must
constitute an intrinsically unsharp observable. In the same way the known obstacles
against defining time observables fall away if PON' measures are taken into account
[Hol821,

Finally. level-three measurement theory is devoted to establishing the connection
with real experimentation. Concerning the analysis of actual experiments, is important
to note that a complete definition of a measurement is to be based on equations (3)-(5):
in fact. these conditions provide a complete specification of the observable measured
as well as the ensuing state changes. In the quantum optics literature one usually
finds a weaker condition, namely, equality of first moments of E and PA instead of the
full probability reproducibility (3). However. this procedure does not specify a unique
PON' measure but rather a whole class of them. In order to draw as much information
as possible from the statistics of a given experiment, one must pursue the theoretical
analysis far enough so as to determine the full observable measured. This programme
has been applied, for instance, to optical homodyne and heterodyne detection [Bar9l.
Gra9lbcc. IM91]. or new polarization and interferonietry experiments [Bus87. BS89.
MM90b]. Specification of the scheme given by the quadruple A4 not only allows one to
determine the observable actually measured in a certain experimental setup. but also
shows how to modify the setup in order to approach the intended observable. In this
way one may determine precisely the kind of information which a real Stern-Gerlach
device yields with respect to some spin component: the actual magnetic field interaction
allowed by Maxwell's equations and the irreducible spreading of wave packets allow only
for the definition of some unshiarp spin observable [BSS9, SM911.

In the sequel (Section 3) some samples of level-two and level-three activities and
achievements are briefly revisited.
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3. Some Applications of General (Unsharp) Observables

3.1 Recent developments in abstract theory.
General observables have been introduced and applied independently in various

branches of quantum physics. A rather comprehensive survey of the literature up to
1988 can be found in [BGL89]. Therefore, apart from citing the relevant monographs.
main attention is focussed on the more recent publications in the following account.
One may distinguish at least three broad groups of activities.

Operational quantum mechanics comprises various approaches towards an axiomatic
reconstruction of the theory, such as quantum logic [Mit78, Pir76]. manual approach
[FS90] or operational and statistical foundations [Dav76, Ho182. Lud83]. In the past
decade some progress has been made in clarifying the connections between these ap-
proaches. which started out from fairly distinct points of view. For instance. the precon-
ditions of quantum logic can be formalized within the operational approach [FPR83.
LB85]. The manual approach has been applied to yield a motivation of general ob-
servables in the spirit stochastic quantum mechanics [FS90]. As a last example. the
quantum logical question-proposition system has been given a new realization in terms
of the set of quantum mechanical effects [CN90].

Stochastic quantum mechanics originated from an attempt to formulate quantum
mechanics on phase space. which amounts to introducing a quantization necessarily
involving the idea of fuzzy, or stochastic localization, hence general observables [Alis8.
Pru86. Schr92]. The ensuing technique of defining concrete observables as systems of
covariance (generalized systems of imprimitivity) of some kinematical group applies
not only for the Galilei group, but also in the case of the Poincar6 group [Bro9l]. In
recent years it was found that also other quantization procedures can be formulated and
generalized in a natural way on the basis of general POV measures [Ali9l. AD87,90,
AE86]. Finally, new efforts have been made to reconcile quantum physics and gravity
on the basis of the conception of stochastic localization in quantum space time [Pru90].

Quantum statistics summarizes efforts arising from practical needs of generalizing
classical probability theory to quantum mechanics. The resulting methods -- quan-
tum stochastic processes. theory of repeated and continuous measurements, quantum
stochastic calculus -- have been applied, among others, to photon statistics, quantum
detection [Bar9l. Gra9lb, Holgl]. signal processing [Schr9la.b] and relativistic quan-
tum mechanics [Den9l]. Among the classical monographhs devoted to these subjects are
[Dav76], [He176] and [Hol82].

After this brief literature survey a few issues shall be reviewed in some detail, illus-
trating some of the basic new features of the quantum theory of unsharp measurements.

3.2 Coexistence, informational completeness.
An observable E may be called coarser than another one F if the range of E is

contained in the range of F. F can be called a refinement of E. If a collection of
observables E, possesses a common refinement F then these observables are called co-
existent. F constituting a joint observable for them. In fact. F yields a joint probability
distribution for the E, in any state, so that a measurement of F must be regarded as
a joint measurement of the E,. If the E, are ordinary observables (spectral measures),
then their coexistence is equivalent to commutativity [Kra83]. Remarkably, there exist
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coexistent noncomniuting families of POV measures. In general. for a pair of noncom-
muting ordinary observables there exist unsharp versions which are coexistent. This
will be illustrated for the position-momentum case below.

Joint observables yield more probabilistic information than their margins!l -ox
would. The exlreine :,Lt. occurs if an observable F allows a complete specification of
the state prior to measurement. That is, states are separated by their probability dis-
tributions. Such observables are called informationally, or satisticaIly complete. They
play an important role in introducing classical representations of quantum mechanics.

It is well known that no ordinary observable is statistically complete. Thus, statis-
tically complete observables are necessarily unsharp observables. Moreover, they do not
admit repeatable (that is, preparatory) measurements [BL89]. These facts can be par-
ticularly clearly illustrated in the case of spin-I observables. First of all, the statistics
of a complete measurement in two-dimensional Hilbert space must yield three indepen-
dent numbers in order to determine the state. Hence such an experiment must have at
least four outcomes (taking into account one normalization condition). A four-valued
observable in a two-dimensional Hilbert space cannot be a spectral measure since there
are no four orthogonal projections available.

Far from being merely theoretical ideas, coexistence and informational completeness
are well accessible possibilities in present day technology. Joint measurement schemes
providing complete statistics have been proposed for polarization observables and other
complementary pairs [Bus87, BS89]. Simultaneous measurements of path and interfer-
ence observables have been performed in a photon split-beam device [MPSS7. BusS7] and
similarly in neutron interferometry [MM90, RSZ90]. Using the tools of quantum meas-
urement theory, the determinative and preparatory abilities of quantum non-demolition
measurements of quantum optical phase space observables have been shown to be opti-
mally balanced [BL901. There are a lot of (quantumi optical experimental setups awaiting
a closer measurement theoretical analysis. some being done with very satisfactory results
(as cited earlier).

3.3 Classical representations of quantum mechanics.
The striking differences between quantum and classical mechanics have induced

several interesting attempts to reformulate quantum mechanics in a classical language.
Among these approaches are the famous Wigner distribution (Wig32], the path-integral
method, various hidden-variable theories, or stochastic quantization (references can be
found in [BLM91]). Formally. also the starting point of ,qtochastic quantum mechanic.,
is the same as that of Wigner's approach: the linear embedding of quantum states into
a space of phase space distribution functions. This procedure can be systematically
generalized in the following way (see also [Bug9l] and [Stu9l]).

Any observable E : E - E(R) on (9?. E) induces a mapping from the quantum
states to classical probability measures on E,

(7) VE : p E,, E,(X) = Tr[P. E(X)].

which extends uniquely to a linear map from the trace class into the space of r-additive
set functions on the measurable space (Q, E). The dual map of VF, associates quantum
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mechanical operators af to classical observables f : 1 - R:

(8) Tr[p.af] = Jf(x) E,(dxr).

Hence,

(9) oj f(r) E(dx).

(Conditions under which these integrals are well defined can be found in [Stu9l] or
[Schr92].) Thus, the map VE affords a line.ýr embedding of quantum mechanics into
a classical framework. Moreover, this embedding is injective - and hence a classical
representation - exactly when the inducing observable E is statistically complete.

While equation (7) is commonly used in the valuation of experimental data already
in ordinary quantum mechanics, its extension to general, and in particular to infor-
mationally complete observables, brings about a vast variety of new representations of
quantum mechanics of the Wigner type. A significant advantage of this new general
method lies in the fact that quantum states are represented by proper probability distri-
butions; furthermore, the underlying measurement theory allows for a straightforward
physical interpretation of these probability distributions.

3.4 Phase space quantum mechanics.
Localization in phase space is characterized by covariance with respect to space

translations and (Galilei) boosts. Taking the Weyl operators on R £L2 (R),

(10) W'(q,p) = exp{i(ql-'+pQ)},

covariance of a POV measure A : 8(F) -- £('H) on phase space F = JZconi,g x Rmo,
reads:

(11) lU(-q.p)A(A)1V(-qp)+ = (A +(q.p)).

This can be easily realized by the following: let a be a positive trace-one operator, then
define

(12) A - A(A) JTU(qp)dp(q p),

where

(13) T 0 (q.p) = W(-qp)a1W(-q.p)+.

and dp(q. p) = (27rh)- 1 dqdp. This phase space observable constitutes a joint observable
for unsharp position Qf and momentum P, observables as defined in (6). A full meas-
urement theoretical analysis has been given for this type of phase space observables.
showing that the confidence distributions f,g obey the uncertainty relations in the
sense of a limitation of the sharpness of phase space localization [Bus85b]. In spite
of the irreducible unsharpness, it has been shown that phase space localization may
still have quite a controllable degree of reproducibility [BL89], which turns out to be
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decisive for the qua si -classical nature of quantum mechanical phenomena such as bubble

chamber trajectories [BusS5. Omn9OJ.
As is wvell known, the relation between the phase space represenitationi

(14) p -p'(q.p) :=(2-,h)-1 Tr[p.T':q.p)]

induced by the phase space POV measure .4 and the \\igfler dlistribu1~tioni

(15) p -Vvv~g(p) :=(7,0- 'Tr[p P. - W(2q. 2p)]

(P denoting space inversion) is given by convolution jDav7161:

(16) pý (q, p) = Vtjgp(q'. p') Vw1t 9at(q - q'. p - pl) dq'dp'.

Performing the Fourier transform. one obtains first

(17) J e'y-prl Vq-,,p(q. p) dq (Ip = Trf [P IV(x. Y)].

and then

(1) e(qy±P')p'(q. p) dq (1) Ti- a . TT(.r_.)j . Tr [p.- TV(x.ry)].

The informiational completeness of A is equivalent to the fact that Tr [or . V.r is

nonzero (almost everywhere) [Schir921. Hence (16)-(18) shiow that in this case one can

reconstruct either one of p. p' and Vii 9 p fromi an. one of the remaining two entities.
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SURVEY OF QUANTIZATION METHODS
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ABSTRACT. A quick overview is presented of the different types of quantization methods
currently used for making the transition from a classical to a quantum theory. Particular
attention has been given to the theories of Borel. geometric and Berezin or prime quanti-
zation. The question of dequantization is also mentioned in connection with quantization
via deformations.

1. Introduction

Quantization is the method by which one makes the transition:

Classical Mechanics - Quantum Mechanics

There is a general belief, mostly for historical reasons, that a classical theory contains
enough information within its geometric and algebraic structure for possible quantum
theories -- of which the given classical theory is the limit - to be built. The opposite
process

Quantum Mechanics lim Classical Mechanics

by which, starting with the (in a sense more fundamental) quantmn theory. one arrives
at its classical limit, is called dequantization. To use a mideaval metaphor, one believes
that the ghost of quantum theory hovers over its classical remains. Quantizing then
amounts to incarnating this spirit while dequantizing involves exorcising the ghost! The
present survey will consider mainly the problem of quantization, looking at the more
commonly used methods. A few remarks on the dequantization problem will be made
at the end, in conjunction with quantization via deformations.

2. Canonical quantization

The originators of quantum theory used the following simple technique for quantizing
a classical system: Let q'.pj, i, j = 1,2..... n be the canonical position and momenta.
respectively, of a classical system with n degrees of freedom. Then their quantized
counterparts. Q', P3 , are realized as orerators onl the Hilbert space - L2 ( R". dx), by
the prescription:

S= x'"(x) PJ4,(x) = -ih5r (x)Q'¢(x)
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for a suitable set of vectors ý, in Sj. Von Neumann's uniqueness theorem [1] then states
that, up to unitary equivalence, this is the only representation which yields the canonical
commutation relations (CCR):

[Qk, p = ibkJ,. k.j 1,2. n. (1)

It was also realized that this quantization process amounted to a replacement of the
classical Poisson bracket by the quantum commutator bracket:

{qi~p } -- • i-h [Q'" P ]'

where for any two well behaved phase space functions f and g,

(gj f g___f4, (2)
Op, = J Oq W O-pqJ

A number of questions immediately arise:
(i) Let .l be the position space manifold of the classical system and q any point in

it. Geometrically, the phase space of the system is the cotangent bundle r = T*MV of
M. Its points will be denoted by (q',pi) in some local coordinate chart. If Al is linear.
Al _ R". then the replacement q' - .r,. p, -, -ih-•-7- works fine. But what if -l is
not a linear space?

(ii) How do we quantize observables which involve powers of q'.p,. such as for ex-
ample f(q,p) = (q')n(p. )m?

The general aim of a quantization programme is to attempt a systematic answer to
these questions. There are usually two points of departure:

(i) Start with the system localized in the position space Al and then proccd to
quantize the theory.

(ii) Start with the system localized on the phase space F, or more generally, on an
arbitrary symplectic manifold and then make the transition to a quantum theory.

In either case one exploits the geometry and/or the Borel structure of these under-
lying spaces. Additionally, a kinematical symmetry at the classical level is expected to
manifest itself at the quantum level as well - a fact which is also to be exploited.

3. Quantization starting from position space

Originally proposed by Segal [2]. this method is a generalization of canonical quanti-
zation and very much within the same spirit. A group theoretical method was suggested
by Mackey [3], within the context of the theory of induced representations of finite di-
mensional groups. A much more general method, combining the Segal and Mackey
approaches, was later developed by Doebner, Tolar. Pasemann. Angermann and Miiller
[4,5] under the name of Borel quantization, while a method using infinite dimensional
diffeomorphism groups was suggested by Goldin [6].

The technique is as follows: The position space Al is an n-dimensional Cx-manifold.
The quantum observables of position are to arise from the smooth functions f : f -- R
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while the observables of momentum have to be built out of the vector fields X of the
manifold Ml. For C'-functions a' : M - R. one has (in local coordinates qi)

"X (

Quantization involves first choosing a Borel measure p on .l, locally equivalent to
the Lebesgue measure on R", and the Hilbert space f) = L2 (!.,dP). The quantum
observables of position and momentum are then given by the mappings, f -* Q(f) and
X + P(X), respectively, where for suitable vectors C, E .9,

(Q(f)0)(q) = f(q),(q), P(X) = -ih(X + Ky)

(X z4')(q) = =a'(q) ?,(q) (Kx v')(q) = 2(Xw)(q)2(q) +

where ((X) = F _a' and locally dp(q) = w(q)dq dq2  dq'.
a=10q

The additional term Kx is needed to ensure self-adjointness of the operator P(X). In
terms of the Lie bracket [X, Y] = X o Y - Y o X of the vector fields, one obtains for the
quantized operators the following commutation relations, which clearly generalize (1):

[P(X),P(Y)] = -ihP([XYl) [P(X).Q(f)l = -ihQ(Xf) [Q(f)bQ(g(j = 0. (31

Actually Segal suggested going over to the group of diffeomorphisms of R" and its
unitary representations to attend to domain questions associated to Q(f). P(X) and
then gave a classification of possible unitarily inequivalent quantizations in these terms.

But at this stage it is better to move to the more general Borel quantization technique.
Let B(M) be the Borel sets of Al and X.((M) the complete vector fields on .l. If
X E .C,(M) then 3 a unique one-parameter group of diffeomorphisms of M, called a
flow, Ox : M --* M, t E R satisfying

V \
(q) = X(O (q)), 0o,(q) = q, x E Ml.

Let Diff(M) be the group of all C" diffeomorphisms of M which become rapidly
trivial at infinity. Each 6'. t E R defines a one-parameter subgroup of Diff(M). If -
carries a unitary representation U of Diff(M), then (by Stone's theorem)the unitary
subgroup U(o"), t E R has the generators

P(X) = lim U(¢') , with U(o;\)=exp{- P(X)t}.

and P(X) is a densely defined self adjoint operator.
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A classical Borel kinematics is now defined to be a pair (B(M). X,(M)) together with
a flow model

- o>() = {q E MkoŽt(q) E A}.

Suppose that on the Hilbert space Y. there exists a projection-valued (PV) measure.
A - E(A), A E B(M), E(A)2 = E(A) = E(A)* for which

U(oi\)E(A)U(oŽ,) = E(o(A)). (4)

This expression is a generalization of Mackey's inmprimitivity condition for finite dimen-
sional groups. A quantization of the classical Borel kinematics is then defined as the
pair U, E. satisfying the imprimitivity condition (4). Equivalently, classical observables
of position, f : M - R, and of momentum. X E X-, are mapped to the quantum
position and momentum operators

OPf) xf (q) dE(q) and P(X).

respectively.
The question immediately arises as to how many inequivalent quantizations one could

now build, starting with a given manifold Ml. In other words, what replaces the Von
Neumann uniqueness theorem here? Some general answers are available in the case in
which the PV-measure has fixed multiplicity n. so that the Hilbert space Jf is natu-
rally isomorphic to L2(A,. p: C"). In this case f) may be thought of as arising from
the sections of a Hermitian C"- bundle, whose Hermitian structure is compatible with
the usual scalar product in C". and which has a flat connection V. With a further
technical restriction on the nature of the allowed P(X). the inequivalent quantizations
are isomorphic to Hom(ri(M), U(n)). i.e., to the set of inequivalent representations of
the first fundamental group ir,(,I) of the manifold M by unitary 1 x n matrices (the
group U(n)).

4. Quantization starting from phase space

The phase space space is looked upon as a symplectic manifold r of dimension 2n.
i.e.. it is a manifold equipped with a non-degenerate. antisymnmetric two form ,:. which
is closed (dw = 0) and which in local coordinates q'. p, i.j = 1.2-.... n has the form

, Z= dq' A dp,. Usually F = TPM, i.e., it is the cotangent bundle of a manifold l
of dimension n. In that case there exists a symplectic potential 0. which locally has the
form 0 = -" p, dq' and for which e = dO. The classical algebra of observables is then
the algebra of all C'-functions f : F R, under the Poisson bracket product of eq.(2).
Quantization now involves constructing a linear map f - f into the set of self-adjoint
operators on some Hilbert space F), satisfying,

(i) the set {j} acts irreducibly on F);
(ii) I • I, where V(q.p) E F, l(qp) = 1. and I is the identity operator on f):
(iii) for a chosen set of functions f, g (which cannot include them all without relaxing

(i)),

{f. g} I '[f,g].
itt
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The Kostant-Souriau method of geometric quantization [7] has so far been one of the
most successful attempts in this direction. It proceeds in two stages: (i) prequantization;

(ii) choosing a polarization. One starts by defining the Hamiltonian vector fields X 1 on
r, coming from the functions f E C' as:

Xfjo = -df which implies w,(Xf,Xg) = {fg}.

Next one assumes a certain integrality condition for u. namely that its integral over any
closed surface be an integer multiple of 27r. The starting point for (i) is the construc-
tion of a Hermitian line bundle L, with base space r and a connection V, having the
connection 1-form a, such that w = -do, (i.e.. the symplectic 2-form gives rise to the
curvature tensor of the connection). For X E X(M), V- acts on the sections s of the
line bundle L. Next one constructs the Hilbert space L2(F',ý" ) of all square integrable
(with respect to the Liouville form a" = w, A , A ... A , sections of IL. On this Hilbert
space, the prequantized operators f corresponding to the classical observables f are
given by

= -ihv[-, +f, (5)

and hence at this stage for all classical observables f.g. one gets {f.g} -g) 9[],[. For
example, in the case where F R R 2 ,  L= C x F and

aO a j 1,2

However the system is in general highly reducible. To obtain an irreducible representa-
tion, it is necessary to reduce the size of the Hilbert space and the number of observables
for which the classical Poisson bracket goes over to the quantum commutator bracket.
This involves the choice of a polarization. In other words one tries to find a Lagrangian
submanifold, i.e.. a submanifold the tangent spaces of which are generated by vector
fields X5 such that

(i) [Xi, X,] = c, 3kXk, where the e's are numerical constants:
(ii) W(X,,X') = 0:
(iii) the dimension of the submanifold is n.

One then considers only those sections s which are covariant constants along the leaves
of this polarization. i.e.. Vy.,, = 0. To change the measure A;" appropriately, in order
to get a reduced Hilbert space, one could make use of half-forms [7].

The efficacy of the geometric quantization scheme is limited by the fact that
(i) the integrality condition has to be fulfilled:
(ii) without further extending the theory. only first order differential operators are

obtained for the quantized observables:
(iii) more physical questions, involving the ordering of operators. for example, cannot

be addressed within its framework.
On the other hand, if there is a symmetry group available for the system under study, the
orbits of this group under the coadjoint action have natural symplectic structures, which
can then be exploited using the Kirillov theory [8] to perform a geometric quantization.
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5. A general scheme exploiting phase space localizationi

The quantization scheme we are about to present subsumes the techniques proposed
by Berezin [9) and later independently by Prugoveiki [10], in the context of a relativistic
system (in fact all previous work had been for non-relativistic systems only). A refine-
ment of the technique. encompassing the question of ordering of operators, has recently
been proposed by Ali and Doebner [11] under the name of prime quantization. The me-
thod has also been applied to quantization on certain coadjoint orbits of diffeomorphism
groups [12]. Similar quantization procedures, particularly when the underlying phase
space has a Kiihlerian structure, have been studied by Odzijewiez [133. who also clarified
its connection with the geometric and Berezin quantizations. The present method also
generalizes the technique of quantization using the coherent states of locally compact
groups [14].

Suppose we have a quantum system on a Hilbert space f). Let r be its classical phase
space. We would like to study the localizability properties of this system on r, possibly
reinterpreted appropriately [15]. For probabilistic reasons this implies the existence of
a positive operator valued (POV) measure on phase space. A - a(A), where A C F are
the Borel sets, and a(A) are bounded positive operators on f. satisfying

a(0) =0, a(F) = I. a(U A,) =ZYa(-j), for disjoint sets;

iEJ IEJ

a(A) = J F(q.p)du(q.p). v = some natural measure on r.

Assuming that only a finite number of particles can be accomodated in a phase space
cell of volume h1.

F(q.p) 171,,qp)(T]q,pl. 11 < -y-2 77q.p E .

t=1

The condition o(F) = I then implies

rI qq",)( ( hI I 1(q,p) = 1 (6)
1=1

The r7,,p form an overcomplete family of states. When they arise from a group action.
they are called coherent states.

Using a. one can map f isometrically onto a subspace of L 2 (F, v; C") as

(VV4'), (q, p) = ID, (q. p) = (,Iqp 14,).

Let Wf. = FJh C L 2 (r. v:C"). Then fgh is a reproducing kernel Hilbert space. with
kernel K. having the properties:

K, 3 (qp; q'p') = (,I, q

A,)(q.p;q.p) >0, Kj(q.p:q',p') = K3 .(q',p';q.p)

- lo(q.p~q'.p')'Ji(q'.p')dv(q',p') = PIq.p). V'P E hh.
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U..sing K wve canl define. for each (q, p1 r 1'. a boutnded. linear v'aluiabon (n~ap El, )
f -C" for which

Ej-q. p)IF = IF(q. p) K (q. p: q.p)( . (1 '') IF E S) 1,

Also. let El, (q, p) C" -. bl be the dlual mnap. Then.

K(q. p;q'. p') = E,(.pE,(' ))

F15 (q~p) = 11VF q.p)TV 1 = E1, (q.pJ)'EF1 5 )q. p).

.A classical observa ble f E c' -(r) is thlen associatedl to an olperatolr j onil

f = (q.1) Ft, (q. p) ditq.p).

Thus, calling f -fa quantization, we see that thle method of prime quantization
involves:

(i) starting with a C"Ambndile E. with ba~se space F:
(i)constructing tilie H illbert sp ace b-, I f sect io ns of E wvhich ar' squ are initegrable

with respect to v. This space is i.'Iitorp)liI to L2 
'F. v':C

(11) finding subs)paces S>j, S~vwhich are reproducing kernel H~lbert spaces and
then p~rimne quantizing %':a eq.), 7).

The t echniqu of' qut jant iza tilln Ijust ((it litted is ver 'I ~ etaiaival cle(Aarly fuirt her restriic-
tions are niecessary to make it ph ysi cal lY nwiaaIn igfu l. 01).er IA'I r'~ t micti. implicitly
used by Berezin i 9 .1 3ý is t he follo w ing: 00 isidlb r. fort sim plic(ity. thet 'a se na 1. So that
eq.) 6) becomes f", l) P) ('1q. 1 . p?, dl')q. p) I. The phat~se space F tarries a sytuplectic formt

On the other hand S'I, being a Hilbe'rt space, also admnits a natural Cl -bundle
structure, over its projective space P1 ')/ I (consisting of onle-dimenvisional projection
operators, F i /'Fi IF E b/, ). Indeed. for each IF '_ £3)/ \101) denote by IF1ý the
complex line Colo passing through it. Theni P f~ h has ai unique strutu(tlre (If a Hilbert
manifold 1161 such that the maI)

S/\0)-s PJ1,; 'P IF 1,[P]

is a holomorphic subntersion. The plroject ive space PJ1j I~, also carries A natural lKiihlor
structuire andl a svmplect ic form .:, which is colnsistenlt wvith a cu1rv"atulre tw form
defined niaturally ott the sections oIf thel above mlenltionied(Iline btindle. In other wordrs.
we have here a prl'qtantizati(In in thle s;ense of the previouls sectionl. Let fcq .p =~k be
the coherent states, arising as imiages in ~j, (If the colieretit states tjp 'fFectintg a prime
qjuantization. and denote by E51, the set (If all such ý,, Theit the p~rinte quantizi'ation
leads to a miap (]. p) - (Ip f 61, inito) P1S') ,~ . As a restricý,o1n oil thle class of prino'
quant iza tions. one c'0d1( repurei- that. if this mna p is smooll th. the puiI'- Isac~k (If :ýA toI
P(-()/ ) under it should co~inc'ide with ,:. Whenever this condit i' it is sati'.fied. we have a
qjuantization in thle sense of Berezin. In tilt' case wherv flt , '1 I/1, arise from tile' action (If

a svmimet rv grou [llI10-121 wve get cohierciI stalteI qua nt izationti. a inti 't wh11 vich' has 1 (Cl'.

app~liedl extensively tol t he gen eralzeid Rquare itrdqfgabl rrprcsqctahv, oill~(f tile Galilvi.
Poinica r6 and diffeom orphiisin groutps.
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6. Quantization by deformation

In the above scheme, let us associate to any hounded operator .i on Jh the phase
space function A.(q.p) - (ilqý p .4 qp). This function is called the symbol [9,171 of the
operator .4 and the function .4(q. p: q'p') = (.,iqp.4,q,p,) is an extension of the symbol
to r X r. This extended function determines the operator J completely, but the symbol
A(q.p) need not do so in general. Howeve. in a large number of interesting cases (e.g..
when r is a complex domain arising froni the homogeneous space of a group such as
Sp(2n. R ). U( n ). etc.). the function A(q. p) turns out to be holomorphic in the variable

- 7(q - ip) and then A(q.p) determines .A uniquely. In such cases, putting in
appropriate factors of h we can introduce a product. denoted *t. in the space of symbols.
under which if .- B has the symbol A *h B. then

.A * Bq.p j K(qp: q(p )A(q .p': q,p)B(q.p: q. .p )(q.p: q. p) dv(q ,p').

The algebraic structure of the set C(f)jh ) of Imull(led operators on -€1, is t hereby trans-
ferred to the algebraic structure (under this *s-product ) on the space of symbols. The
Lie bracket [.4. B] is now replaced by the .ymnbol Lie bracket:

ih
,(A.4B)=,4*B-B*.4. = A * hS

and p(A.4. B) is called the defor,;'ation of tfe rla.sqcal Poisson brack'et .4. B}. One
then proves that

p,\(A. B) ACA. B) + IA.4.B}.

Cj(A. B) = higher order brackets in A. B. Consequently, as A - 0. wve see that I,,\
{.4 B}.

Quantization by deformation starts with the algelbra of C"(17) unider the Poisoion
bracket, satisfying the .Jacobi identity. and then tries to (leforli it to obtain an algebra
of symbols under a p,\-product and again obeyving the Jacobi identity [18.19]. In this
context dequantization is the passage to the opposite limit. [20.21] i.e.. starting with
ail appropriate twisted algebra for a given quiaintum systerm one tries to obtain the
underlving classical system by taking the linfit A - 0.

7. Conclusion

In the above pages. we have tried to touch on the essential features of some of the more
common techniques currently employed for obtaining a qutantum theory, starting from
its classical counterpart. As is certainly clear. from the wide variety of not necessarily
overlapping p~ossibilities available at the moment. that the problehm of quantization is
far from being solved. Indeed there exist other suggestions that we have not had the
opportunity to discuss. For example. nothing has been said (if fiehl quantization or
more esoteric probhlnls. such as the quantization of string. Neither did we have the
occasion to mention quantization using path integrals. However. ulanNy of these other
quantization procedures rely, in one form or another. on techniques similar to the ome.s
described here. Still. the plethora of techniques. developed in the past two decades or so
to attack tle p)roblem, prompts us to conclude with the ob inservatio n that quantization
procedures are about as diverse and colourful as the gods in any iagan p)antheon!
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FROM 'ANYONS' TO NONLINEAR
QUANTUM MECHANICS: PHYSICAL PREDICTIONS FROM

DIFFEOMORPHISM GROUP REPRESENTATIONS
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ABSTRACT. Diffeomorphism groups are intrinsic to quantum mechanics, and their unitary
representations predict physical possibilities otherwise difficult to recognize. Many pro-
perties of the particles obeying what is now called -anyon statistics" were first obtained
this way, in joint work by the author with R. Menikoff and D. H. Sharp. More recently, in
collaboration with H.-D. Doebner. a fundamental nonlinear Schr6dinger equation admit-
ting diffusion currents was proposed that we regard as a serious candidate for generalizing
the usual quantum mechanics to accommodate dissipation. This equation, introducing
an -arrow of time" at the quantum level, was obtained too from diffeomorphism group
representations. The method, and the physical results that follow, are described briefly.

1. Introduction

For over twenty years I have been working with some other physicists. especially
David Sharp and Ralph Menikoff at Los Alamnos National Laboxatory, to develop a
foundation for quantum theory based on Lie groups of diffeonuorphisnis and their asso-
ciated Lie algebras of vector fields [1-22]. We commenced between 1968 and 1974 with a
study of local. equal-time current algebra representations in nonrelativistic and relativi-
stic physics. Our work evolved during subsequent years into a mathematical framework
for quantunm mechanics based on gauge-invariant quantities, incorporating ideas from
unitary group representations, differential geometry. and topology. The resulting theory
unifies the description of an extraordinary variety of quantutm systems. Our method is
to obtain systems with different particle ntmbers [1-7]. spins [14.16-18]. statistics and
parastatistics [12-15.20], and internal structures of tightly-bound coniponents [14,19].
as well as certain quantum thermodynamical systems such as infinite Bose and Fermi
gases [4.8-101. as distinct umitary representations of a single type of infinite-dimensional

group--the group of diffeomorphisms of physical space [14.18.22[. Representations of
the Lie algebra for this group. the algebra of vector fields, were subsequently obtained
by Heinz-Dietrich Doebner, Jiri Tolar. and Bernd Angermann [23-23] in the context of
kinematical quantization methods (quantum Borel kinematics): see the accompanying
talk by S. Twareque Ali [26]. This fortunate confluence of two approaches led to my
present collaborations with Doebner and with Ali.

Our theoretical study generated some physical predictions difficult to reach by other
means. One of these was the possibility of "anyon" statistics in two-dimensional space,
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i.e. phases under particle exchange intermediate between Bose (+1) and Fermi (-1),
which Menikoff, Sharp, and I obtained in 1980-81 independently of their earlier deriva-
tion by Jon Leinaas and Jan Myrheim [27-291. Our results included the now well-known
"shift" in the angular momentum and energy spectra, and the relation to the Aharonov-
Bohm effect [13]. The idea was subsequently rediscovered by Frank Wilczek (who named
such objects "anyons") in his work on fractional quantum numbers [30-31], and it was
developed further by many people [32]. In 1983 our methods led us to the role of the
braid group BN in theories of anyons [14-15], which I believe we were the first to obtain.
We showed the admissibility of quantum particles associated with representations of BN
of dimension greater than one, despite an argument to the contrary by Yong-Shi Wu that
paralleled closely the much earlier ideas of Michael Laidlaw and Ccile Morette-DeWitt
[33-36]. An important theoretical insight was that the topological properties of the
two-dimensional, N-particle configuration space from which Leinaas and Myrheim first
conjectured anyon statistics, are a result of the local symmetry of the diffeomorphism
group. One need not arbitrarily exclude the so-called "diagonal" points, where two or
more particles occupy the same position in space, to obtain anyon statistics [14-15,20].
It also follows that fractional statistics can occur for distinguishable particle- [18,20,34],
based on a subgroup of B.N (the "colored braids").

A second prediction concerns quantized vortices. Motivated by earlier work of Mario
Rasetti and Tullio Regge [37-38], Menikoff, Sharp. and I obtained a possibly surprising
result: in an ideal, incompressible quantum fluid in two-space. whose configurations
are described by the group of area-preserving diffeomorphisms of R 2 , there cannot
exist pure point vortices; but quantum vortex filaments (e.g., loops) are permitted
[39-40]. Analogously. in R3 one-dimensional filaments of vorticity caiinot occur, but
two-dimensional surfaces (e.g., quantum vortex tubes and ribbons) are possible [40]. In
this work, we made extensive use of geometric quantization methods.

A third consequence of the theory, obtained just this year in my joint work with
Doebner [42], is a general, complex nonlinear Schr6dinger equation outside the classes
most often studied. Our equation follows from adding to the usual quantum current
a diffusion current, so that the mass and momentum densities satisfy an equation of a
Fokker-Planck type in place of the standard equation of continuity. The diffusion coeffi-
cient D yields observable effects dependent on a dimensionless constant F = mD/h. The
diffusion current stems from our interpretation of a certain class of representations of
the Lie algebra of vector fields (and correspondingly, of the group of diffeomorphisms),
that were obtained independently by Menikoff, Sharp, and me in 1980, and by Anger-
mann, Doebner, and Tolar in 1983 [24,43]. In 1987, 1 reported on their link with the
Fokker-Planck equation [44]. The idea of substituting a Fokker-Planck equation for the
continuity equation had by then already been proposed, in a remarkable series of papers
by Dieter Schuch and his collaborators in the field of quantum chemistry [45-49]. They
did not, however, go quite so far as to obtain the general nonlinear Schrodinger equation
discussed below and in Ref. 42.
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2. Diffeomorphism Groups and their Unitary Representations

Imagine a fluid in a region X of space; a configuration C 1 is given if we label each
fluid element by its position x E X. Let 0: X -f X be an invertible map, displacing
each element to a new position y = O(x); then o gives a new fluid configuration C2. If
0 and 0' are C', we call 6 a diffeomorphism. Let 0' similarly transform C2 to C3 .
with z = 0'(y); the composite transformation from C1 to C3 is a single diffeomorphism
z = (0' o 6)(x). The diffeomorphisms of X form a group under composition, whose
identity is e(x) _ x; we have € o 0-1 _ 0-1 o 0 = e. This group is infinite-dimensional
as a Lie group; its elements can deform small regions of X independently-turning in
different directions, stretching, shrinking, and/or shearing by varying amounts. We are
interested mainly in the infinite-dimensional subgroup Diff (X), of diffeomorphisms that
can be reached continuously from e(x). One can think of 6 E Diff(X) as transforming
X, or as a global, general coordinate map relabeling X. Since a smooth relabeling
should not affect the physics, we interpret Diff(X) as a local symmetry group. More
generally, X can be a C' manifold; it is the physical space for quantum theories based
on Diff (X). Now a Coo vector field g on X can be regarded as a (fixed) velocity field
for streamline flow of a fluid in X. For technical reasons, we require g to vanish faster
than any polynomial, with all derivatives, when jxj - oc (or, alternatively, to have
compact support). For any such g there is a unique one-parameter subgroup of of
Diff (X), describing a flow (under the velocity field g. for time ;); i.e., og(x) solves

= g(¢s,(x)), with the boundary condition iý=0 (x) = x. Requiring that
g ý 0 (rapidly, with all derivatives) at infinity ensures not only that o0S exists, but that
the diffeomorphisms satisfy O(x) -- x (rapidly, with all derivatives) at infinity. If g has
compact support, then for all s, osg has compact support.

The relation between vector fields and flows lets us exponentiate the self-adjoint
operators for quantum-mechanical current densities and obtain a unitary group. Let
tý' 0p(x, t) be a second-quantized, nonrelativistic field in a Fock representation, satisfying
equal-time canonical commutation (-) or anticommutation (+) relations
[?•,op(Xý0,t),.p(y, t)]± = 6(X- y). In terms of y'op(x.t). the momentum density is (in

local coordinates)

J(x,t) = (h/2i){joP(x,t)[Vt',p(X.t)] - jVvp(x.t)]t A(X. t)}. (1)

Define the spatially averaged operator J(g, t) = f J( x, t) g( x. t) dx. From (1), together
with either canonical bracket, follows the fixed-time local current algebra

[J(gi1), J(g 2 )] = -ihJ([gi, g21), (2)

where [gi1g21 = gi Vg 2 - g9 Vg9 is the Lie bracket of g, and g2. Thus (2) is a
self-adjoint representation of the Lie algebra Vect(X) of vector fields on X. Exponen-
tiating (2) yields a continuous unitary representation (CUR) of Diff(X): to each J(g)
corresponds the unitary group V(6,) = exp [i(s/h)J(g)) in the Fock Hilbert space.

Thus we already see that Diff(X) is not being introduced arbitarily: it occurs in-
trinsically in the standard quantum mechanics of bosons and fermions. To construct
representations it is convenient to adjoin to (2) the number density operator,
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~po(x,t) = 0op(x,t)Vop(x,t). For f a real-valued C' function on X vanishing (ra-
pidly, with all derivatives) at infinity, set p(ft) = fpop(x,t)f(x,t)dx. There then
follow the additional equal-time commutators

[P(fl),p(f 2 )] = 0. (3)

[p(f). J(g)] = ihp(g Vf), (4)

where g Vf is the Lie derivative. Eqs. (2)-(4) represent (by self-adjoint operators)
a semidirect product of two Lie algebras-the commutative algebra S of smooth scalar
functions on X, and the algebra of vector fields. Exponentiating (2)-(4). with U(f) =
exp [ip(f)] and 1I' representing Diff (X), we obtain the unitary group

U(fl)V(0 1 )U(f 2 )1'(o 2 ) = U(f 1 + f2 °O1) V(0 2 o01). (5)

The framework for quantum theory that Sharp and I developed takes Vect(X) and
Diff(X) as fundamental structures. The unitarily inequivalent, irreducible representati-
ons of (2)-(5) describe possible, physically distinct quantum systems-including systems
different from the canonical, second-quantized Fock fields. In this sense, we regard the
diffeomorphism group as a "universal group" for quantum theory. Given any CUR
obeying (5). the above provides its physical interpretation: for each flow subgroup 09
in Diff(X). recover J(g) as the (unique) self-adjoint generator of V(og); then J(g) is
the momentum density averaged with the vector field g.

One success of this program was the characterization of particle statistics using the
operators p, J, U, and V, without introducing anticommutators or other brackets. The
main idea is that in more than one space dimension. diffeomorphisms (even constrained
to be trivial at infinity) can always implement the physical exchange of N particles
with arbitrary given positions. The consequences of such a permutation are thus fully
described by the CUR of the diffeomorphism group and its algebra. Furthermore, obtai-
ning a diffeomorphism that implements the exchange as a succession of flows provides
a path for the exchange. In two space dimensions, we represent Diff(R,2); the same
considerations then lead to fractional statistics, and were the basis of our 1981 results
that included many of the important physical properties of anyons.

Another result was our ability to describe particle spin. despite the absence of explicit
spin operators in the algebra or the group, without inserting them arbitrarily. We
note that every diffeomorphism o of R3 (for example) has at the point x a matrix of
derivatives D0 (x), with entries (a0k/0.r1 )(x) for j, k = 1, 2, 3. Such a 3 x3. nonsingular
matrix belongs to the general linear group GL(3, R), whose maximal compact subgroup
is the rotation group S0(3). A flow subgroup of Diff(RW). holding x fixed, then yields
a path through the identity in GL(3, R). corresponding (up to homotopy equivalence)
to an element of the universal covering group. This idea results in representations of (5)
that describe particles with different spins, either integer and half-integer-but because
we have the general linear group and not just the rotation group, an irreducible CUR
of Diff(R') describes a tower of spins and not just one fixed spin. Representations of
GL(3. R) and its covering had been applied earlier in quantum mechanics by L. Weaver,
L. C. Biedenharn, and R. Y. Cusson [50]. e.g. to excitations of nuclei: the results they
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obtained thus fit nicely into our general study of diffeomorphism group representations.
A similar procedure in R 2 leads to the fractional spin of anyons.

To see how such results are obtained, let us look briefly at one way to write CUR's
of the diffeomorphism group (or its semidirect product with the scalar functions). Take
the Hilbert space fj = L2(A,'9R) to be a space of square-integrable functions '(y),
for -1 in a quantum configuration-space A; %iP takes values in a complete inner product
space 9.N1 that may be n-dimensional (n > 1) or infinite-dimensional. The norni. ''P., P)
is defined from the inner product in 9N by ('P,'P) = f (fl(h>), T(-))o dp('v), where p is
a suitable measure on A. The space A is a G-space for the diffeomorphism group-i.e.,
0 : A --+ A continously. in a way that respects the group law. We write (P, -Y) -+ 0/
for this action. Then p is required to be quasi-invariant, in that the class of p-measure
zero sets in A is preserved when transformed by any € E Diff(X). The quasi-invariance
of p implies existence of the Radon-Nikodym derivative (dp 0,/dp)(j) of the transformed
measure p, with respect to p. Now, a CUR of Diff(X) in J) is given by

dp (6)

where the unitary operators '0(7) act in 91 so as to satisfy, for 61, Q2 E Diff(X),

(= \0,hoo,() (7)

almost everywhere. Such a system of operators \ is called a unitary cocycle; )c must
also satisfy appropriate technical conditions, which I shall not discuss here. Equivalent
(i.e., cohomologous) cocycles on the same configuration-space turn out to describe uni-
tarily. and therefore physically, equivalent representations: while mutually inequivalent
cocycles on N-particle configuration spaces describe the inequivalent quantum statis-
tics. When 9N is the field of complex numbers, the particle statistics is described by
scalar phases; while the higher-dimensional case corresponds to "'paraparticles". The
operators U(f) also act on fj: they do so as multiplication operators, completing the
represent ation of (5).

George Mackey's "method of semidirect products" for finite-dimensional Lie groups
[511 extends partially to the infinite-dimensional case [2.7.52]. and allows quantum confi-
guration spaces A to be constructed systematically. In this formalism irreducible CUR's
satisfying (5) are associated with ergodic measures on the continuous dual to the space
S of scalar functions on X-i.e., on the space S' of tempered distributions on X. An
ergodic measure is a normalized probability measure p for which all sets invariant un-
der diffeomorphisms are of measure 0 or 1; p may be concentrated on a single orbit
A C S', or it may be that every orbit has measure 0 and A is the union of uncountably
many orbits. On a single-orbit configuration space for Diff (X), a systematic, physically
motivated construction of cocycles is possible. For fixed I E A, consider the stability
subgroup K, = (01o- = f}. For 01 and 02 in K., the cocycle equation (7) reduces to
a unitary representation of K, (acting in 9.). Conversely, CUR's of K, lead to cocycles
by extension of the method of induced representations 112,13,20). One way to obtain
representations of K., is from a homomorphism mapping K., to the fundamental group
of the configuration space, 7r,(A). which is a discrete group (see below). Then a unitary
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representation of 7qr(A) automatically gives a CUR of K.r, which induces the CUR of
(5) having the appropriate cocycle. More generally, 7r,(A) can be replaced here by a
finite-dimensional Lie group, which serves as a gauge group for the theory.

Another way to construct configuration spaces and cocycles systematically, which I
shall not review here, is the method of coadjoint orbits [21,38-40,53], where the orbits
are (reduced) phase spaces; their foliations, obtained through geometric quantization,
become the quantum configuration spaces for representing the group.

The above glosses over some mathematical difficulties, especially problems associated
with the absence of Haar measure for infinite-dimensional Lie groups. These have,
however, been overcome for Diff(X) in the cases of greatest physical interest-inclading
the description of anyons and the dissipative nonlinear quantum theory highlighted here.

3. Diffeomorphism Group Representations and Anyons

Ordinary N-particle quantum mechanics fits naturally into our framework. A confi-
guration -I = {xI, ... XN} occurs in S' as the sum of N distinct evaluation functionals,

N

= -6x, (x, #xifori 5j). (8)
j= 1

where (6. , f) = f(x) for f E S. A diffeomorphism acts on a term 6,. of -y by transfor-
ming x, keeping (of course) any two distinct points distinct. Thus the orbit A containing
-y is exactly the N-particle configuration space of unordered N-tuples in X, without the
"diagonal" points mentioned earlier: the latter are excluded automatically, and A has
nontrivial homotopy. Its stability group K, C Diff(X) consists of all diffeomorphisms
which leave the set {x1. ...X. } fixed, including not just those keeping each individual
xi fixed, but also those which permute the points; hence, we have a natural group ho-
momorphism from K, onto the symmetric group SN. Any unitary representation of
SN in a vector space 9N provides a CUR of A7-. inducing a CUR of Diff(X) described
by a unitary cocycle N, and giving us a consistent quantum theory. The symmetric and
antisymmetric one-dimensional representations of S. lead to bosons and fermions re-
spectively, while higher-dimensional irreducible representations of S, (associated with
the usual Young diagrams) induce CUR's of Diff IX) describing parastatistics [54-561.
The action of V(0) is given by (6), where u is locally equivalent to Lebesgue measure
and X is a cocycle reducing on A, to tht iiidicatc(, rep,•cataiu,,, dnt U!:" ",ion of
U(f) is just to multiply the wave function %I,(ý) by exp [i( , f)]. In this way Bose.
Fermi, and parastatistics all occur as special cases of the general theory.

Note that in these examples, the symmetric group acts on the values rather than
the indices of the xj. This distinction has no physical consequences for bosons or
fermions, but it becomes important in the description of paraparticles [20,57[. "Index
permutations" commute with all observables in the theory. while "value permutations"
do not. The group of diffeomorphisms compels us to define the statistics from value
permutations, but without giving up the indistinguishability of the particles built into
the elements -y of the configuration space A. The unitary inequivalence of Bose. Fermi,
and "para" representations of Diff(X) means that a system of N paraparticles, N > 3,



44

is (at this level of description) physically distinguishable from a system of N bosons or
fermions, even when the latter are equipped with additional quantum numbers.

In two space dimensions, though, there are still other possibilities. When X is R3 and
A is the N-particle configuration space, the group SN is the fundamental group ir, (A).
But when X is R 2 , 7r, (A) is larger than SN, since it is possible in the plane to distinguish
the path whereby a set of particles have been exchanged; in fact, the fundamental group
is the braid group BN. And for a configuration -1 of N indistinguishable particles in the
plane, the stability group K,- in Diff(R2) maps onto Bv, not merely onto SN-because
a diffeornorphism 0 that implements an exchange, written as a succession of flows,
provides a path for the exchange that is well-defined (up to homotopy equivalence)!
Here the fact that diffeomorphisms act on values rather than on indices is essential for
anyon statistics (as is the natural exclusion of the diagonal points from the orbit).

A one-dimensional representation of B,, where a simple counterclockwise exchange
of a pair is represented by exp [iO], induces a CUR of Diff(R 2 ) describing anyons with
the intermediate phase shift 0. The physical interpretation of J(g) as the momen-
tum density averaged by g allows the determination of the properties of the quantum
particles described by such a representation, including the shifted angular momentum
spectrum. We also have, as an immediate consequence, the consistent possibility of
quantum mechanics based on the higher-dimensional representations of BN.

To describe distinguishable anyons in our framework, configurations must be ordered
N-tuples of points in R 2 . Such configurations also occur in S'; writing I = . j6x,,
where x, $ xj for i 5 j, and where the real coefficients Aj are all different, we obtain
a new orbit. The Aj correspond to distinct outcomes for measurements of p on each
particle. The fundamental group for this orbit is the group of "colored braids"-the
kernel of the natural homomorphism from BN onto SN. The stability group K. is
smaller than its counterpart on the identical-particle configuration space' and different
phase shifts can occur when different pairs of particles circle each other in the plane.

In the preceding I have sought to convey how anyons arise kinematically, through
certain diffeomorphism group representations. Next I would like to describe a different
family of representations, and offer a physical interpretation for them.

4. A Nonlinear Schr6dinger Equation for a Dissipative Quantum Theory

Let D be a real parameter. A self-adjoint representation of the Lie algebra (2)-(4) in
- L2(R 3 ), describing a single quantum particle in three dimensions, is:

p(/)lk(x) = ??f(x)1P(x),
-l (9')

j D (g),(X) = {g(x). -7vi(X) + V. [g(x)%P(x)]} + mD [divg(x)]1P(x).

For distinct D, we have mutually inequivalent one-particle representations of the current
algebra; D may be viewed as a quantum number deriving from the algebraic properties
of Vect(R 3 ). T-c usual Fock representation corresponds to D = 0.

Since (9) is linear in f and g, we can define the (singular) operator-valued mass
density po,(x,t) and momentum density J(x.t), so that p(f) = fpo,(xlt)f(x)dx
and J(g) = fJ(x,t) , g(x)dx. Then the representation (9) can be obtained from
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the D = 0 case by the transformation JD(x, t) = JD=O(x,t) - DVpop(x,t). To re-
late D to a dynamical situation, one makes the generic assumption of a continuity
equation relating the mass and momentum density operators, and expressing the con-
servation of mass, Otpop = -v . jD. This yields a Fokker-Planck type of equation for
jD=o, including a term describing diffusion of p: Otpop = -V • J + DV2 pop, where
D serves as a diffusion coefficient. The dimensions of D are length'/time. Thus I
proposed earlier [44] to regard -DVp 0 p as a diffusion current, and to base the time
evolution of Po, on the Fokker-Planck equation. We recover the scalar functions p (x, t)
(the probability density) and j(x, t) (the probability current) as expectation values of
p0•(x, t) and J(x, t) respectively, by setting p(x, t) = f P(x') m'- pp(x, 0t) (x') dx' and
j(x, t) f IP(x') mr-1 J(x, t) T(x') dx'. Then they. too, obey a Fokker-Planck equation,

&tp = -V .j + DV 2p. (10)

The idea advanced in [45-48] is thus rediscovered from fundamental considerations of
local symmetry. With U(f) = exp [ip(f)] and V(09) = exp [i(s/h)J(g)], we obtain

V D(O)p(x) = eiDI" J(x),p(,(x)) J (x), (1)

where Jd,(x) is the Jacobian of 0 at x. Compare (11) with (6), and note the nontrivial.
complex cocycle which is the group-theoretical origin of the diffusion current.

But what wave equation derives from (10)? The usual linear Schr6dinger equation. or
a nonlinear equation with a real nonlinear "potential", is compatible with the continuity
equation by standard arguments [58-591. assuming that p = i• , and j = i/2mi )(ý Vv,,-
3,VO) Under the same assumptions. Doebner and I obtained from (10) the nonlinear

Schr6dinger equation

2 7 + hV
i~lhtiv -_ .V2 6, + F( ,, )&' + iDhV i, + iDh L, (12

2m Z;,

where F is a real functional. We shall take F to be just a multiplicative potential V(x. t).
With the notation HO = -(h2,'2m)V 2 + V(xt) and G(ý') = V2 + (IV4,12/I l/V2 )v, we
abbreviate (12) as ihagi8, = Hoý,I + iDhG(•)'. The imaginary nonlinear potential is
uniquely determined by (10). since V 2 p/p = 2Re[G(t,)/4t). Note the linear as well
as the nonlinear term with imaginary coefficient; they must occur together for (10) to
hold. There is no linear Schr6dinger equation consistent with (10). for D 5 0.

Despite considerable effort, we have thus far been unable to find a discussion of (12)
in the literature. Treating p(x, t) as a fluid is somewhat in the spirit of the hydrodyna-
mical and stochastic reinterpretations of quantum mechanics [601: but here, we obtain
something different by allowing p itself to diffuse. Schuch et al. study a Schr6dinger
equation with a logarithmic nonlinearity. ihOat, = Ho('- ih-(lnv - (ln 1))4,. This
equation is independent of (12); it is compatible with it only under the constraint
DV 2 p/p = -yý(Inp - (In p)). Common solutions of the logarithmic equation and the
constraint equation must also obey (12). A real, nonlinear potential F = AlV,'I2/l1'2
was considered but rejected by Kibble [61].



Some interesting properties of (12) are: (a) The probability is conserved. (b) The
equation is homogeneous, in the sense that if V, is a solution, then aV, is a solution for
any complex constant a. (c) With V = 0, plane waves 4'(x,t) = exp [i(k • x - wt)]
with w = E/h and JkJ

2 = 2mE/h, are solutions. (d) The equation is Euclidean- and
time-translation invariant (for V = 0). If V' is a solution, then ' solves the time-
reversed equation with the additional substitution D -- -D, as would be expected
for a diffusion process. The sign of D thus gives a directionality to the flow of time
in the quantum theory. (e) Noninteracting particle subsystems remain uncorrelated
(separation property). Distinct values of D can occur for different particle species. (f)
Extra, "dissipative" terms occur in the time-rate of change of (p) and (ih8r). While
(dldt)(x) = m-'(p), we also have

(dldt)(p) = -(VV) + 2DRe ]4(-itlV)G(t,)dx.
J (13)

(d/dt)(ih•Ot) = (81 V) + 2DRe Jf 4HoG(V,)dx.

The dissipative terms in (13) can be interpreted in terms of diffusion currents: but there
exist as well classes of solutions to (12) that are non-dissipative.

I shall close with mention of a family of such solutions, with stationary density;
i.e., alp(x,t) 0= . Writing N' = ,exp [iK] with X(x) and K(xt) real, we havej
(h/m)pVK, whence K = (Dm/i)lnp - Q(t): F = Dm/h is a dimensionless constant.
Then X' = exp [i ln I X 2 

- iQ(t)] solves (12) when X obeys the linear equation

-(h 2/2m)(1 + 4F'2 )v 2 + V\ = EX, (14)

where E = h(dQ/dt) is the energy (constant if V is time-independent). We see that the
energy spectrum is shifted from ordinary quantum mechanics: precision experiments
could thus give a bound on r. For these solutions (p) = 0 and the dissipative terms in
(13) vanish. Singularities in the phase of ,' occur at its nodes; but j is nonsingular.

Consistent with the interpretation of Diff(R 3 ) as a local symmetry group, our per-
spective is to take all of its representations seriously as kinematically allowed possibilities
for quantum physics; and there is no a priori reason to exclude those with D $ 0. One
interpretation of (12) is that D is a small, fundamental constant of nature associated
with particular particle species, whose measurement is an empirical matter. Alterna-
tively, physical situations in the context of the linear Schr6dinger equation in which
statistical "Brownian" fluctuations occur, permitting dissipative effects, may be mode-
led phenomenologically by (12). Eq. (12) is perhaps the most elementary way in which
an "arrow of time" can be introduced into ordinary Schr6dinger quantum mechanics.
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Abstract

A summary of our recent work in large Poincar6 systems (LPS) is presented. The
most striking property of LPS is that unity transformations leading to the diago-
nalization of the Hamilton operator analytic in the coupling constant diverge. We
have shown that to cure these Poincar6 divergences we have to introduce a complex
spectral theory. The theory has in general to be formulated in the space of density
matrices. The representation of density matrices we obtain is irreducible. Here irre-
ducibility ",,eans that the density matrices cannot be expressed in terms of products
of wave functions as is the case in conventional quantum mecl.anics. As a result,
statistical features appear which are in addition to those whith arise from the usual
uncertainty relations. This is the sil'ation which we associate to "quantum chaos."
The consideration of LPS leads to a uew formulation of quantum theory which from
ti> point of view of its time structure is similar to classical dynamics while still
I ,,)ing quantum effects.

1. Introduction
We are very happy to participate in this symposium honoring Professor E. Wigner One of us
(I.P.) had the privilege to meet regularly with Prof. Wigner at the famous Solvay meetings.
He remembers vividly one of the questions Prof. Wigner used to bring up. 1)2) How to
define unstable particles? How to deal with the epistemological problems of quantum theory.
Wigner's friend has become a mythical figure somewhat like Schr6dinger's cat.

We would like to show in this paper that we can now achieve a better understanding of
these questions once we incorporate instability and chaos in the frame of quantum theory. It
is well-known that these concepts have drasticaily modified our views on classical mechanics.
They force us to go beyond the description in terms of trajectories and to use a statistical
approach involving ensembles. 3)4) Several authors have studied the effects which occur in
quantum theory when applied to systems which display chaotic behavior in the classical limit. 5 )

However. when we speak about quantum chaos here we have in mind a quite different situation.
We shall summarize here our v"ork on dynamical unstable quantum systems (Large Poincari
Systems, in short LPS). Then the consistent incorporation of instability forces us to go beyond
the Schr6dinger description in terms of wave function and to formulate quantum theory in ternr
of density matrices.
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Indeed. the most striking property of LPS is that unita, transformations leading to the
diagonalization of the Hamilton operator analytic in the coupling constant diverge. 6) We
have shown that to cure these Poincarý divergences we have to introduce a complex spectral

theory. r)"9) The theory has in general to be formulated in the space of density matrices.

The representation of density matrices we obtain is irreducible. Here irreducibility means that ¶
the density matrices cannot be expressed in terms of products of wave functions as is the

case in conventional quantum mechanics. As a result, statistical features appear which are in

addition to those which arise from the usual uncertainty relations. This is the situation which

we associate to 'quantum chaos."

The aim of this paper is to clarify the physical meaning of irreducible representations

associated with a collapse of the wave function. The basic ingredients are "non-integrability"

in the Poincar6 sense (see section 2) and persistent interactions. In other words, we have to go

beyond the idealization involved in the use of S-matrix formalism which eliminates time from

tile physical description (see the very interesting comments by G. Kiil6n 10)

As a concrete example. we shall discuss two - and three-body scattering. The standard

application of S-matrix approach is to two-body scattering. Both 'in-states" and "out-states"

are described by free-moving wave packets. In this case there exists no irreducible represen-

tation in our sense. However. the situation changes when we consider persistent interactions

(for example, starting from a plane wave). The asymptotic limit of the wave function (as

well as of the density matrix) then becomes ill-defined. The usual relation between density

matrices and wave functions is then lost as we shall show in detail in section 3. This is the

simplest situation we may associate with quantum chaos. The analogy with classical chaos

is obvious. Classical chaos does not imply that Newton's equations are "wrong", but that the

trajectory description becomes an over-idealization. Similarly quantum chaos does not mean

that Schr6dinger's equation becomes wrong, but that it leads to ill-defined results. Our theory

goes beyond this qualitative statement and permits to express the density matrix as a sum of

terms each of which has for all times t a well-defined meaning in terms of test functions. In

other words, thie average of an operator A which act, as a test function for p is given by A is

given by

(A) = tr[.4tos.h(t)] = tr[.4to,-(t)], (1.1)
where 0Soh is a density matrix as calculated by the time-dependent Schr6dinger equation, and

Or, corresponds to our irreducible representation (see sections 3 and 4).

In addition to providing a systematic approach for the calculation of averages (as our com-

plex spectral theory puts the use of perturbation techniques in spite of Poincarý's divergences).

our theory leads to the introduction of a number of new concepts such as time sYmmetry

breaking. microscopic expression of entropy. definition of unstable paiticles, and so on. 7)8)9)

A simple example which illustrates the need to formulate an alternative generalized quan-

turn theory is three-body scattering for free incident particles. As is well-known. 5-matrix

theory leads to divergent results as a consequence of repeated two-body scattering. ") (These

divergences cannot be resolved by the Fadeev type of expansion of the T-matrix, since the

divergence appears in processes involving all three particles). These repeated two-body scat-

tering can occur at arbitrarily large space separations. This makes the three-body scattering

a persistent process whatever the initial preparation. We shall show that the singularities

are a manifestation of the non-integrability of the three-body scattering system and there-

fore of Poincare's divergences. The wa-e function (and the density matrix) obtained by the

tirne-dependtent Schr6dinger theory are highly singular, in spite of this fact our approach leads
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ii11;1ifit igu114islv ito* WdlLIdiiiiedl vable of thle flirve b~ody scatterinig cross-sect ioi. As the ainal
;,I'l of (luatminni I henry is to predict v-allues of physical observables. this is a simple exataple
where it is ilecessa CV to genieralize qitanlimii ttheory andi( to replace' thle uisual spectral t heory in
lie hi1i bert space- by' i generalized (coimplex ) spectral t heory iii the Liouville .space.

lIn coiichmsmion. we see that in genmeral we cannrot isolate interactions anid dlecormpose physical
evoliit ion into sliccessions of events separated] by free motion. Ouir extension of quantum
inechanics leads to at nuniber of epistemiological coinsequmences which we briefly dliscuss in thle
Ctiiicluiill-i Sect ion.

2. The comiplex spectral theory
F~or HIamijltonoian systeuuus thedoistiiiction between stable and mist able ones is based on Po"Tncartl-s
celebrated classificaticii into "integrable" and iion-initegrable- systeiis.' " Ibis claissificationi
aIpplies to quantumi systemis with continuous spectrunm as well as to classical systenms .Consider
a Hlamiiltonian of thre form for a quantuiin systein,

H = HO + AV, (2.1)

%%here A is a coupling constant. We suppose that. the eigenfminction I ) and tile eigenvalues
of HO art- known

How to use this knowledge to construct thle eigeirfunction and thle eigenivalues of H

HI ý.) = E.1 ~) (2.3)

We would like to find soluLtions we could expand in powers of A to apply pert urbative techniques.
Hlowever, lPoincar~s result shows that this is impossible as the result of divergences which result
from resonances between the unperturbed frequencies w,. Poiumcar~'s non-integrable systems
with continuous spectrum and continuous sets of resonances are quite common in physics.
These are the systems we call Large Poincar6 Systemis (LPS).

The fact that we cannot diagonalize the Haimiltonian of ITS through expansion in powers
of the coupling constant is of course especially important in field theory as it ca-sts doubts on
some basic assumptions of field theory. 12) W~e shall come back to this point in our concluding
section.

A simple example of ITS is the well-known Friedrichs model in which a discrete state is
coupled to a field with a continuous spectrum, as well as scattering problems. The Friedrichs
model has been treated in detail in recent publications. 7)13) We shall not go back to it here.
We only note tha t Poincar6's divergences are eliminated by an appropriate time-ordering in the
Ililbert, space. (Transitions fromn the excited state to the ground state are "future'-oriented.
while transitions from the ground state to the excited state are "past" -oriented. This leads to
an approp~riate analytic continuat ion).

Another example of LPS is potential (or two-body) scattering. The Hlamiltonian is

wk =Z Ak) (k + A ] 1A&.X-) (kI (2.4)
k. k 4.
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The difference with the Friedrichs model is there is no natural time-ordering in the Hilbert
space to eliminate Poincar6's divergences. We therefore turn to a statistical description in
terms of density matries. As is well-known p satisfies the Liouville-von Neumann equation

i=LH@ with LH=Hxl-1 xH, (2.5)

where the LH is a "superoperator" acting on p (it is the commutator with e). We look then
for the spectral representation of LH. For integrable systems this is of course trivial. 8)9)
However, for non-integrable systems we recover the usual Poincar6 divergences. Now as the
consequence of (2.1) we can also decompose the Liouville operator

LH = Lo + ALv . (2.6)

For L0 we can construct a complete set of spectral projectors which satisfy the condition

,•, ) • f(• -, W) (. ý (., (.I
PLo = Lop, P = 1, PP = P 6,,, P = p (2.7)

However, the corresponding projectors for LH cannot be obtained through expansion in A. 14)

But, we can obtain a complete set of projectors 17 for LH giving up the hermeticity condi-

tions and using an appropriate analytic continuation (or time-ordering). These if satisfy the
conditions 9)14)

17 LH = L , I =, H1111= ff 6,,,,, H H1. (2.8)

Our rule of analytic continuation is the natural extension of the rule used for the Friedrichs
model but now in the Liouville space. It can easily be shown that the dynamics (2.5) associated
with the Liouville operator can be expressed in terms of a "flow of correlations". Consider, for
example, an N-body system such a• studied in kinetic theory. Collisions between uncorrelated
particles (1" vacuum of correlations") lead to two-body correlations, subsequent collisions trans-
fer them into 3-body, 4-body ... correlations. Our rule is then: transitions to the higher-order
correlations are future-oriented, while transitions to lower-order correlations are past-oriented.
As shown elsewhere, 14) Poincar6's divergences are eliminated and we obtain well-defined ex-

pressions for the projection operators if (we have called subdynamics this approach). In this
way the density matrix p is decomposed in a sum of independent contributions.

[ ( ) (-) (. ý v - ) (. I

0(t) -/e)+ C) -, . (P + D )p(0). (2.9)

We shall not go into the definition of these quantities which are given elsewhere. 8)9)14) Note

only that 0 and A are diagonal on v, while C corresponds to the creation of correlations v'

out of v (its matrix elements are of the form C' v), while D corresponds to the destruction

of correlation v' (its matrix elements are D ,,)
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Iach conug.onie H1 o is a partictilar solbition of the liouville equation. (This can be
verified by straightfforward derivation). The sum (2.9) provide.s us with a complete -et of
solnut ions.

(0)

Dhe whole time-dependence in (2.9) is in the generators of motion 0 , which we call
the "collision operators". Of special importance is the contribution for v = 0. the "vacuum of

(o) (o)

correlation*': 1I -- P for A --+ 0 and corresponds then to the evolution of the diagonal element
of a. The usual kinetic description (e.g. Fokker-Planck equation or Pauli master equation) is

limited to H space. Moreover this space contains the asymptotic contribution to p for time
t --+ 00.

Once we have derived the decomposition of n into subdynamics, it is easy to go one step
o,)

further and to obtain the complex s.pectral representation of L,1 with right eigenstate I F.))

and left eigenstates (( F1l 8)9)

IV) (.) go) .)) (.)

Lill F.)) = Z. I F.)), (( F.IL, = Z. ( F. (2.10a)

and
1,) 1g') (.)

I = F. F. (2.10b)

where I g)) denotes a "superstate" in the density matrix space.
As the result we have therefore

(o; ,) (L)

0(t)= =l-t1o(0) = Z. t I F.)( F.eI(0))). (2.11)
V,. (1

The index a refers to possible degeneracy in each subspace V.
IV) 4t.

Note that the eigenstates I F,,)) and (( F,,l are now density matrices and not wave func-

tions; moreover, a is an index corresponding to possible degeneracy in subdynamics. Moreover,

we can show that the eigenvalue Z., is just the same as the eigenvalue of the collision operator
)8)9

0 in (2.9) which is in general complex number. 8)9)

Formula (2.11) corresponds to our complex spectral theory in the Liouville space. As
mentioned in section 1, it leads to an irreducible representation of the density matrix as the
comnplex eigenvalue Z,, and the eigenfunctions cannot be reduced to the expressions they would

(W)

have for wave functions (then Z,, would be the difference between two eigenvalues and I F))
products of two wave functions). As in the case of the Friedrichs model, the eigenfunctions are
complex distribution, and (2.11) has to he used with suitable test functions.

Our spectral representation (2.11) describes the approach to equilibrium, and give a mi-

croscopic meaning to entropy. 09)) It also disentangles various contributions known as anon-
Markovian" effects. We shall however not go into these questions here Is) and concentrate on
the problem: What is the relation between our irreducible representation in terms of density
matrices and the Schrtdinger equation? To conmider this problem, let uts first go back to the
nimple example of scattering as described by the Hlamiltonian (2.4).
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3. Two-body scattering
Let us first consider two-body scattering. The Hamiltonian is given by (2.4). We make the
usual assumption (short-range force VUj, -" O(L- 3 ), Ilk = 0, where L3 is the volume of the
system). The usual theory is based on the Lippman-Schwinger equation which lead to two
complete sets of eigenfunctions I IP#) which diagonalize the Hamiltonian )

)+ 1 AUI v1) (3.1)
w,,- Ho ± if

We may follow the evolution of the wave function in the interaction representation. Using
standard notation, we have ( !Pi(t) is the wave function in the interaction representation)

I lr(t)) = U,(t, to)l PI(to)) . (3.2)

We can distinguish two cases. In the first case the initial wave function is a localized wave
packet centered around k0 . We then obtain for the transition probability in the limit t

lim I (k' I lpl(t)) 12 = 27IT•, (,,, 1 )126(. -- k 0 ) tc . (3.3)
o 5--

where t, is the duration cf the collision. As expected this expression is time-independent. This
is the well-known result obtained by S-matrix theory. The application of our complex spectral
representation (2.9) or (2.11) leads (fortunately!) to identical results. 16)

We next consider initial conditions corresponding to a plane wave and leading therefore
to persistent interaction. It is well-known that this can leads to difficulties. 11) We now obtain
(we take to = 0)

Qk = I (kil Vt1'(t)) 12 = 41Tk 2 sin2 (10k, -- wt0 )t/
2

( 1 T.k0( I (-41 -,Ik•, )' (3.4)

+ (asymptoticallyvanishedoscillating contributions)

For t -* +oc this expression is ill-defined. However, in conjunction with test functions we
obtain the secular contribution (for t -s-+ c)

gk.,k,(t) -* 2,rtITk..o(-k& )12 (M.k, - ;k-) t . (3.5)

This is in contrast with the off-diagonal elements of the density matrix which are time-
independent (in conjunction with test functions). Note that the secula r term in (3.5) comes
from a resonant interference between a ket-state and bra-state. These resonances do not appear
in the Schr6dinger equation and cannot be associate to the Hilbert space. We have therefore
the alternatives: either we stay with (3.4) and conclude that this problem has not a well-defined
solution. But this is difficult to accept as nothing in quantum theory prevents us from taking
the initial condition as close as we want to a plane wave.

Another way out is to generalize quantum mechanics to deal with the situations where
the fundamental quantity is now an "irreducible" density matrix. That is the situation which
we may associate with "quantum chaos" and irreducible representations in Liouville space.

L
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We now compare the wave function formalismn with our irreducible Liouville representation

for persistent interaction. After a few elementary calculations we obtain for the diagonal

elements of the density matrix (to lowest order in A and for ki $ ko) 16)

(arr) I(k, 2 = 7r\2 1
-Yk,k, -I = rkt .k.[26(wk1  t (3.6)

+ ib'(-,k, - Wk.0 )(C- i(Wk, -,Jk, 0 )t - ei(wk,, -- 6G0)] (.

The differenice is not identically zero. However in conjunction with integrations with test func-

tions the tight-hand side vanishes. Equation (1.1) is satisfied; average values of test functions

are identical.

We see that our approach goes beyond standard quantum mechanics as it permits to

retain secular terms alk.A to decompose the time-dependent evolution into independent modes.

This is the decisive step to formulate a complex spectral theory for the Liouville operator.

Let us now consider three-body scattering. The failure of standard quantum mechanics

then becomes quite obvious.

4. Three-body scattering

For the three-body scattering, the Hamiltonian is (cf. (2.11))

H = z A-2 +AZV(-) (4.1)

As in the binary collision, Voj -• O(L- 3 ) and V1' = 0, where I a) -I 1 ,k 2 ,k 3 ). For

free incident particles the Lippman-Schwinger equation (3.1) leads here to divergences due

to rescattering. 11) For example, the contribution to the solution (/0 1 !P•) by any processes

involving intermediate diagonal transitions I a) -- I a) diverges as CI (L3 )- 26(wu0 -w.V) with

f -- 0+. This is a typical form of the divergence due to resonances which lead to Poincari's

catastrophe. 6) There is no time-independent description of the three-body scattering. There

is no consistent S-matrix approach as there is no asymptotic free state for t -# +oo as the

result of the rescattering.

We therefore turn first to the time-dependent description in terms of wave functions. But

here we come to another difficulty due to the appearance of ill-defined wave functions. As

an illustration, we consider the second order transitions in A from I a) to I -y) through J )3),

where the interaction between (23) is followed by the interaction (12). The contribution to the

density matrix is schematically given in Fig. 1.
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Figure.1. Diagrammatic representation of a typical rescattering process.

2

p(O)

This process leads to

UI(tO)1a)1 2  = 4(A4 I11,, I2 1Kief
2  sin(w, - w a)t/2 sin(w . -, 3)t/2 2

(_,3 )2 (WY- W.) -A,

+ 4 sin(.,v - o, )t/2 sin(,,• - o. )t/2 sin 2 (ý3 - Lo )t/4

(4.2)
where the bar denotes the particular term we are looking at. Again in the asymptotic limit

the right-hand sides of (4.2) is ill-defined. A simple replacement by 6-functions as we did
going form (3.4) to (3.5) leads to a divergence due to the square of the 6-function. The
evaluation of the dominant secular terms ,- 2 is already complicated. But in addition we
need a precise evaluation of the secular terms ,-, t. since they give the "genuine" three-body
scattering transition rate. The situation is even worse as only a part of the secular term in t
is related to the three-body cross-section (see (4.3)).

In contrast, our theory gives us an unambiguous expression for the density matrix. For
the expression to (4.2) we have (see (2.9))

-(irr)tm (1 I 2(19) ,o t)o+2 )
= ;;p=•(i. 2  

2 2t)
2 +4-(-i 2 6 2 t)XA 2A

+_ (_i4 8 i t) + /44) + Z tt)

\ I 14ji , ; 1 2 I 1 V ; 1 [ 2 ' ) 6 ' -. ' .1 2 
-2) P

"+ 2r -,(w ,)( -a., +c.c. t (4.3)( ' )
"+ 27r6(•w.•, - ( - -) + C.C. t

( 1 1 1 )

+A A4+ Z4 4t)

I•t•o)
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(Io

where all terms except for the last one contributions come from the H/ subspace. The last

term comes form H subspace with v 5 0 and vanishes asymptotically. The first term t-P in
the square bracket of the right-hand side comes from the rescattering process. The next term

comes from the contribution (-iA 2
( 2 t)A 2A 2- The last two terms in the square bracket are

the genuine three-body scattering terms which come from the contribution -i)\4 0 4 t.

Note that it is not sufficient to determine the secular term in t as only a part from it
contributes to the scattering cross-section. In addition to the process described in Fig. 1, we
have other diagrams. They are also give finite contribution to the three-body cross-section.
We shall indicate the total result in a separate paper. 16)

Note that the three-body cross-section is not an "on-energy-shell" quantity. This is due
to the fact that the initial state is not an eigenstate of the total Hamiltonian (the three-body

problem comes in this sense closer to the bound state problem.)
Because of the great complexity of the time-dependent wave function, we could derive a

formula such as (3.5). But we know from general arguments that the condition (1.1) is here

also satisfied.

5. Concluding remarks
Dynamical instability as manifest in LPS forces us to proceed with an extension of quantum
theory. Unstable dynamical systems are characterized by supplementary pysical quantities.
which are associated to the eigenfunctions and eigenvalues of our complex spectral theory.

These conclusions have wide-ranging consequences. The basic postulate of conventional
field theory is the existence of a simple correspondence between "in" and "out" states through
the S-matrix theory. 12) This implies an idealization - which is not applicable to persistent

interaction.
To come back to the problems we mentioned in the intro4'uction, we see that our complex

spectral theory incorporates irreversibility as it deals with a "larger space" (the rigged Hilbert
space 17) ). Moreover, most of the epistemological problems are avoided. The consideration
of instability and of quantum chaos eliminates the dual structure of conventional quantum
mechanics. Bohr emphasized that we cannot describe a measurement device as a quantum
object in terms of Schr6dinger's equation. 1) In our approach this means that measurement
must involve unstable dynamical systems whose description is in terms of irreducible density
matrices and therefore in terms of quantities which have a classical analogue. In short the
two time description involving the Hilbert space (bra an• ket) in replaced by a single time
description as in the case in classical mechanics (where the Liouville operator is also irreducible).
It is not astonishing that to speak about "measurement" we need a "classical" time ordering
as provided by our theory. The consideration of LPS leads to a new formulation of quantum
theory which form the point of view of its time structure is similar to classical dynamics while
still keeping quantum effects. We therefore conclude that our approach is in line with the
general ideas put forward by the Copenhagen school.
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The Geometric Phase in Quantum Physics

A. Bohm
Center for Particle Theory, The University of Texas

Austin. Texas 78712

Berry's phase has been fashionabie in many areas of physics and in chemistry and
also among mathematicians and mathematical physicists. The mathematical people
are attracted to this area because it is related to the beautiful mathematics of fibre
bundles which underlay gauge theories. In fact this is the most accessible example
of a gauge theory for people who know just the elementary facts of nonrelativistic
quantum mechanics.

The chemists and physicists are interested because the geometric or Berry phase
has observable consequences, which could not be explained before. It is this aspect
which distinguishes the Berry phase from the many other fashions of mathematical
physics. Though the Berry phase may turn out not to be as important as its present
popularity suggests, it is a discovery which will remain forever. The surprising thing
about it is that its importance has been realized 60 years too late. The reason for
this was that many people (including myself) thought that phases are unimportant
in quantum mechanics, because a quantum mechanical state is not described by a
vector ?, but by a ray or a projection operator I ;' >< t, I and that phase factors
could always be removed by a suitable phase or gauge transformation.

That this is not always possible and under which conditions this is not possi-
ble was shown by Berry in his famous 1984 paper.'1 And the Berry phase fashion
started when Simon') explained that Berry's phase is the holonomy (element of
the holonomy group) for a fibre bundle with a particular connection, the adiabatic
connection.

But the physical effect of the Berry phase had been known for quite some time.
It was observed as some anomalies in the spectra of molecules3 1 and then, (1978),
explained in a series of remarkable papers by C.A. Mead and Truhlar41 by the
introduction of a gauge potential. which is identical with the one derived by Berry
and which is now called Berry connection.') This gauge potential emerges naturally
from the Born-Oppenheimer procedure in molecular physics6 ) if one does not make
the drastic Born-Oppenheimer approximation.)1

The Born-Oppenheimer method is concerned with the study of complicated mole-
cules by dividing them into two parts: the electronic motion described by a set of
"fast" variables, and the collective motion described by a set of "slow" variables.
Berry connection and Berry phase, therefore, arise in the dissection of complicated
quantum physical systems into simpler subsystems. This reduction to the simpler is

I
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the basic meaning of understanding in science. In the old, drastic approximation the
dissection results in the trivial direct product of the states for the two subsystems.
In the less-drastic, adiabatic approximation or in the exact theory, the motion of
one subsystem (the "fast" subsystem) alters the dynamics of the "slow" subsystem
by inducing in it a Berry gauge potential. Thus, the parts of a complicated quan-
tum physical system turn out to be different from what we naively expected. Our
discussions here will be mdinly concerned with these aspects of the Berry connection.

The Hamiltonian for a (diatomic) molecule is.
p2 •,2

H =- + - + V(X.') (1)
2M 2mn

where r, f stand for the observables of the fast electrons and P, X stand for the
observables of the slow nuclei. Since the light electrons instantaneously follow the
motion of the heavy nuclei, the slow variables can also be understood as being the
variables of the molecule as a whole, i.e. the collective variables. In particular, for
the diatomic molecule X will be the vector along the internuclear axis and J? its
conjugate momentum (in addition there are the center of mass position and momenta
which are, as always in a non-relativistic theory, ignored). The potential V(X, i) is
a complicated function of the operators X.i and possibly some other operators like
spin.

Tile Hamiltonian H of (1) is split into two parts.

p
2

H - + h(X) (2)
211

h(X) = - + w(X,i) (3)
2m

where h(X) denotes the "fast" or electronic Hamiltonian that depends upon the
"slow" operator X. The eigenvalue problem,

H E ,) = E! E,) (4)

is solved in the Born-Oppenheimer procedure by first solving the eigenvalue problem
for the operator h(X). In the drastic Born-Oppenheimer approximation X is con-
sidered as a classical parameter x which is fixed. With X = x = fixed, h(X) com-
mutes with P and thus h(X) and H can be diagonalized together (which amounts

to ignoring the effect of the kinetic energy of the slow variables in (1)):

Ixn~x) IN) n(x)) (5)
h(x) I1(x)) = ,() I n(x) ) (6)

p2

IN, n;x) = (- + n(xr)) N, n;x) = EN.n I N.n:x) (7)

One first solves (6) for every value of the fixfd parameter x. and obtains the electronic
energy values z.(xr) where x, is the minimum (equilibrium) valhe of the "potential
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curve" ý,(x). The eigenvectors {1 n(x)) I n = 1,2 .... I for every value of x form a
complete system of basis vectors for the space of physical states 7-f"' for the fast

subsystem. After e,(x) has been obtained

-Ei0.2 from (6) for every value of the fixed pa-
rameter x, one inserts it into the right-

=0 2 hand side of (7) as an -induced scalar po-
-E..... tential" and solves (7) for a given value of

the electronic quantum number n. As e,(x)
=3 E3,0.1 is (often) approximately an oscillator po-

2 tenbial, ,,(x,) splits into vibrational excita-
=4 tions with quantum number v. And as the

= 1 - E1 .0 1  diatomic molecule (dumbbell) also rotates
- j 4 about its center of mass, each vibrational

'=0 - excitation splits into rotational bands with

Fig.1 Schematics of typical molecular spectra quantum number j. The collective quantum
numbers N are thus the vibrational quan-

tum number v and the angular momentum j : N = v.j; and one obtains the typical
spectrum of molecules, Fig. 1.

The time evolution of the fast system is described by the Schr6dinger equation

ih ,(t)) = h(X) I w,(t)) (8)
dt

and if initially the state vector is an electronic energy eigenstate.

=1 n(x)), (9)

then the solution of (8) is

,()= -k-c-(•)' = n(x)) = dt'-,(.-(t')) n(x)) (10)

iff x="fixed" parameter.
We will now consider the less drastic, adiabatic approximation.') If the internu-

clear distance and direction X is considered a classical parameter x(t) which changes
slowly in time (fast quantum system in a slowly changing classical environment) then
an initial eigenstate of h(X(t)) ; t'(0) =1 n(x(0))) may "jump" into a state which
also has different electronic quantum numbers n' - n. The adiabatic approximation
is an evolution in which x(t) changes so slowly that an eigenstate of h(X(t)) always
remains in the same eigenstate: 9)

I w,(t))(w,(t) 1=1 n(x(1)))(n(x(t)) (1

The solution of (8) for an initial eigenstate (9) with time-dependent x(t) is then
given by

0(t) = C- f., dt'e-(x(t')) is(t) I n(x(t))) (12)
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In addition to the dynamical phase factor of (10). there appears another phase factor

<"(t). This phase factor had always been omitted in the old adiabatic approximation
because it was believed that it can always be absorbed into the eigenvector I n(x) >
by a phase (gauge) transformation:

I n(x) >-+I n(x) >'=- e'"() I n(x) > (13)

where I n(x) >' is again a normalized eigenvector in (6).
For cyclic time evolution

C : x(0) -+ x(t) -* x(T) = x(0) (14)

when the internuclear axis returns to its original position after a period T. the

solution of the Schr6dinger equation (8) for the vector of the state I i,(T) ><

(O(T) 1=
n(x(T)) >< n(x(T)) I is

e,(T) = -gh ' T n(x(0))) (15)
where

S= IdxA,(x)=dS B, (16)

with
A. - i(n(x) IV, n(x)) : B, = V, AA. (17)

and where C is the closed path in the parameter space (14) and S is a surface spanned

by C. It is convenient and a standard convention to choose eigenvectors which are

single valued functions of the parameter x in the region that contains C:

I n(x(T))) =1 n(x(0)) (18)

Under thib convention A,(x) is called Berry connection or Berry gauge potential,
B, is called Berry curvature and -,,(T) is called the Berry phase angle.

It caii be shown that c""(T) is an invariant with respect to the transformation
(13) (gauge invariant) which may be different from unit%,.') It can therefore not be

transformed away by (13).
An example of a system where the Berry phase -,.(T) and Berry connection are

non-trivial (i.e. not removable by a gauge transformation) is the quantum magnetic
moment m = -~ "-cyj (of the electrons with spinj) in a slowly rotating magnetic field

B"-q = BX(t) (along the internuclear axis of the molecule caused by the rapidly
orbiting electrons). The fast Hamiltonian for this case is

h(t) = h(X(t)) = -m. Bm "9(t) = gB(t) .j = bX(t) j (19)

The eigenvectors 1 n(x)) =1 k(x,O(t),-;(t))) depend upon the polar coordinates (O(t).
;(t)) of the unit vector X(t). and k denotes the component of angular momentum
of the fast system along the internuclear axis

x(t) j I(0. •)) = (01 k(0. )) : Ak = (hbk (20)

*1
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By a straightforward calculation using

ad- k(9 = 0,,, = 0)) for 0 < r (21)
and

k(O ))' -ý-,3(-,0J2•-,;J3 k(0 = 0.,, = 0)) for 0 > 0 (22)

one obtains for the Berry connection
"X' + eA' (23)A k'k = ( k'(9.,,) IV A•'(9. ,)) = eA 4' + e oA •'k + e A 'k( 3

the following results

A,=0 40kk 0  Ak _ X (1-cosi ) 0<rT (24)• ' ; xsin0

4,k'k= k(1 + cos0) 0 > 0 (24')
"x sin 0

The two vectors I k(.,,;)) and I k(O,,;))' (and the corresponding two vector poten-
tials A and A') had to he chosen differently for the domain (0 < ,r) and the domain
(0 > 0) so that they are single-valued in each domain.

The Berry curvature (17) calculated from (24) and (24') is

nk
B 2= (25)

And the Berry phase (16) calcul ted from (24) (or (24')) is given by the standard
result

7k(C) = -k(solid angle subtended by C) = -kQ. (26)

The result (2.5) is identical with the field strength of Dirac's magnetic monopolesi0 )

B= •. except that the electromagnetic constant 4- is replaced by the motion
constant k. the component oi angular momentum along the internuclear axis, which
in this approximation is a fixed number. From this result we already suspect that
something like a magnetic monopole must be part of the diatomic molecule (except
if k = 0). This motional or mechanical *'monopole*' will remain uncovered if one
uses the drastic Born-Oppenheimer approximation.")

If the eigenvalue-.' the fast Hamiltonian z,(.rx) are degenerate or close to each
other (co,npared with the splittiig betwee,. E., and EN ,) then the adiabatic
approximation (11) is , pparently not good and one may consider in place of the
I (I) gauge transformation (13) an I"(A) gauge transformation (where A' is the
degeneracy of i,,) and obtain a non-abelian Berry connection"2 ) A""'(x) in place of
the abelian A,(x) = A"(x) of (17). Alternatively one can treat the ,.low variables
P and X as operators and solve th, problem quantum mechanically by the Born-
Oppenheimer mnethod.i3 ) Then these non-abelian Berry connections wli, emerge nat-
urally. This we will discuss now:

The space of piiysical states is, according to the basic principles of quantum
mechanics, the direct product of the space for the fast motion 7.t 1 ., and the space
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fur the slow motion V": = 7R u Va"*. The slow variables P and X are

the operators P = P -If'' and X = X f1:"'st and the operator h(X) = h(, i; X)

acts in both factors of R-i. As basis of h1fst one takes the I n(x)), as basis of R810-

one takes a basis of generalized eigenvectors of X :1 x...) and the basis system of

R is something like the direct product basis Ix.n) =1x ... I n(x)).

A straightforwardC1 3 ) but lengthy calculation shows that the effective Hamilto-

nian IfL" for the slow motion in -"''. is not given as in the drastic approximation

by (T) but by "(
H'f f r1-I2 +2,p\' (2T)

where t
1l""(x) = P6'" - A""(X) (28)

and where
A"(x) = i(m(x) I V I n(x)) = (Am-•)t (29)

tlti,. n and A are .A' A' matrices and H12 in (27) means matrix multiplication

S.. HI -" H . Thus the fast motion induces in the dynamics of the slow motion

not only a scalar potential Z,,(X) as in the drastic approximation (7) but also a

non-abelian vector potential A"m(X) and in place of the canonical momentum P of
(7) one has the gauge-covariant moment um (28).

If one makes no approximation then in, n in (29) range over all values of the
electronic quantulni numbers (A' = D ) and the Berry connection A"` is an infinite

matrix. But this A'•" is trivial (can be gauged away by a U(3C) gauge transforma-

tion). The eigenvalue equation of H'ff is then an infinite system of coupled differ-

ential equations. which is useless for practical calculations. One obtains a workable

eigenvalue equation only if one can restrict oneself to a small number A' of eigen-

values >, and eigenvectors t n(x)) n = 1.2.. .. A' (Born-Hluang approximation)."4 )

A""(x) of (29) is then a connection of a U(A') gauge theory. which is in general

non-trivial.

As a special case we consider the doubly degenerate A-levels of a diatomic

molecule for which A' = 2 and in. n takes the two values k = ±A where k is again

the component of angular momentum along the internuclear axis and the n(x)) in

(29) are given by (21) (or (22)).
The space of physical states of the slow system is

,Hsi- = Hk=l "H -' (30)

arnl( (27). (28). (29) are 2 x 2 operator matrices:

f1kk = 1 r ifk'k" .. k'"k + (.r) (31)
2k k" - I

flk'k = (•k'Ap -kk (32)
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By a straightforward calculation one obtains as in (24) for the spherical components
of the Berry connection Ak'k:

Ak'k A ((-cosO0) ( 0-csOk = (0 0) (3
--xsin0 0 (1 -- Cos 0) 0 0

The rapidly orbiting and spinning motion of the electrons about the internuclear axis
of a diatomic molecule thus leads to an induced vector potential in the dynamics
of the slow (collective) motion, which is the same as that of a pair of magnetic
monopoles with the monopole strength g given by a = ±A. The components4r

of the gauge covariant momentum operator do no more commute but fulfill the
commutation relation

I/'V'', 1-Ik'k] X-Ieo 0 -1
~jkk = B ~ 2)=iB" (34)

where B•'k = EitBt'", is the Berry curvature (17) for the Ak'k given by (33).
The commutation relations (34) are the well known c.r. for a charge-monopole

system and the first term in the Hamiltonian (31) is the monopole Hamiltonian with
free radial motion, Honopole = 0 '.2 Due to the induced scalar potential, which is

approximately a radial oscillator potential e(x) z L(X - X,)2, the radial motion of
(31) is not free. To dissect the system described by (31) into a radial part and an
angular part, we use the radial momentum operator15 )

P I ad= , Pi} (35)

and the angular momentum operator of a monopole:16 )

.- Xi~mnIXmBnj = sji1XjHl + k (36)

Then we obtain after a straightforward calculation for H of (31):

H 21 fl, + "(X) = l(21Xk 21ro+ M

or
S= H,,,o,,opol + •(() = If rot + lradial oscillator (37)

I4l, is the Hlamiltonian of a rotating dumbb)ell with flywheel on its axis17 ) whose
doubly degenerate rotator spectrum ,' .j(j + 1) starts at j = k. Thus the spectrum
is again something like shown in Fig. I except that the rotational levels do not start
at j = 0 but, as observed for diatomic molecules, at j = k (because from (36) follows
that "L.XJ = k). Therewith we have obtained the standard result in a way, which
shows that it is caused by the monopole dynanics induced by the fast motion in the
slow collective motion.

Although we used the diatomic molecule as an example, the same arguments
should hold for all kinds of quantum systems in which the fast subsystem is a rapid
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rotation about a slowly moving axis like a spinning quark about the axis of a thin
flux tube.

Fifty years after Dirac conceived the idea of magnetic monopoles he wrote (in a
letter to Abdus Salam): "'I am inclined now to believe that monopoles do not exist."
Though magnetic monopoles of the electromagnetic kind may not exist, physical
svstenis with the same dynamics as that of monopoles do exist. These monopoles
are "'parts" of complicated physical systems. like the "part" which performs the
collective motion of molecules or the collective motion of a flux tube.
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WIGNER FUNCTIONS AND LORENTZ TRANSFORMATIONS
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In the Wigner phase-space pictunre of quanturn mechanics, the uncertainty relation
is st atedc in terms of the minimial finite volume in phase space. The relationi remains
invariant tinder volunie-preserving t ransforniationis. For a single pair of position and
momentum variahles, the volume is an area element in two-dimensional phase space.
It is shown that the Lorentz transformation in four-dimensional space-time is a volume
preserving transformation in eight-dimensional phase space. This is illustrated in terms
of the covariant harmnonic oscillator formalism. which is an effective language for the
hasic phenomenological features of relativistic hadrons.

1. Introduction
There are several di iferen it repre sentitat ions of quan tiuna mcclha ni cs. The Sehir1'd in!ger

pictur~e is convenient for solving problems in atomic and nuclear physics. The Heiseniberg
and interaction pictures are, useful in quantum field theory. The Wirgner Iphise-space
picture [11 serves usefuil purposes in many branches of physics. InI particular, it gives a
(let ailed(I tescriptin of the uncertainty reaIo J,1

As the wave function plays thle central role in the Schrddinger picture. the phase-

space distribution function is the starting point in the phase-space p~ict ure (,f quantumi
mechanics. This distribution function is wvidely known as the Wi~ner furnction.- The
WXignier ftunctrion i i constrncti ed fromt thlit Schrddin tiget wave fun ctionth ro ughi thle density
no r ix an is a funic tion oif hoth poii Iiti [ 1( mmntio n Variade' 1ii11.ijai tni

n ecl ~an iics. it is riot possible to det ermine the po sit inn anid onlieit uiii variablIts simtiud-
ilnf-olitsl v. it is riot possible to dlefi ne a po int ti the coord iniat e sys tvcii of poIsitlitn and

mlomtentuttm. We have to settle with ati uncertainty region iii phase space [2j. The size
of this region determneiis the amoultnt of uncertainty. In the case of tile two-dimensional

space consisting oIf one pai'r of position 1111( momentumi variables. the size of the region
is me.astured by its area.

InI thi flot 1e'. we ate i ntecrested iii t li qu es tioni of whet her thle size of t he' inicert aint '

regionl reniains invariant under Loreiitz transforniat ions, For this piurpose. NN-, ot(tt firt

that thle XWigner function takes a very Simiple formi folt the groun I- Sta0te haillniorit I' sei I-
Ia tor wave fu nc'tion which is the. t radtlitotnal inlstrtuimen t f or qnilalt ifvinaý the' tin 'r tatilit V
relations. The qtuestion then is whet her it is possible tot perforin Lorenitzi tratisformnatioris

of the ground -state harmonic tscillator wave funct ion.
The inati emat ics of Lorentz transformations, is the Lorentz gru L3.Tes~lIts

arid safest way *(l Lttrentz-tranisfortii the oscillator wave function is to conlstrtict a rep-

resenitatioln of the Loren~tz group using the harnionic oscillators. Iideed, it was Dirat' [4



69

who attemtpted to construct a set of normalizable harmonic oscillator wave functions in
four-dimensional space-time, which we call the covariant harmonic oscillator formalism.

Thus the, mathemnatics for the present problem is straight-forward. The question
then is what physics we expect to learn from this formalism. In Sec. 2, we start with the
Wigner function for the ground-state oscillator wave function. In Sec. 3, the physical
interpretation is given for \Vigner's little-group representation of the Poincare group
which governs the internal space-time symmetries of relativistic particles. In Sec. 4.
the observable effects of the covariant oscillator formalism is discussed. In Sec. 5, we
discuss the uncertainty-preserving deformation of the Wigner function under Lorentz
boosts.

2. Wigner Functions and Harmonic Oscillators
If '(,r) is the Schridinger wave function in the one-diniensional world, the Wigner

function is defined as

TV(xp) = - +e" y'(x+y)y(.r-y)dy. (1)

This form and its properties have been widely discus.:cd in the literature [2]. In the
Wigner phase-space picture of quantum mechanics, both the position and momenxtumi
variables are c-numbers. On theo other hand, it is not possi)le to define a point in phase
space. The uncertainty relation is stated in terms of the minimnum area element in phase

space. The quantum probability distribution in the x pusition space can be recovered
from the Wigner function through

Sf( ) I'(r., p)dp. (2

Consequently, the Wigner function is normalized as

J l'(,r.p)d.tdl = 1. (3)

Indeed, the Wigner function has many interesting properties. including its relation to
the density matrix and applications to statistical mechanics. They have been extensively
discussed in the literature. The generalization to higher dimensions is straightforward.
If t! e wave fiinction is separable in the Cartesian coordinate variables, the Wigner
function is also separable.

For the ground state of the harnionic oscillator with unit frequency, the wave func-

tion is

, =(x) = 4exp(-x 2 /2), (4)

and the Wigner function takes the form [2]

I'V(X.p)- () exp{-(X -p,)}. 1P)
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Since the ground-state wave function is separable in the Cartesian coordinate system,
the generalization of the above form to the three-dimensional space is trivial. For the
two-dimensional harmonic oscillator, the wave function is

O'(•)v(XA) = e.xp- X + X)} (6)

and the Wignei function is

1XIU P 1, 1)Vx,) cx{-s 2x 1p p~) (7)

which is separable.
In Sec. 4 and Sec. 5, we shall use this two-dimensional oscillator formalism to

study Lorentz transformation properties of relativistic extended hadrons. During the
process of Lorentz boost, the transverse components are not affected. For the ground-
state oscillator wave function, these components can be separated from the longitudinal
component. Thus. we only have to consider the longitudinal and time-like component>.
This is how the problem becomes that of the two-dimensional harmonic oscillator.

Furthermore, we are interested in maintaining the separability of the coordinate
system in order to establish the connection between the wave function and the Wigner
function. As we shall see in Sec. 4 and Sec. 5. Dirac's light cone-coordinate system [5J
is very useful for this purpose.

3. Wigner's Little Groups of the Poincar6 Group
The internal space-time syvnnetries of elementary particles are governed by the

little groups of the Poincar.i group [3,61. The little groups for massive and massless par-
ticles are locally isomorphic to 0(3) and E(2) (two-dimensional Euclidean group) respec-
tively. The E(2)-like little grotip for massless particles is an i nfiinite-ninc tinlti,/zero-
mass limit of the 0(3)-like little group [2.6,71. The role of the little groups is itlusrrated
in the second row of Fig. 1.

Wigner's little group is the maximal subgroup of the Lorentz groua.p whose transfor-
iiiations leave the four-monmentum of a given particle invariant [31. For a massive point
particle, there is a Lorentz frame in which the particle is at rest. In this frame, the
little group is the three-dimensional rotation group. The internal space-time synmnietry
of massless particles is governed by the cylindrical group which is locally isomorphic to
E(2) [7]. In this case, we can visualize a circular cylinder whose axis is parallel to the
mnonientinm. On the surface of this cylinder, we can rotate a point around the ixis or
translate along the (direction of the axis. The rotational degree of freedom is as-ociated
with the helicity, while the translation corresponds to a gaua, t ransformation in the
case of photons [7].

This translational (degro -, of freedom is shared by all iiiassless particles, including
neutrinros and gravitons [6]. Indeed, the requirement of invariance under this symmetry
leads to the polarization of neutrinos [6,S[. Since this translational degree of freedomn is a
gauge degree of freedom for photons, we can extend the concept of gale t ransforniat ions
to all massless particles 6[6F and nas.siyve particles in the iiifite- n, emt m Iimit [9'.
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The group of Lorentz transformations is generated by three rotation and three

st generators. These generators are readily available in the literature. If J, and Ki
the genelators of rotations and boosts, J3 and A3 take the form

licable to functions of x, y, z and t which are the coordinate variables for the internal
:e-time degrees of freedom.
The 0(3)-like little group for a particle at rest is generated by Ji, .12, and 13. If the

.icle is boosted along the z direction with the boost operator B(i1 ) = exp( -iqK 3 ).

little group is generated by

J:= B(r)JB(-I). (9)

ause .13 commutes with K1A,.3 remains invariant under this boost. J, and .J2 take

form

J, = (cosh77)J 1 + (sinh ir)K2.

,], = (cosh 7).'12 - (sinh 1)KI. (10)

large values of r, we can consider N' and N, defined as

N, = -)coshrl)-IJ", N2  (coshq)-.) . (11`

)ectively. Then, in the infinite-ri limit 16,10j,

N, = K1 - .J2 , -N2 =1x2 + J2  (12)

Ise operators satisfy the commutation relations:

.i .N, I = iN2, 1P3, A2 j = -iN 2 . [.i 21 = 0. (13)

N1. and NV2 are the generators of the E(2)-like little group fcr massless particles

,8j. For normalizable functions of the space-time variables, the little group is gener-
i by J3 of Eq.(8). and by [9]

Y\!= -i .r( 0+ a -(

N2 = -i + z-(z-(t)•y. (14)

If Lorentz boosts are made along the z direction, it is mere convenient to use the

At-cone coordinate system [5], in which : and t variables are replaced by it and v.

,re

u = (t + v)v2 v= (z- t)/,/2. (15)
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When boosted along the z axis, u and v are multiplied by e'? and e-1 respectively. As

we shall see in Sec. 4. the separability of the ground-state oscillator wave function is

maintained in this systenm. In terms of these light-cone variables,

l - i /V •- ) { X a - C9

- 2 =-( i/Vr-) -vN - . (16)

When il is very large, the v variable may be dropped when the operators are applied to
the function with a narrow v distribution. Consequently, except for the factor v-2, the
NV and Ný, operators may be written as

a a
N, =-zr~. N 1 =-tn (17)

We shall discuss in the following section a possible physical application of this limiting
process.

Massive Massless
Slow - between Fast

Energy P2  r E= p - E~p
Momentum 2m

SpnGog 3  S3

SLittle Groups
Helicity S, S2 Gouge Trans.

Quarks uark Model Covariant Parton Model

Partons (Phase Space P

FIG. 1. Slow and fast particles. Einstein's E = (p 2 + n12 )1/2 unzfics the ,.P,'qgi-
momentum, relations for massive (nonrelativstic) particles and for massless pt rt~icls.

The second row indicates that the little group of the Poincare group unifies the t,zternal
space-time symmetries of massive and massless particles. The third roiw states that th,

covariant phase-space picture of quantum mechanics forms the physical basis for the
covariant harmonic oscillator formali3m which has been shown to give a unified picture
of the quark model and the parton picture.

4. Covariant Harmonic Oscillator Formalism
It is not difficult to associate the synmmetry of a point particle with that of a

composite particle if they are massive and at rest, because both of themn are governed
by the three-dimensional rotation group. The story is quite different for rapidly moving
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composite particles or hadrons. Does a rapidly moving hadron have the samie set of
space-time degrees of freedom as that of photons? We can study this problem by
constructing a cylindrical symmetry for a hadron with infinite momentum [91. Then,
is this symmetry consistent with Feynman's parton picture [11]? We shall study this
problem using tihe covariant harmonic oscillator formalism [2,6,12,13].

This oscillator formalism has been shown to be effective in describing miany of
the basic phenomenological properties of relativistic hadrons. including hadronic mass
spectra, form factors and the parton phenomenon [2,6]. It also is a representation of
the Poincar6 group for relativistic composite particles [6].

If the space-time position of two quarks bound toget her inside a hadion aore specified
by xa, and ,rb,. the system can be described the variables 1.3l:

X = (.r. + xb)/ 2 , x = (Xl -- 1',b )/2v". (18)

The four-vector X specifies where the hadron is located in space and time. while the
variable x measures the space-time separation between the quarks. As for the four-
momenta of the quarks p. and Pb. we can combine them into the total four-niomnentumu
and momentumi-energy separation between the quarks [13j:

P = p,,+ p. q = •-2(p,, - pO. 19;

where P is the hadronic fo, tr-nionlientuini conj tigate to N.. Thie internal niinon iuti inl.-
energy separation q is conjugate to x.

The covariant oscillator wave functions are Hermite polynomials multiplied by a
Gaussian factor [2,4.6]. which dictates the localization property of the. wave function.
The Gaussian factor takes the form [4]

exp Q- (X-2 + Y'2 + -2 + t) 2 ( 20)

This expression is localized in the four-dimensional slpac,-time. Since the r and yj
components are iivariant under Lorentz boosts along the z directioni andI since the
oscillator wave functions are separable in the Cartesian coordinate systeni. the x and Y,
variables can be dropped from the above expression, and they may be restored whenever
necessary. The ground-state wave function can then be written as

()',1/2 eFxp - ( e- 2u1 + 2 c e) } . (21)

Figure 2 illustrates the Lorentz-deformation property of this form.
As q becomes very large, lhe distribution in v becomes very narrow. Since v

( - t)/v/'2, the terms containing (z - t) in Eq.(14) will produce a fa tor like rý (r) when
applied to the Lorentz-deformed function of Eq.(21), and can therefore be dropped.
The operators N1 and N 2 then become those given in Eq.(17). Since they satisfy the
commutation relations of Eq.( 13), N1 and N2 of Eq.(17) together with .J3 of Eq.(S) can
be chosen for the generators of the little group for relativistic extended particles in the
itifinite-moment iirn limit.
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The distribuition becomnes narrower in vi, while it becomies widler along the it axis

in the maniner dlescribed for the oscillator case in Fiur 2. This property is shared by

all other nornializabie funct ions [9]. The generators of the lit tle group d1o no t Ilepeoii

on thle shape of wave functions, Therefore. iii thle infi iiit e-inuwntll'utiii 1 init. tlir, abov le

con1cluvsion is valid for all distribution functions localized in space and time.

QUARKS PARTONS
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A 0 -O -OST ' .
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becomes .,der

FIG. 2 Lore nt:ý dijornitions (of qjoiec-b~t-' and f07et17-Cr.'ICl'' JtON1

Both of them havc t.Ac 51177(1: Lrctdfrblopropcirty. Till !lllJoif 711 iiT IX.(TI

the spar cý- tn-a, clhpse 7.1 c17J uga t r to thr rinor (mnajo r) of mottni.'r I!

"ellipe. Thisi figure explain.4 rh~y a hadron, appears aq a. tobig hl bo(71 IL stf' of qua rk.,
to an, observer in the Lorentz framre ivhrer the hadron1 is at rest. b tile zf apprar.I asý it

collection, of free parton., with a wide-s4pread nitornefltion di.Orzibution to ain observe r 1T?

the frame w~here the hadron. rnov lesi 5>ry rapidly. Vhiii fiqurc isq re.printed from7 Rcfs. 2.

6, and 9.

The sorni re'asoninig canl be carriedr oult flu' the iiilonivuitini-v'ilrgy space(. 'Wirth

q, ql q)/V\1. (q, q:J ±- qi/ /
2
.(2



The lio!ientuin-eiucrgy wave fu nction is

',,(q 2 . q) (+ 1 r - ( c) ( + e (23)

It has a narrow (listribution in qu or (q. - qo)/v"-, and the .V and N., operators take
the form

0q1 0N, -1q q. , . I -q~j• (24)

These are also the generators of gauge transformations, as in the case of all massless
particles.

In the infiniteI-mom11entumi limit with t =z and q: = qo. it and qt, becomei \1_25z mid
v2h respectively. Both the z and q: distributions become wide-spread. Furthermore,

the imonmentuln of each quark can be parameterized as

p.:=•P, (25)

whýre the parameter • ranges approximately between zero an 1. This type of dis-
tribution was postulated by Feyninan in his parton picture of hadrons in the infinite-
momlentumi limit [!11].

We can now integrate ]6ti(q:, qo)]2 over q, to get the momentum distribution func-

tion. There are three quarks in the proton, and the generalization to the three-quark
system is straight-forward. In the large-,! limit, the momentum distribution function

becomes [61

p(l) = 3M(1/2-rf2)1/. exp {-M'(3ý - 1 )2/2} (26)

This form of the parton distribution function can be compared with the experimental
data [14].

The parameter ý is essentially Feyninan's x variable [11] whose variation produces
observable effects. It is linear in the q, variable, whose variation is generated by N, and

N 2 of Eq.(17). Feynman's x variable is therefore a gauge transformation parameter in
the hadronic system with an infinite momentum.

5. Wigner Function and Uncertainty Relations
Let us go back to the Wigner function. Because of the separability of the ground-

state harmonic oscillator, the evaluation of the Wigner function for the formalism of
Sec. 4 is straightforward. In the unit system of 9 = 1, the Wigner function is [2]

W,(z,t, qqo)=( 2.) exp {-(e-2ru2 +e 2 qq +e- 2 t' 2 + e- 2 q)} . (27)

This Wigner function is separable in the light-cone coordinate system. The above
expression is a product of two Wigner functions:

1 exp {-(e- 2 u 2 + e2 )q)} (2)
1W,( u, = -

and
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C21,7c,, l e .q,,) = -exp { -(e2" -+ - 2"ql-'). (29)

"V V

FIG. 3. Lorentz deformations in the light-cone phase space, consistzng of two pairs of

conjugate variables. The uncertainty products AuAq. and ,,Aq, are preserccd. The
Lorentz boost zs an area-pres•erl rng canonical tranqformation zn each coordinate system.

This figure is from Ref. 2.

As is illustrated in Fig. 3, the Lorentz boost deforms the Wigner functions of

Eq.(28) and Eq.(29). They are deformed in such a way that the area of the uncertainty
region for each Wigner function is preserved. The Lorentz transfoirmation indeed con-
serves the uncertainty relations. Feynman's parton picture is another indication that

quantum mechanics is compatible with special relativity.

Let us go back to Fig. 1. Wigner's little group unifies the O0)-like internal ,-i)ace-

time symmetry of massive particles and the E(2)-like svymnetry for nuassless particles.
The covariant harmonic oscillator gives a unified picture for the quark model for massive
hadrons and the parton model for rapidly moving hadrons. The phase-space picture of

quantum mechanics provides the physical basis for the covariant oscillator formalism.
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Wigner Function of Nonstationary Quantum and
Optical Systems

V. I. Manko
Lebedev Physical Institute. Moscow. USSR

The aim of this talk is to present the new approach to construct Wigner func-
tion of nonstationary quantum systems based on the existence of time-dependent
integrals of the motion. The time-dependent linear integrals of the motion for the
one-dimensional forced parametric oscillator has been found in Ref. [0]. The with
respect to the position to the position and momentum operators linear integrals of
motion for multidimensional forced parametric oscillator have been obtained in Ref.
(0]. These integrals of motion have been used to find the propagator of the multidi-
mensional forced nonstationary oscillator and to construct the density matrix of the
system with quadratic Hamiltonians in Ref. [0. 0[.

Let us consider the quantum system with the Hamiltonian which is a nonstation-
ary quadratic form with respect to the position and momentum operators Xk.p,
-iO/I.rk. k =1.2 ...... Vh = I

N=~~q 7)• Bo,,(t) q.3 + _~ q, -y q B(I) q+r(l) q. 1
2 .3=! =1

Here t he 2N-vector q = (ql. q2 . ... q2x) = -. PX X ..... rX) has the projections
q,(a = 1.2 ..... 2.V) and the 2N-vector c(t) and 2N x2N-matrix B(t) depend on time.
The Hamniltonian (1) may describe the behaviour of the parametric multidimensional
forced harmonic oscillator and the behaviour of N interacting optical modes in a
resonator with moving walls or with the time-dependent refraction index. This case
corresponds to the existence of the nonstationary Casimir effect when the energy of an
external source is converted to the energy of t he elect romagnetic field due to the work
against the Casimir forces. The time-dependence of the paranieter• of the system
B(t) and c(t) may be fast. Thus, we can have the kicked system when the matrix
B(t) = Bo+ Bk 6> .b(t -nT) and the vector c(t) = co+ck •..(( -nT) have
constant components and the components (orresponding to very short periodic pulses.
The model for these pulses may be chosen as the model of h-kicks. On the other hand
if the parameters of the system B(I) and c(t) vary slowly we can have the adiabatic
behaviour of the multidimensional forced parametric oscillator. In this case the Berry
phase mnay be calculated as the phase in the explicit solution of the Schrgdinger
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equation found in Ref. [0, 0]. Thie Hamiltonian (1) has the symplectic group Isp(2N.R)
structure. In fact, the N position operators rk. N momentum operators Pk, all the
quadratic operators Xtri, PkPI, Xkp1 and the unit operator form the basis Li of Lie
algebra of the inhomogeneous symplectic group. Thus, the Hamiltonian (I) may be
considered as the Lie algebra generator

H = c,(t)L, (2)

with nonstationary coefficients ci(t). The operators L, obey the commutation rela-
tions

[Li,, L, ] = ll, ý, (3)

with the structure constants cý of the inhomogeneous symplectic group Lie algebra.
Due to that the evolution operator U(t) of the quantum and optical nonstationary
systems with Hamiltonian (1) is the representation operator of the symplectic group.
The propagator of the considered system is the matrix element of the symplectic group
representation in a corresponding basis. If the parameters of the system B(t) and
c(t) are the random functions of the time we have to integrate the propagator using
the given distribution function for these random parameters. Then the evolution
operator may become the operator which does riot belong to the representation of
the symplectic group but it belongs to the enveloping algebra of the Lie algebra of
the inhomogeneous symplectic group. For the periodic dependence of the quantum
and optical system parameters B(t) and c(t) the important role is played by the
Floquet operator U(T) where T is the period of the system and U(t) is the evolution
operator. For hermitian Hamiltonians the evolution operator is the unitary operator
and its eigenvalues fiEnT where E, are the quasienergies of the system may be found
as the eigenvalues of an effective Hamiltonian ho. The Floquet operator is connected
with this effective Hamiltonian U(T) = exp(-iTho). On the other hand the Berry
phase is the phase of the eigenvalue c"" of the unitary evolution operator U(t 0 )
where t0 is the time at which the parameters of the system return to their initial
values. i.e. B(fo) = B(0) and c(to) = c(0) in the process of the adiabatic change.
Mathematically the problem of the diagonalization of the Floquet operator U(T) and
of the diagonalization of the evolution operator U(to) in the case of determining the
Berry phases are identical. Thus, the quasienergy spectra of the system and the
geometrical phases have identical behaviour. Knowing the quasienergy spectra of
the system we know the Berry phases and vice versa. The continuous quasienergy
spectrum of the kicked system may be interpreted as the property of quantum chaos in
the behaviour of the system [0]. Consequently the geometrical phases of the quantum
system are connected with its chaotic or regular behaviour.

The system with the Hamiltonian (1) has the following 2N-vector integral of
motion

Q(t) = A(t)q + A(t) .(4)
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The 2Nx2N real symplectic matrix .\(t) and 2N vector A(t) obey the system of
equations of motion for classical trajectory of the multidimensional parametric forced
oscillator in the phase space

.'•(t) = .\(t) E B(1) . "X(t) = .\(ý) !: (t) . ('5)

where tle 2N x 2N -matrix E has the form

S( -10

We will consider the matrix elements of the evolution operator U(t) in Wigner repre-
sentation [0]. It means that we will use Weyl symbol [0] for the evolution operator.
The kernel of the evolution operator in the coordinate representation G(.r..r'. t) is
conpected with its Weyl symbol or Wigner function ((,r. .) (- ;(q. t). q = (p. x) by
the relation tG(.r.p.,) = ]G(x + -r. x - I-r.t) exp(-ipr)dr 

(7)
2 2

Since the quantumn system propagator satisfies the system of equations which connects
the time-dependent integrals of the 1 )tion with Green function [0] the symbol of the
evolut ion operator G(q. t) obeys t he system of equat ions

(Aq - 2,4q +.) G(q.t) = q+ Gq.t) . (8

The solution to this system of equations has the form [01

G(q. = "2v {(det [A + E -/2 xp {iq(tq

+2iqI(I) + -_(A + E; (A -( E).I

= iI' -' Id/- . (9)

The initial condition for the propagator has the form

(;(q.o) = I . (10)

The 2N-matrix E is the unit matrix and the matrix A and the vector M(t) are expressed
through the classical trajectory of the systenm

A(t) = E(A + E)-'(.\ - E). 1(0) = Y(.\ + E-iA (111

If the multidimensional oscillator parameters B? and c do not depend on time the
propagator (10) may be expressed in teriis uf the Hamiltoman parameters explicitely

;q (let cosh 1 exp i (q+ B-'C)_

- x tanil (LB (q + B-ic-) + 2 rBf'c }(12)
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In this case the equilibrium Wigner function IU( t, .1) may he obtained from the
propagator (12) by the change of variables t = -1.1 and it has the form

I '(q, J) [det cos (231B) exp {
+ (q + B-',) E ( 2.13B) (q + BW'c) }(13)

The partition function Z(3) is connected with the Wigner function by the relation

Z(, 3) =/ Il'(q. ý3)(27-)-\"v dq .(14)

The integra! (1A) may he f-;1 .... r" ,ldpf4

Z(3) = 2-' det sin (2 (EB exp . -)(

For the usual one-dimensional oscillator N = 1 = m I we have

B= 1 0 c=O. (16)

For the oscillator the Wigner function has the form

W(p.,X.3)= cosh exp -tanh p 2 +r) (17)

The formula (1-1) for the partition function gives the usual result for the one-dimensional
oscillator

One can introduce the integrals of the motion A(1) and A+(t) with boson commutation
relations. Let the real 2N x 2N-matrix A(t) and the 2N-vector _\(t) have the N-block
form

,%(I) A(,• A,• A( .X t)= i( f(), 2(t) . (19)
\A, AJ )"

If we introduce the complex N x V- matrices
1 1

A, = I (AA3 + iA), \ - (A4 + i1\2 ) (20)

and the complex N--vector
6= (6 2 + i,) (21)

\/-2 i
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the operator
A(t) = Ap+ Aq,.r + b(t) (22)

will be the vector-integral of the motion. The commutation relations for the compo-
nents of the integrals of the motion .4,(t). A+(t) are

[A,(t),--.1 (t)J = ,.k [ ,4(t), Ak(t) 0. , k 21,2 ...... .. (23)

The normalized eigenstates In) of the "annihilation" integral of the motion AM).
with complex eigenvalue n has the wave function in the coordinate representation

'Io(r t) (27r)-'v/4 (det A,)-'/ 2 expl{ - •r,'A,,r

±,.r,+'(\ + 0
+ P1;A;'6 1l,12 +,

This function describes the polymode squeezed anid correlated state of the electro-
magnetic field in a resonator with moving walls. If one takes tho Wigner futnction

c,',3(q. t) of the state with tile density operator p,3 = 1 (.1 it obeys the evolItion
equation of the type

all = 0 [!(Bq+c) llW . (25)

The equation (2.5) follows from the evolution equation for the demisily operator

i~=jI P1 . (26)

The advantage of tihe Wigner representation is that the evolution equation (25) con-
tainis the first derivatives with respect to the coordinate of the Wigner function q. The
evolution equation for the density matrix in other representations than tile coordi-
nate representation or the coherent state representation contains the second derivative
terms. Since only first derivatives with respect to q variables are present in the evo-

lution equation (2.5). the propagator for this equalion may be expressed in terms of

b-function of the classical trajectory of the systemm in its phase space.
Due to equation (26) the density operator p is the integral of motion. hi fact. the

density operator p(t) at the moment t is comimected with the initial density operator

p(O) by means of the evolution operator U(t)

p(t = U(t)p(O)U-(t) . (271

The operator of the form (27) is the integral of tle motion. Due to that the detl-
sity operator p(t) may be expressed in ternis of tlie other integrals of the motion.
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For eximple, if the initial density operator p(O) is a function of thle coordinate rini(

moinentumn op~erators .r and p

p(O) = p(.r. 1) - p(q) .(28)

the density operator p( t) is the same function of the integrals of te lie otion Q(t

pM)= P( QMt))- (29)

Let uis denote the W~eyl sYmbol of the integral of the motion A(t) (22) as the complex
variable

- =Ap(t )P + .Yt")X' + NOt (30)

where the real N- vectors pand .m'are the WNevI symbols of the mnomentumn and position
operators. Thus. thle c-number vector :I') is the integral of the motion for classical
trajectors of the oscillator.

Thle function 11 j q. I) niay easily be found as thle solution of thle evolution equi-
tion (2)). and thlis fLunction is expressed in tetinis of the sminl-i z of the time-
dlependent linear integrals of thle motion A)(t) in the following manner 0

=2-' exp{-2: z+ 2n z'+ 2 5's- o.

Since thle Wigner function lII , is the generating function for the -y:niol IV-,~ of
thle operator p,,~, = nI ) ( n Iwhere the state InII ) is the eigenstate of the quadratic
integral of the motion 4+(/).(At). i.e.

.At t),4,(t) IIII ) = Itn In ) . In), = 0. 1. 2. ... I= 1. 2.....N (32)

the \Vigner funct ion of the state p,,,, has the conijpletelY factorized form [0]j

Thus, the geometrical p)hase of the analogue of stat iomiary state is thle phase of thle coin-
plex classical t rajectorY which is contained in the complex variables :,. The function
0~ is thle Lagumerre polynomial. Thus, in \\igner representation we have complete fac-
torization of thle scattering matrix for polycdimensional tionst atiommarv forced harmonic
oscillator. The result about thle factorization of the evolution operator in \Xmgter rep-
resentatiomi minav e generalhized in AV KIO-approxiiat iomi for any' potential. In fact, if
one uses path integral representation for the propagator of the (fualit mmi SYStemi., the
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quasiclassical approxilnat ion means. t H t we ext tact the term coniuct ed with the

action tinder cla�sical t rajectorv for the system ate1 heii we calculate two correct iou
terms, which gives 'is formally the path integral for nuiist at jotuar (1 uia'lrat ic quianttuin
system. This part of the propagator max be factorized completely. TItus. the result

may he formulated as follows. The propagator of an arbitrary N-diineie.ional svstenu

may be completei� factorized in 'Aigner represeittatioti iii qutasiclassical appioxiiuta-
hon in the sense that the part of t lie prol)agator con iiecte(l with the correct ion to

the classical action is equivalent to the propagator of the multidimensional forced
nonstationarv oscillator which is the factorizable system.

Now let us (liscuss the �Vigner function for the aitharmonic oscillator. The Ilamil-
tonian for it may be taken as follows:

= (o+o + I) + .� (o±o ± (34)

The partitioiu function of the quadratic anharmonic oscillator may he expressed as
follows:

The series in the l)art it iou function is t he well knowit Jacobi O-3-fuiici iou. The density
operator for the anharmonic oscillator may he represented by means of the foriiiiila

A
2  2�J (Iy(�t 5  (36)

in the following form

C fX, �j �f+ ¼ il� l'\ �
� 1 ,al, exp - itO (I-f t -�A)/(�OO + -� / . (37)

Due to that the Wigner function IF4 of the quadratic anharmonic oscillator may be
obtained from the Wigner function of the harmonic oscillator (17). We have

I 1
4 (p. r. 3) = �J dy(cosh [(.i- �3A�/)/2])

{ j- - (p� ± .r�) tanh ((.3 - -V--JAY) /2] } (38)

Since the Wigner function (3S( an(l the l)artit ion funct ion (35) are cOnitet'te(l by the

relation

- / J dpdx hl.dp. .r. .3) . (39)

we have the integral formula for e3-ftznctiomin

- � (40)
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I f onle considers t I e nlormIa lized W\igner fitntction of a geineralI q it a(ratI ic s~st em witItlitlhe
Hamtiltonian ( I) and if this Wigner funiction has Gauss;ian form thle Wigner function
mav alwalys lbe expressed as follows

tUq ) ((let mi(t) )-112 ex { -(q - (qUD) n (t)(- (q( t)~ (41)

Here the parameters (q(t )) and in(t) are the mean values of the position and nmomen-
tuni and the dispersion matrix of the parametric oscillator. i.e.

(q.(t)) Trp(t)q, a = .2 ... 2N . (12)

and

in~i( t) =Fr [2 (q~q, + q.3q.,, [Tr(q~p)l (Tr (q.3p)j .(

For the densitY matrix of the stationary quadratic systemn with the Wigner function
1:3) an(I partit ion function (14) the characteristic function

mlay he calculated (O]

v = (exp H 1Df +t tDh) (15)

Here the 2N x 2N-miat rix D) and 2N-vector b are given ky lIhe forimulae

D -I~ [ cot (_'. 1 13)

and

b = -2 [ tan (3EB)j P-c (47)

WVe have for the stat ionary quadratic systein

(q) B-Bm c(S

and the dispersion matrix F.) is giveii by the formula ( 16). The mevan valuies of the
products of the q~,,-variahles may live calculated expIaniidinig lie charmacteritic fuinmc tion
(-45) into power~ series \~t Ii respect to thle p~aranmeters f_, n = I. 2... 2N. We have

(q'; q" . q"'~ v) ItI (b (49)

Here the funct ions Wf),,(6) are the H erinite polynomials of 2N variables. All the
highest monment a (19;). dlependl. In fact, on the second~ msoment a mmatrix 1) and the
first moment a (a). It is the property of Gaussian (list rihut ions. Thie saute takes p~lace
for the correlation functions. If we have thle titne-dependent deiisitvy mat rix with the
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(;aiussi an W igner fti, -ion the highest Cnc relat ion fitn c i ois of tilt' poimi ion an ii tti-
menitum may be expressed in termis of the st~condl-urder correlat loii funct ions. Thc
Wigner function of the nonstationary q1uadrat ic systemi may be used for calculating
the transit ion probabilities between the energv levels coritiected withI the parainet -
ric excitations of thc nonstationary fo'-ced oscillator. T-hus, if one has the state'

nI tj (u 7. 1~1 ý (= and n? ,2 ) ( ". , 2b = P, 12 )-". wh)r it' = ( 1 1ý 1- fl).
in =(11111,2 ... myl~). 1), Y11 0, 1,.2 ... the transit ion probabilities bet ween the
states with tlte (lensitv matrices p~,,(tt ) and p,,, (t2 ) are given by the formula

If )I dq (50)P"(t. t 2 ) = f (27,)-'

Taking the explicit form (3:3) of the Wigner functions of the statles, p,,,, and P-1,, weI
can express the integral (50) in terms of the Herinite p~olynotmials of 2N variables. For
one-dimiensional unforced parametric oscillator the Hermite polYnottual of 2 variables.
in the case when its argument is equal to zero. may be reduced to the Legendre
polynomtial. Then the transition p~rob~ability looks as follows

m>n (52)

an ~ P E + ( PM2 (E +) )) (53)

11 > In . (54)

Here the d imen sion less energy of classical motion

E + liý 55)

is expressed in ternms of the complex solution of the classical equation of int)ion of
the parametric oscillator

E(t) + Q 2(t)(tf) =0 .(56)

The initial conditions for this equation are

Q(O) = (0) = I i(0)=i (7

The normalized state In. t ) of the parametric oscillator has the following wave func-
tion in the coordinate representation
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Ihle coorldiiati' iiilde'jelie'illt phael' of tile' Wax, 11ii1 t 0)11 is vpe''t e-ad t liougih tili,
phase of the comlplex claissical t rajectorv

Inl thle case of the regular he'liavjellir ofli' thc paateie't if eeseifatoer with pcrioelicallv
kicked frequenicy QQ( - I -c TxA t ,> to - eel tN li eAnitier tate of thle' para-
mnetric oscillator has, the( wave fuinction ( 8 where e( o I) =( I e-( (it . The

sp)ec t rum of the ii iorlodoin t ort p 1erato r VJ( is let 'rt iteel (onuip tvl e by hvtlie( argi 1-
Iloent of thle classical s~olution ( (T), Thll.. th ple jasie'ne'rgv spect runi for thlat Case, may
he determinuted in termsý of I lie- properties of I the cli-it"ie ;a~o tolW- of '12Ie:-t 1
cscillator. The geonl ltical pIh ase I 3ev Mipamei is tie phase of t1n eA"a t racoury
(1) too hut t he time T is tiliet, jte' after whith t Ihe freejuenei~ Q ~t) taikes thle initial

value Q?(T) = Q( O) = 1. Thle Itlotion ill this case, 1na, he it lot pe'riodical onle. Thie
s(IueezAing p~lellomleta is coninectedl with tilt' liejrautlift ne 'it atil o f t lie hartiilonic
oscillator. so, thet ratios of tilie coordinlate alid ilotilentuinn elispe'rieion ito I heir Na~lue
at the ground State of the' Mt 6t"tMr bsiyao HIPt ceeh te omulae

i'K = - -_ II u

Thuts. thle squelezingt paratie'c' almf deltf'rtllitfel ll tlie( prolee'ivi osef tbe' elassýica
trajectory fo). Duit to itotiskiati cotiscrvat flee

i '-i,= 2.

lie phlase' of thle eotiillf' t ra jeory cf 1) ik ceeimwtiede with t liet~i, ltllt' of tili, fuitict ion

It tInleas t hat thlc'gf'eftri"cal phlasfe is thle ititf'gral overtlie 1h je'f'/itig eeef' lititttIlif'
variat ion. 'I hius. tweo pheliollifia . 4jlleezicig atnd tilei gf'eliiet r:Cal phase. aivre cm elv.
Since the Sqejezeitig Coefficietitt llitc'-elcpetieleice' elete'rliitis t if' ifetlif't lrical pehase'
which is connected. ini tirti. withI th li'lrolef'tt o' f th iftjttasif'tif'v Sc pv [Cliii (it Itle'dt
that it is coniniectedl withi qiantititi chiaos) tlif' %ariatioti of thet,'f~Jilf'e/iiiig Wit tttte'
icewrlrlilles, tlie( iuistahility (or) (liatetisitx-) of tIll' loratictine eescillateer. lIhe sqe~lefzinlg

jphletlott lea itla b le cool icctei' withl thle a rca xe'r lap cionic'ett i ph11a se' pact- of tilie
oscillator 1O. 0]. Thec squc'ezitlg plehi'nlonc'Ia is relatc'el to tilie corre'lat ionl ihtetiotlictia oif
tile position anid ni1ollientlit 111 of thle' jiaraie'trnc olscillator. [le' eeerclat ioe! ocn'ficic'nt
r of these t\\o e olijegate Waria is 'lelc'-ssel in tcrnni of thIe mejleeilig ce ~enthccrt
of thle piositionl anid the' Ilionllic'litli [I)]

I"] I( j 2 11)3)
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here ive it itnihei rs it,, itre

- m il (Il. 11) (70))

Fican thle forum ila I(69) we have

(-1 )' I! I,(xcm 2 *'7 1)

Ilice >ec')oil cauiotli rat forunt is collilected with h le mar rix Bt of the ty pe

S( 1720
Ini thins casethe OwHertiite jpolyioulmiai ]" of two \i!-iahles mray ibe vpresýevi ill I errim

of thle listal il1'r rlut' polvnlouiiials of otie \Oariihle'.

The 116Mi~ cationiiel fRam is cotiliedrt with i t(ic iiili\ B o," t Id tie t

U, =(! 1) 74)

lIn thisi case' tIlc' h1'ttiiitt pol~tiitliiial o~f two \arjakie'~ lil',ý 1w e lcNle('sf( tiir'n'Iiw t he'

prodiucts of llermnite polynomoiials of oil', varialble

US- HQA ( .1- t -x2 U (it . ) U!

I htis. t~vo-nilode squIe(/ez end av correlated lighlt elescrila d imý tinl wa'e function 211
with phdotonm (list riIllntiticij ftilict ion given by thle forninllac' (66). (30) anld (33j etleuolm-

strates the differetnt regimei of the wavy variationl of the photonl dii~lribnt iou foneit ion

(ollllpctt'ii withi thle different tuttie variat ioim of plaraltntirs I?( / ) antid t ) lint tie hIaunl-

toni ar (I)f Ile different eases are ieýcriieeu ill teilo of thicree diffetei'en canonlical

form"m for hlernmlite poolvtmoniials of two variablets.
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1 Introduction

We join the larger community to salute to Prof. Eugene Paul Wigner on the occasion

of the II International Wigner Symposium and celebrate his many contributions to
phtysics summarized so beautifully in the after dinner speech of Prof. G. Emch. We
do not intend to repeat this womderful list of achievements but want to emphasize in

this article how the field ,f quantum optics has profited so much from the pioneering
work of Prof. Wigner.

From his early days in physics Prof. Wigner has been interested in the quantum
properties of light. His work with V. Weisskopf on the spontaneous emission of an
atom lies at the foundations of quantum electrodynamics. In the sixties he pushed
for a deeper understanding of the measurement process in quantum mechanics best
summerized by the problem of Wigner ' friend. The one-atom maser -- the subject

of Sec. 2 is closely related to both topics: The use of Rydberg atoms as the
mnasing material inhibits the spontaneous emission. Moreover, this amazing maser
allows intriguing probes of the complementarity principle.

The superposition principle of quantum mechanics on first sight a rather in-

nocent. principle leads to quite unusual Gedankenexperiments such as the paradox

of .5"chriidingers cat. We in Sec. 3 bring out most vividly the properties of these
nonclassical states using the example of a quantum mechanical superposition of two
coh'rent states. A phase space approach based on a pseudo phase space distribution

such as the Wigner distribution makes the phenomena of sub-Poisson statistics c-

"also Max-Plantik-Institut fir Quantenoptik, D-8046 Garching, Germany
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igirc 1 : Ixpenriirntal settUp of one-atom maser.

squeezing arising in such a state, transparent. An intuitive argument for the Wigner
function based on the notion of a quantum jump constitutes the last section of our
salute to Prof. Wigner.

2 The One-Atom Maser - a Bridge from Quan-
tum Light to Quantum Measurement

Send a stream of excited atoms through a superconducting cavity with a single field
mode coupled to a single transition of the atom. An atom may deposit a photon in
the cavity. The next atom entering the cavity interacts with the field created by all
earlier atoms and so on. This summarizes in brief the underlying mechanism of the
one-atom maser depicted in Fig. 1.

A maser operation driven by a single atom in the cavity just another example
of a Gedankenexperiment? Just another toy from the playground of a quantum
optics theoretician? No, this device has been promoted from the wonderland of
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mathematics and theory to the real world of hardware and experiment (1]. But what
are the statistical properties of the light created in this maser? It is nonclassical!

What does it mean, nonclassical?
Electromagnetic radiation can indeed show nonclassical properties [2, 31, that is,

properties that cannot be explained by classical probability theory. Loosely speaking
we need to invoke "negative probabilities" such as appearing in the Wigner function
to get deeper insight into these features. We know of essentially three phenom-
ena which demonstrate the nonclassical character of light: photon antibunching [41,
sub-Poissonian photon statistics [5] and squeezing [6]. Mostly methods of nonlinear
optics are employed to generate nonclassical radiation. However, also the fluores-
cence light from a single atom caught in a trap exhibits some nonclassical features
[7,8].

Yet anot her nonclassical light generator is the one-atom maser. We recall that the
Fizeau velocity selector shown in Fig. I preselects the velocity of the atoms: Hence
the interaction time is well-defined which leads to conditions usually not achievable

in standard masers. Under appropriate conditions the number distribution of the
photons in the cavity is sub-Poissonian [9, 10] that is, narrower than a Poisson
distribution. Even a number state, that is, a state of well-defined photon number
can be generated [11,.12]. What is the use of such a number state? Test of quantum
theory of measurement? Yes! The field of the one-atom maser as a "which way"
detector, that is, test of complementarity [13] serves as one motivation for number
state production.

But what are the conditions we have to satisfy in order to achieve such an ambi-
tious goal'? ( 1) We have to use a cavity with a sufficiently high enough quality factor
and (2) we cannot admit any thermal photons in the cavity. Both conditions can be
fulfilled when the superconducting cavity is operated at very low temperatures, that
is, at temperatures smaller than about 0.5 K. Recently a new maser in Garching
operated at a temperature below 0.1 K. At such low temperatures more interesting

features such as trapping states of the cavity 114] make their appearance.
Unfortunately, the measurement of the nonclassical photon statistics in the cavity

is not that straightforward. It invokes the coupling to a measuring device whereby
losses lead inevitably to a destruction of the nonclassical properties. The ultimate
technique to obtain information about the field employs the Rydberg atoms them-
selves: Measure the statistics via the dynamical behavior of the atoms in the radia-
tion field -- via the collapse and the revivals of the Rabi oscillations -- that is one
possibility [15, 16, 17]. However, a much more conclusive approach probes the pop-
ulation of the atoms in the upper and lower maser levels when they leave the cavity.

In this case, the interaction time is kept. constant. Moreover, this measurement is
relatively easy since electric fields can be used to selectively ionize the atoms. The
detection sensitivity is sufficient to investigate the atomic statistics. This technique

maps the photon statistics of the field inside the cavity onto the atomic statistics.

Experiments carried out along these lines have shown a variance of the photon num-
her distribution, (n') - (n) 2 = 0.3(n), which is 70% below the shot noise level [18].

Another method proposed to measure the photon statistics of the maser relies on
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a Ramsey-type setup together with a quantum non-demolition scheme [191. This
technique has not been realized experimentally yet.

The experiments on the steady state photon statistics involve only the diagonal
elements of the density matrix of the maser field. The maser spectrum [20] however
invokes the off-diagonal elements as well. A multiple microwave field method similar
to the Ramsey fringe technique allows to measure a quantity closely related to the
maser linewidth. Another method [21] to investigate the phase dynamics of the
maser field rests on the state reduction of the combined atom-field system after
applying a classical coherent field to the atoms leaving the cavity. Their population
statistics allows to deduce the field statistics. This method is based on the back
action due to the measurement process.

We conclude this section by emphasizing that the one-atom maser is a unique
device, and that for three reasons: (1) it is the first maser which sustains os~idLi -,ns
with less than one atom on average; (2) this setup allows to study in detail the
conditions necessary to obtain nonclassical radiation especially sub-Poisson light;
and (3) it allows intriguing probes of the quantum measurement process.

3 Nonclassical State from two Pseudo-Classical
States

A key point in the discussion of quantum theory of measurement is the production
of Schridinger cats. It has been proposed [221 to use the one-atom maser to create
such states. Here we do not want to address the question of how to produce them
using the one-atom maser [23] nor do we want to elaborate on various other schemes
[241, nor do we want to elucidate the subleties involved in their detection [251, but we
want to identify interference as the central ingredient that makes these Schr6dinger
cats states so nonclassical [26].

At the heart of quantum mechanics lies the superposition principle - to quote
from the first chapter of Dirac's classical treatise [27] - "... any two or more states
may be superposed to give a new state ". Insight into the far reaching consequences
of this principle is offered by the most elementary example of superposing two co-
herent states [28, 29], Ja Ic/ 2 ) and Iak r"° 2 ), of identical mean number of photons
(m7) = c 2 but with a phase difference V as shown in Fig. 2.

A coherent state of an electromagnetic field mode, or in the language of its
mechanical analogue, of a harmonic oscillator with dynamically conjugate variables
x and p minimizes the uncertainty product with identical uncertainties (AX) 2

(Ap)2 = 1/2 [30]. Thus they are quantum states closest to classical states - pseudo-
classical states [28, 29]. In contrast, the quantum mechanical superposition of two
such coherent states forming the state

, A( 7 (Iae,' 2) + lae-/2)) (1)

exhibits highly nonclassical features 131, 32] such as sub-Poissonian 151 and oscilla-
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Figure 2: In its most elementary version the quantum mechanical superposition of two
coherent states of mean photon number (m) = a2 ana phase difference V can be visualized
by two circle, of radius unity displaced by an amount V2 Y from the origin and having
the central angle , between them.

tory photon statistics [33] as well as squeezing [34] of the .r-variable [35]. as discussed
in Figs. 4 and 5.

In Fig. 3 we analyze the photon statistics, that is, the probability IV,, of finding
m photons in the state IV,), in its dependence on the phase difference ;. Figure 3
shows ,-domains in which the photon count probability curve gets narrower than

the Poisson distribution of a single coherent state; that is, we find sub-Poissonian
photon statistics -an indicator of a nonclassical state. These domains are separated
from each other by zones in which 9, is broader than a Poisson distribution, that

is super-Poissonian. The resulting oscillations in the normalized variance o-2

( 2)/(?o) - (7n), displayed in Fig. 4 and similar to those in the photon statistics
of the micromaser [9[, die when the two coherent states are distinguishable. As
a consequence W,,, shows rapid oscillations with the familiar Poisson envelope.
The analogous effect arises in the photon statistics of a highly squeezed state [33].
Figure 5 deals with the question of possible squeezing in III,). A single coherent
state shows identical uncertainties (Ax)2 and (Ap) 2 in the conjugate variables x
and p equal to 1/2. In contrast in the state 1') the uncertainty (A,.x) 2 can fall
below this coherent state value provided the phase difference 'P lies appropriately
in the domain of sub-Poissonian photon statistics as indicated in Fig. 5. Thus, IV,)
exhibits squeezing. Moreover, (Ap)2 increases while preserving (approximately) the
minimum uncertainty pro(duct (Ax)2 (,p) 2 = 1/4. No squeezing in x is found in the
region of super- Poissonian or oscillatory photon statistics.

I• • • ,,l • lln no m



96

008.
"U U' -" t.

-, 'V _
20 2 TT

to35 •."__• •U:

,---0 " - (

Figure 3: The photon count probability Wm of the quantum mechanical superposition
state I') in its dependence on the relative phase difference po. For increasing V the Poisso-
nian distribution for the case p = 0 (a), narrows while its maximum moves toward smaller
rn values, (b). This curved wave front suddenly breaks off to start a new front and yields a
distribution broader than a Poissonian with more than one maximum (c). (Here we have
chosen ,2 = 36)

This example of the superposition of two coherent states displaying nonclassical
effects such as sub-Poissonian statistics and squeezing in contrast to a single coherent
state identifies once more in a striking way the principle of superposition as the main
actor behind the scenes. In the same spirit is the interesting observation [361 that
the quantum mechanical superposition of two number states, such as the vacuum,
10), and a one-photon state, 11), shows squeezing, whereas neither 10) nor I1) exhibits
any squeezing by itself.

More insight into these nonclassical effects is offered by phase space considera-
tions within the framework of the Wigner function [37[,

P;(Xp ]f ' + y) - y) dy, (2)

of the state 10), displayed in Fig. 6, which is not just the surm of the two Gaussian
hell Wigner functions of the two coherent states, but involves an interference term
[38, 39]. The phase difference, ýp, can sharpen this peak and can even force it
to assume negative values. It is this Wigner-interference term that is the deeper
origin for the nonclassical features [26] of the photon count probability. W,,I, and
the squeezing.

The striking consequences of the superposition principle of quantum mechanics -

a single coherent state, a quasi-classical state, the quantum mechanical superposition
of two coherent states of identical average number of photons but well-defined phase
difference, a. highly nonclassical state that exhibits sub-Poissonian and oscillatory
photon statistics are the central result of the present section.
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Figure 4: The photon count distribution W1, for the quantum mechanical superposition
of two coherent states, is Poissonian (a), sub-Poissonian (b), super- Poissonian (c) or oscil-
latory (d) depending on the relativ- phase <o between the two coherent states as expressed
by the normalized variance or. The Poissonian distribution for <p = 0 is plotted for corn-
parison by a dashed line. To emphasize the oscillations in a we have chosen a logarithmic
scale for p. (Here we have chosen o2 36.)



98

rT ------ 
---- r-

(a)

1 
,,'

-5

0.5 - 0.5

I 
i

(b)

(Ax) 2(Ap)2

2-

0.25 ___ _ _

0 1T 1t
T64

Figure 5: In the ,ý-(doniains of sub-Poissonian photon statistics (compare to Fig. 4) the
x-variable exhibits squeezing, that is. the variance (AX) 2 depicted in (a) by a solid line
falls below the coherent state value of (Ax) 2 = 0.5. The variance (Ap) 2 shown in (a) by a
dashed curve, however never falls below 0.5, but increases so as to satisfy the uncertainty
product (AX )2 (_Xp) 2 

> 1/4 indicat~d in (b). In the first two domains of squeezing the state

l"') is approximately a minimum uncertainty state whereas for > 7r/,9 the x variable is
still squeezed, hut not in a minimum uncertaintv state. (||ere we have chosen a2 = 36.)
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Figure 6: The Wigner function. PI(•, of the quantum mechanical superposition of two
coherent states does not consist of only two Gaussian bells located in x-p oscillator phase
space at x = v/2 ocosp/2 and p = ±v2 asiny/2 corresponding to two individual
coherent states a;Ie'/2 and ljac-,/2 but involves an interference term located on the
x-axis. This contribution originates from the quantum mechanical superposition of the
two coherent states and the bilinearity of the Wigner distributi'n, Eq. (2), in the wave

function. This interference hill can be narrower in the x-direction than the individual
Gaussian bells giving rise to squeezing in the x-variable (Fig. 5a); or it can even take on
negative values to create an oscillatory photon count probability. U;,,, Fig. 4d. (Here we
have chosen o2 = 36 and , = ir/3.)
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4 A Jump Shot at the Wigner Distribution

We conclude our salute to Prof. Eugene Paul Wigner by presenting an intuitive,
physical argument to motivate the standard definition of the Wigner phase space
distribution which we have already depicted for the case of Schrddinger cats in Sec. 3.
The central ingredient of our approach [40] is the notion of a quantum jump.

Consider a quantum particle at position xr moving in one dimension with mo-
mentum p. Here the uncertainty relation allows for a pseudo-probability only. In
the spirit of Heisenberg's matrix mechanics, we replace the single position x by a
quantum jump from an initial position x' to a final position x". It is reasonable
to identify x with the geometric center of these two positions of a single particle:
* = (x' + x")/2. But how to incorporate velocity or momentum into this picture of
a particle hopping by an increment { _x" - x'? The physics of de Broglie together
with the mathematics of Fourier provides the immediate answer: transformation
from ý to k = p/h. But what is the function we have to Fourier transform in this
way? Hleisenberg guides us in finding the answer: He represents an atomic Bohr
transition a quantum jump from an orbital of quantum number n' into one of
quantum number n" by a matrix element = (n"1A In'). Here A stands for
any dynamical variable, such as the dipole moment. Similarly we now consider the
density operator ý = ',)(•,j for a pure state mt,) and its matrix elements

p(./'.x') =- (W"1A1') = W•lv)(Ol') = Ox(•")W,(W) (3)

in position representation. This accounts for our quantum jump from x' to r".
To bring out the structure of this jump we express the function p in terms of the

meai position .r and the increment ý, which leads to

<(Y.,) - :(x- + ý12)ý"'(x - ý/2). (41)

This is thequantity we want to Fourier transform with respect to the jump increment
{. Thus we arrive at

(X P) r( X, { )e-'Wh1* dý

tN,)(xp)•w _ 2-rh1

-2,'rh I '(a' + (121),$(. - •12)c-'<"l d{. (5)

With the integration variable y -ý/2 and A = I this expression becomes identical
with the standard definition of the Wigner pseudo-distribution [37[ of Eq. (2).
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Ensemble or Individual System, Collapse or no Collapse:

A Description of a Single Radiating Atom
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Abstract

We use ordinarY. quantum niechianics to analiwe( ai gedanken experimneit of re-
pealed photon measurements on anl atom. The ineasiurenient'. are a short, b~it hinieP.
time At apart. This leads to a coarse- grainted timie ýcalo and to a descrilionl of
photon counts fronm a single atomn bY a sample pathI of a classical stochastic I.. acess
governed by quantum mechanics. It is shown that a col~apse. or reduction, of'-
state vector at a no-photon (rtl"measurement is not needed bitt mat'% be used
as a very convenient technical tool. Wie also show t hat within the coarse-grained
time scale the axKiomatic theory of continuous iuea,tarentents of D~aies andI Srinivas
can in the case of a radiating atomn be obtained front ordinary ijvuanitum mechanics.
Applications to macroscopic dark phases artil quantum beats are indicated.

IL bitroduction

In recent ,veal. there have been excit ing expierimientts onl single atcits ill PatuI traps. Part n -

ularly initecrest inrg t heoret icaI que'stiorts arise ilt roitiec tiort wvit h miacroscopic dhark periodsa
or mnacroscopic qi. ant urn junips of a single at om. Macru,. tpic dlark periods of a single
fluorescent attomi were predictedl by Delinielt I1] for a systemt withI two tsr it et state,, .l
rapidly decay, ing andi thle other mtetastab~le. D~ri ving such a s - stemn 1) ' two lasers one( iii

nuit ivel , expects frequi ent t raos itiotis fromr lie ground sl1 tate tI, the nonn tet ast able ex cit ci

stilat, wit h thle at r lseq i ent ceimission of a sport t neot is jdiot on (*'lighit per iod").* On ce itt a
while t here will he a transition to the mretastable state,. where the electron w-ill stay% for
art extended per iod . andchthere will be rio pltototisii (lark p eriodl". -(+' t ri i elsn
Quianttirm inechaitically, thre situtation is less clear t hant senticlaasicallY bie(auta v t lihe t irt
developmienrt thle atomr will in generalI be ill a cohterenit sirperposi tion of all the stri'at aes.
with air ailmixttitre of t lie rapidly' decaying state alway' s lireseri, so that onle tua , wonder

if the clark periodls reall 'v exist . 'I heat' ideas hiavse hteeli art akI ed seliiiii lass ic:u hl. h% t the
telegrap~h process ['2[ a, well as qutarn iiittum Itchaniciial ly [3.1, .75. 6]. %I ai rioscopii (ilark Ile

niods were indeed fouitd experiment all~v for sirng](, autls, itt a Pail trap 17]. (oriirtuirig a

spectacular qurantuim effect.
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In the following we use only ordinary quantum mechanics. By this we mean the sta-

tistical interpretation as well as the reduction of the state vector after a measurement
f8l. According i, the statistical interpretation, as understood here, one deals with prob-
ability statements which are experimentally verified as frequencies, or relative numbers
of events, in an ensemble. Instead of considering many systems one may also measure
on an individual system, then prepare it again in the same way, measure again, and so
on. In the case of interest here this would mean an ensemble of many atoms each with
its own radiation field and laser, or a single atom with radiation field and laser, observed
infinitely long, then prepared again as before, observed again, and so on.

For reductions we take the von Neumann-Laiders rule (9]. For example, if one measures
the energy of a system in the state I ý,) and finds a particular eigenvalue of the energy
which is degenerate, then the state immediately after the measurement is given by the
projection of the state I ') onto the eigenspace of the respective eigenvalue, with ensuing
normalization. Such a reduction is surely an idealization of the measurement process and
only a substitute for a detailed theory of the measuring apparatus.

Such a change of the state vector will, of course, influence the results of subsequent
measurements. As an example we consider a spin 1 in a magnetic field B = (B, 0,0) in
x-direction. The Hamiltonian is given by

H == /2hB.-a = 1/2 hBal

As initial state Iko) we take the one with spin up, o3 I o) =1:,o). Then, at time t,

S,,,t) = exp{-io-,Blt/2} ,) •

We now imagine the 3-component of the spin measured in two different ways.
a) We measure at time T = ar/B only. This gives

a 3/2 )r = -1/2

b) We measure first at time T12, then perform a reduction of the wave function, and
measure again at time T. This gives

( a3/2 )r = 0

which differs radically from the previous outcome.
We now consider an atom which radiates photons. One then has the problem that if

the photons are detected by a counter or seen by the eye of an observer one performs, in
principle, a measurement, with all the consequences of the theory. Moreover. due to the
stochastic nature of the emission times, how does one know when to measure?

2. Null Measurements

We imagine a general N-level atom possibly illuminated by one or several lasers and use
in ideal detector of efficiency I to measure the photons emitted. We start at t = 0 and
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assume the first photon to be detected at time tl. This is obviously a photon measurement.
and one may try to describe it quantum mechanically as follows. At time to = 0 one
has a no-photon state 10ph) together with an atomic state I VA')- Until time ti one uses
the unitary time development,

U(t,. to) I Oh)l I '.A),

and then one would have a reduction at time ti. The probability Po(t) to have found no
photon at time t, t < ti, is then

Po(t) = _ I (iA I (Oph I '(t-to) IOph) I V-.A) I2
.?.4

where the sum is over all atomic states. Defining the projector 1 0 by

A% Y_ IOh) IJA)(ijAI (Oph I
JA

- Oph) 14 (OphI (1)

one can write Po(t) as

Po(t) Fli O U(t, to) I Oh) I L'A) (2)

"The right-hand side of this has been calculated by Porrati and Putternian [6]. The
probability Po(t) is important for the determination of photon rates and for dark period,,.
as first pointed out in Ref. [3].

There is an objection to this. In order to know that there had been no photon before
t1. one would have had to open the detector between 0 and t, without detecting a photon.
Opening the detecter and not finding a photon. however, is also a measurement which
may be called a "'null measuremnent" [101. Should each of these null measurements not
also be accompanied by a reduction? In the above procedure leading to (2) they are not
manifestly taken into account.

How many of these null measurements does one need? Ideally. infinitely many, and
ultimately this line of reasoning would lead to "continuous measurements' [11]. However.
it is well-known that the von Neumann-Liders rule leads to difficulties with continuous
measurements since in the idealized limit of measurements repeated infinitely fast it leads
to a freezing of the state, the so-called quantum Zenon effect [121.

By an axiomatic extension of quantum mechanics Davies and Srinivas 11:31 have con-
structed a theory of continuous measurement which is adapted to counting rates. But for
any particular situation one needs a phenomenological input or some intuition to obtain
the explicit form \V" will come back to this theory in the Section 5.

3. From Ensemble to Single System

We return to the N-level system of the last section and consider a .qdank' n experiment.
To avoid freezing of the state d(te to the quantum Zenon effect we open the detector at
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instances a very short - but finite - time At apart and perform, at each null measurement.
an explicit reduction of the state vector. To obtain limits on At we require that At should
be

(i) much shorter than the life time of a level, i.e., much less than 10's;

(ii) large compared to the time it takes a photon to travel the distance of an atomic
diameter (essentially the correlation time in quantum optics).

We thus arrive at

At -- 10-16 - 10-12s

Therefore we have up to 108 additional reductions per second on top of the 10' photons
or so.

Reductions and sample paths. We assume that the single atom from above, with its
radiation field, is a member of an ensemble E described by the initial state I0ph) I ýýa).
The atoms may or may not be driven by external pumping. At times At apart we imagine
a measurement on each system of E. By F') we denote the subensemble of all systems
for which no photon was found at time At. Similarly, £0nA') denotes the subensemble
of systems for which at times At, 2At,.-. - At no photon was found. Clearly one has

D....D £•att. According to the von Neumann-LUiders rule the subensemble
0E( is described by the state vector

No U(At.0) 1 Oh) I '.) / A )

where the projector Po is given by (1). The n-th subensemble $o('At) is described by

Fo U(7,At, (n - )At) P0o ... ro C(At,0) I tph)) I •A) / I H (3)

which shows the intrmittent unitary time development interrupted by repeated reduc-
tions in between. Tl~e first subensemble E£0•11 has relative magnitude

UI•0t(At,O) 1Oh `) IIt.dl

which in the statisti, al interpretation is the probability of finding no photon at time At.
The relative magnittde of subensemble E( compared to £ is

Po(Alt) F6Po U(ln_,(n - l)At) ff0  o((n - l)At,(n - 2)At)..
(-I)

.. ""P,' U(2At,.At)Vo I (At, 0) [0ph) I V'A) I

which gives the probnbility of finding no photon at the times At,. nAt. This expression
is quite different from the previous one in (2).

At each measurement on the individual system under consideration chance decides
according to the probabilities PO(At), ... , Po(n•-t), ... whether or not a photon is
detected. This behai ior can be simulated by flipping a coin weighted with the conditional
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probabilities for each measurement. Once a photon is detected and absorbed our individ-
ual system becomes a member of a new ensemble V'. How to describe the new ensemble
is in general quite a subtle question and will be discussed elsewhere. Here we will assume
for simplicity that the system is reset to I0 ,h) IOA) where IOA) is the atomic ground state
[14]. With no external pumping the state remains constant after ti. If a driven atom
starts out from the ground state and if at time t1 = (n + 1)At, say, the first photon is
detected then the procedure starts again, with a time t2 for the next photon detection,
and so forth.

Thus in the above approach the photon and no-photon detection times for a single
atom form a sample path of a classical stochastic process which is governed by quantum
mechanics. Without pumping the sample path terminates. In the simple case of a driven
atom which is reset to the ground state after a photon detection one obtains a path of a
renewal process since after each photon detection the memory is lost. In general, however,
this need not be so.

Evaluation of Po(nAt). We can rewrite the state vector of the n-th subensemble in
(3) as

Oph) (OphjU(nt,(n- I)At)I0h,) ... (OphIU(At, O) 1Oph) I0'A) / II-II

- I 0 ) 10I .4 (nAt)) / II- 1 (5)

where the expressions (Oph I U(nAt, (n - 1 )At) I Oph) are now purely atomic operators and
where I 0A(nAt)) is a vector in the atomic space of norm less than 1. due to the repeated
reductions. One has

Po(nAt) = II Ox.(nAt) 112 . (6)

Since At is small one can use ordinary perturbation theory to evaluate (5). A standard
Hamiltonian is [151

H = 11.4 + HF + D.(E + EL(t)) (7)
where HA is the purely atomic part, HF the radiation field part, E the quantized field.
EL(t) a possible classical field of lasers, and D the atomic dipole operator.

D = e i7 (iA)(AI XIjA)(j.4A I

Going over to the interaction picture with respect Ho = HA + HF one obtains in second
order

(Oph I U(mAt,(m - 1)At)I Oph)

E-HAmAt ]A - iA-,mat dt' (Oh 1H1 (t') IOph)

- dt2 mat ' j• dt" (Oph I Hi(t')Ht(t") 10,h) e1HA(m-)Ai

The expression in tihe curly brackets is easy to evaluate as indicated in footnote [16]
where for At --+ 0 the quantum Zenon effect appears automatically; a particular case is
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evaluated in [17). E.g., for a three-level V-system with states 10). 1 1). 12) and with
transition frequencies w,:. A*2 and laser frequencies ":Ll, -'L2 the curly bracket can be
written as [IS]

I-A - t ih - t E mQI}Atdt' j)(0 II + i( j)(i I'

- i -12 11)(2 e .... -- 2, 2)(11 cs....""

exp i h - dt'

where

- , , -( 0 1 _ ' I i ) (j I _ (0 ) - 3 / 6 Zc o b c 
3

and where A, = 2•, are the Einstein coefficients and s) the Rabi frequencies. which
are proportional to the laser amplitudes. Now the l)roduct over m from I to a can be
performed, leading to a time-ordered expression of the form

JVA',I,_At) = Texls{i h-1['x }~ iH,~t)1C 1
Tt'P{-iwjt')t L'4(0)) )

The "reduced Hamiltonian" tWd is nonhermitian. In particular, for tihe V-system one
obtains for H,,d in matrix form with respect to the basis 10). 11). 12)

( 0 Q, 1/2•-'-'L Q 2•/'2c -LI )
h H-d = 9,/2 ( -'-I" E 1 - i .41/2 ( 2 10)

f12/2 e- -L2 -i,21 E 1-42/2/

We now introduce a "coarse-grained- time.

t = nAt n = 0.1.2.... I

Then (9) can be written as

d I 'AM -i -'H-4ýI CM) 12)di

and one has
POMt = 11'vt)IM 1:1

Collaps, or no collaps(: Hlow (foes this result compare with that calculated from (2)?
Surprisingly, within the coarsc-graintd time scale our P10(t). obtained by n-fold reductions.
coincides completely with that obtained with no reductions [19]. The n-fold repeated
reductions do not stem to have an effect except for the temporal coarse-graining! The

I
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approach of this section, however, has the advantage of mathematical simplicity since
straightforward perturbation theory can be used.

Ensemble or individual system: The coarse-grained time can, for all questions relating
to time differences much larger than At, be considered as practically continuous. On the
coarse-grained time scale the detection of photons from an atom can thus be described by
a sample path of a classical stochastic process with continuous time, a process which is
governed by quantum mechanics. Without external pumping these paths terminate and
then it is clear that one can make no definite statements about an individual system. With
external pumping, however, this is possible due to the ergodic property of the process.
Ergodicity allows one to replace time averages over a sample path by ensemble averages
which in turn can be calculated by probability theory. For a renewal process this is more
or less evident, and for the general case ergodicity is physically expected. This explains
that although in the statistical interpretation quantum mechanics deals with ensembles
it can make certain definite predictions for a single driven atom.

4. Applications

Macroscopic dark periods [3, 4, 6, 17]. For the Dehmelt V-system the off-diagonal
elements "ym in H,,d can be neglected. This is most easily seen by going to an interaction
picture with respect to an auxiliary Hamiltonian/Ho = 0LI 11)(1 1 + OL2 12)(2 1 which
removes the time dependence from the Q,-terms and adds an exp {±i(,Ll - "ýL2)t} to
the -yi3 -terms. This produces rapid oscillations which lead to negligible contributions.
With their neglect one obtains a Po(t) identical to that of Cohen-Tannoudji and Dalibard
[3], and their analysis applies. Due to the fact that one level is metastable. level 2 say, one
has A 2 << A 1 and this leads Po(t) to split into the sum of two parts, one rapidly decaying
roughly like exp {-Al..1t}, the other very slowly decaying, roughly like exp {-.A21}, and
with a very small fa,,tor in front. There is thus a small probability to reach this region
where the second teim prevails - i.e. very many photon detections will be needed -,
but once this region is reached one has to wait a very long time for the next photon
since its probability density is W1 (t) = -Pf(t). During this dark period, I O,.A(t)) is not
completely in the metastable state 12) but has a I 1)-component. Hence in contradiction
to the semi-classical electron-shelving picture there is a finite probability - in fact it
can be approximately 1/2 - that the next photon does not originate from the transition
metastable to ground state [6. 17].

Quantum beats. We consider a three-level V-system whose upper levels have only a
very small energy difference hhbw and no laser (f?, = 0). We consider the decay from one of
the excited states. In this case the off-diagonal terms -yi in (10) become important. Po(t)
will now contain oscillating terms which leads to a non-exponential decay, the well-known
quantum beats. Here it turns out that these beats also occur for the decays of levels 1
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and 2 separately, not only for coherent superpositions as required in some textbooks [20].

Macroscopic dark periods without metastable state [21]. Again we consider a V-system

with very small upper-level separation h6w and irradiate it with a single laser tuned to
the vicinity of the upper levels. The Rabi frequency is denoted by fQ. We now assume
in addition that the transition dipole moments are parallel. For 6w < f0 light and dark
periods are predicted. Their mean duration TL and TD can be explicitly calculated for
arbitrary laser detuning. In particular, if the transition dipole moments are equal and if
the laser is tuned to the 0 - 1 or 0 - 2 transition one finds

TL = 4 Q 2/Ai(6w)
2

TD/TL = Q-/2(6.;)2•

If the laser is tuned exactly halfway between the upper levels the surprising phenomenon
is predicted. for any 6w, that after the emission of a number of photons the atom will
stop fluorescing completely (TD --+ oo). This is related to a nonabsorption resonance in

gases [22, 23].

5. Connection with the Continuous Measurement Theory
of Davies and Srinivas

Davies and Srinivas [13] have extended the axiomatics of quantum mechanics by postu-
lates for "homogeneoss quantum counting processes'. In particular, their postulates imply
the existence of two 'superoperators' J and St which map trace class operators to trace
class operators and satisfy certain properties. For an individual system of an ensemble

described by a density matrix p their meaning is as follows. Tr(Stp) is the probability
of finding no counting event in [0, t], and the probability density w(tj,.. . , t,. A0 t]) for

finding a counting event exactly at the times tj, -,. . t., in [0, t] is given by

w(t,. .,t,; [0,t]) = Tr (s,_, .1 S,°_,_,J J -J- - J q, 1 P) (14)

For a particular system J and St have to be determined phenomenologically or by intu-
ition.

Since we have an explicit expression for Po(t) we can derive the form of the superop-
erators J and S1. Only ordinary quantum mechanics is used and no additional postulates
are required. We illustrate this for the three-level V-system, two excited states coupled
to a common grouna state, with two lasers. Let the initial atomic state be p. The cor-
responding Po(t; p), valid until the detection of the first photon, is obtained from (9) and
(10) by carrying these equations over to density matrices in an obvious way. Then, after
the detection of the k-th photon the atom is each time reset to the ground state, and the

corresponding Po(t -- t,; 10)) is obtained from (10) with I4'A) = 10). By standard argu-
ments of classical probability theory one then finds for the n-photon probability density
w(t 1,...-, tý; [0, t]){(17]

,(t.., tý;[O0, t]) = Po(t -t.; 10)) wdIt. - tn-1:10)) ... tv(t2- 1; 1)) w, (ItI;P) (I,5)
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where w, = -Po.
We now define superoperators J and St by

J p := 1O)((0 Tr{ i(He- H:,d)P } (16)

Sip := Texp{-ih-7 fjtdt' Hrd(t')} p [Texp{ih-' tdt' Hd(W')}] (17)

We note that J is time independent, by (10). Now, first of all it is apparent that Tr (St p)
coincides with Po(t;p). Inserting (16) and (17) on the right-hand side of (14) one finds
by a calculation similar to one in Ref. [171 that this agrees with (15).

Using only ordinary quantum mechanics we have in this way exhibited operators that
satisfy the requirements of the quantum counting process of Ref. [13]. There is. however, a
severe conceptual proviso. In our approach we are dealing with a coarse-grained time, and
the above seemingly continuous variables ti,- . t, in (15) are, truly speaking, discrete.
We thus arrive at the conclusion that the "continuous" measurement theory of Ref. [13]
can, at least in the case considered here, be derived from ordinary quantum mechanics if
one relaxes the "continuous" and goes over to a coarse-grained time scale.

6. Discussion

Our intuitive idea is that it should make no difference for the photon statistics whether
or not all photons are actually observed once they are sufficiently far away from the atom
and do no longer interact with it. In a cavity with reflecting walls this would evidently
not be true. Therefore we think that the results of Section 3, together with ordinary
probability theory, can also be applied to situations where only a part of the photons
are actually detected, This is substantiated by the result that for the photon statistics
it makes no difference whether or not reductions are performed at no-photon ("null")
measurements. With these reductions, however, elementary perturbations theory can be
used since At is very small, and this simplifies the analysis considerably. In this sense the
null reductions may be considered as technical tool.

No attempt has been made to give a detailed theory of the measurements, but at
each measurement and delending on its outcome a straightforward reduction of the state
vector according to the von Neumann-Liiders rule is carried out. These reductions put
an individual system each time into a particular subensemble, and this branching into
subensembles may depend on the system under consideration. In the simple case con-
sidered in Section 3 the atom is reset to the ground state after a photon detection, and
for a driven atom one then obtains a sample path of a renewal process . In general,
however, the resetting will not always be to the same state and might in fact even be
time dependent. In this way we arrive at the result that on a time scale much coarser
than At the photon emissions of an atom can be regarded as a sample path of a classical
stochastic process obtained from ordinary quantum mechanics. Ergodicity allows one to
replace time averages over a sample path by ensemble averages, and such quantities can
thus be calculated for a single radiating atom.
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It should be pointed ouL, however, that our gedanken experiment with its repeated
reductions and temporal coarse-graining and its reduced description of the atomic state is
not applicable to all questions encountered for a single radiating atom. The term 'emission'
of a photon appears to be imprecise and should be replaced by 'detection' since it is
doubtful whether it makes sense quantum mechanically to speak about emission without
an actual observation. If one is interested in spectral distributions of the emitted light
repeated observations would cause changes, as is clear from the time-energy uncertainty
relation. For such observables like the spectrum, which in a sense is complementary
to photon counting, one will need other facets of the complete wave function of atom
plus radiation field. The true wave function contains all information and gives a 'holistic'
description of all aspects of the system while some partial aspects, as the photon statistics,
may be amenable to a simplified description.

Part of this work was done while one of us (G.C.H.) was at the Institute for Advanced
Study, Princeton, New Jersey. The research was partially supported by the Monell Foun-
dation and the Deutsche Forschungsgemeinschaft.
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Electrons restricted to a plane perpendicular to a constant, homogeneous niagnet ic
field B and subject to a weak lateral superlattice potential have unusual properties.
The energy spectrum plotted versus I/ B shows a self-similar fractal structure known
as "ttofstadter's butterfly". The origin of this interesting behavior is the interplay of
two independent length scales, the period a of the two-dimensional superlattice and
the magnetic length I = (chl/eB)' /2. Mat hematical aspects of this problem have been
discussed during the last four decades. But only with modern microstr|ict uring tech-
niques it becomes possible to fabricate samples fcr which measurable conseqIueiI('e>
of these commensurability effects can be expected in an accessible range of mnagnet i-
field values and temperature. Recent experiments related to this mathematics will
be discussed.

1 Introduction

With the method of molecular-beam-epitaxy. GaAI - AlG;al_,As hfeterostructurres
(with x-,0.3) can be fabricated which contain a nearly ideal two-dimensional elect rol.

gas (2DEG), with a mobility as high as it > 10mru2 / Vs. TFhe 2DEG is defined by the.
lowest energy eigenstate in the triangular quantum well, formed by the conduction
band discontinuity at the "tterface and the self-consistent electrostatic potential in
the GaAs [1]. At low temperatures (T < 5K), the energy gap (- 20n IV) to the next
state in the well prohibits motion of the electrons in the z-direction perpendicular to
the interface, whereas the electrons move freely, with the effective mass ?r = 0.067rn
of GaAs, in the x-y-plane parallel to the interface. In a strong homogeneous magnetic
field fl = Bz the cyclotron motion of the electrons is quantized, and the single-
electron energy spectrum is purely discrete but highly degenerate. Of course, in real
systems this degeneracy is lifted by random impurity scattering, and the discrete
Landau levels (LLs) are collision-broadened. This system shows many intteresting
properties, such as the integer and the fractional quantum Hall effect [2b. and at st ill
higher B-values, eventually a magnetic-field induced Wigner crystallization.

In the following we will discuss properties of a periodically modulated 2DEG in
a perpendicular magnetic field, but we will consider a situation relevant to experi-
ments, where a lateral superlattice is imposed on the 2DEG by external electrostatic
fields, and where it is not necessary to take the Coulomb interaction explicitly into
account. A 2DEG subject to such conditions has unusual properties due to the in-
terplay of two length scales, the period a of the superlattice and the rnagi.etic length
I = (ch/eB)'/ 2 . The single-particle energy spectrum for such a situation has been

investigated theoretically by many authors [3-61. For a two-dimensional (2D) siuper-
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Figure 1: Hofstadter's butterfly [5]. The scaled-energy eigenvalue spectrun C of
Eq. (7) was calculated for V, =- lV and all rational values p/q of the flux ratio.
Eq.(I), with relative prime integers p and q satisfying I < q < p ! 60. The allowed
energy intervals (subbands) are plotted, in units of V,.- as vertical lines over the
inverse flux ratio q/p.

lattice, the energy spectrum as a function of the magnetic field f3 is deternlined by

the complicated self-similar, fractal structure, which is shown in Fig. ( I ) and know
as flofstadter's "butterfly" [5]. This result is obtained in the two comt)lenentar%.

but mathematically equivalent limits [4] of, first, a strong lattice potential and a
weak magnetic field in the tight-binding approximation [3.4,5], and of. second, a
weak periodic perturbation in a Landau quantized 2DEG [4,6]. In the second cas,.

which we will consider in the following, one finds that each Ll, splits into p subband,

if
Bn2/o =- a'/27rl"p/q = (l

i.e., if the flux Ba2 per unit cell is a rational nmultipleof the flux quantum 4,, = hc/I.

Some important results on the single-electron spectrirn for this situation will b,

recalled in sect. 2.
On the basis of this energy spectrum the flall conductivity has been predicted

to assume quantized values, integer multiples of c2 /h, if the FIermi energy falls into

a gap between such subbands [7,8]. Also the diagonal components of the conducti-
vity tensor for a 2DEG in an one-dimensional (1D) superlattice have been calculated

before, and a pronounced, strongly anisotropic dependence on the filling fraction wi-

thin a LI., was predicted [9]. Up to now, none of these theoretical predictions could

be verified experimentally, since flux ratios in a suitable range (0.1 < a'/2,l-' < 10l
could not be achieved. With the modern techniques of 1nicrost ruct uring, however.

" 1 lliIIII l ~ l
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it becomes possible to approach this situation. Lateral superlattices with periods
a - lOOnm and of different modulation strength haw been produced, and the re
suiting effects on the transport properties of the 2DEG have been reviewed recently
[10,11]. We keep the following discussion short and refer the interested reader to
these reviews. In sect. 3 we present transport experiments on samples with weak
lateral superlattice potentials, with distinctly different results for 1D and for 2D
superlattices, respectively [12-16]. In sect. 4 we sketch a transport theory based
on Kubo's formulas, which explains these differences as resulting from the subband
splitting of the Hofstadter-type spectrum. This provides the first indication for the
realization of the Hofstadter-type spectrum in these semiconductor systems. An
explicit resolution of this spectrum is, however, not yet possible and requires super-
lattices with still smaller periods.

2 Hofstadter-type energy spectrum

Since, in the experiments, the period of the superlattice (a - 300nm) is much
smaller than the electronic mean free path (Afe• > 10pm), we include the effect of
the modulation potential, which we assume to be of the simple form

V(x, Y) = V, cos(Kix) + V, cos(Ky) , (2)

with the same period a = 27r/K in the x- and the y-direction, in the single-electron
energy-spectrum. We consider the model Hamiltonian

H = I [/7+ et(,;)] + (),(3)

where -e is the charge of ar electron, A(F) = (0, xB) is the vector potential in
Landau gauge, and all tile vectors are in the x-y-plane. Classically, this is, for
VV54 - 0 a non integrable Hamiltonian sytem and leads to chaotic motion in '-ertain
energy regions [16]. The quantum treatment starts from the unmodulated (V(Fl) -
0) system which has energy eigenvalues E, = hw,(n + 1) and eigenstates ln, k') with

wavefunctions I',k,(x,y) = L,'l2 exp(ik~y)0,(x - x0), where x0 = -12k and 6, is
an oscillator function. The modulation potential V(x, y) is absunmed to be so weak,
that it does not zouple different Landau levels and can be taken into account in first
order perturbation theory. Then the relevant matrix elements of the sup, lattice
potential follow from

(nkt] exp(i. i?)lnk) = bk,.k?+,, exp[+k12 q

with Q = 1q, q = (q' + q2)'l/, and C.(Q) = exp(-!Q)L,(Q), where L,(Q) is a
Laguerre polynomial.

For a I1) modulation potential V(F) = Vcos(Kx), the Hlamiltonian (3) is, in
the Landau gauge, translation-invariant in the y-direction. Thus. .X0 = -12ky is still
a good quantum number. One obtains the energy eigenvalues

Ero) = 1;,(n + I) + £,,VI cos(K 0) (5)
2
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Figure 2: Sketch of the modulation-broadened Landau fan diagram, calculated from
Eq. (5) with V. = 0.2meel and 27r/K = 200nm. Allowed energy regions in the
Landau bands with n = 0, 1._ 9 are shown black. The flat band energies, EA for
A =1,2,3, are indicated by dashed lines.

where C. = 2,(V1K 2 ). It was checked [17] that this first-order result is, under the
conditions of the experiment [12,13], an excellent approximation for B > 0.AT, but
breaks down for B -4 0. The Laguerre polynomials in 4, lead to an oscillatory
bandwidth of the modulation-broadened Landau levels, as is illustrated in Fig. (2).
The bandwidth becomes zero, i.e., the Landau bands become flat, at the zeroes of
the Laguerre polynomials. For large n, this flat band condition can be expressed in
terms of the cyclotron radius Rn = 2v/•-n + 1 as

2Rf?= a(A-I), A = 1,2..... (6)
4

The corresponding "flat band energies" e = E,, = !mwc
2a2 (A - appear in

Fig. (2) as (dashed) parabolas. The eigenstates carry current in y-direction, (z,) =
h-'dE,"(-1 2k5 ,)/dk5 , the quantum analogue of the classical flall drift.

For the 2D modulation (2), the modulations in the x- and in the y-direction
have the same period and lead to the same factors 4n in Eq. (4). Thus, the energy
eigenvalues can be written in the form

Ea = h,(n + •) + L. ,,(7)
2

i.e., all LLs have the same internal structure, which is represented by the n-indepen-
dent c. (Here we make use of the fact that a weak modulation does not mix the
LLs. The case of arl :trary LL mixing has also been treated [18].) The factor C,(Q),
which has an oscillatory n-dependence and determines the width of the n-th Landau
level, is the same as in the corresponding ID case and illustrated in Fig. 2. The
modulation in y-direction couples Landau states with center coordinates differing by
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by integer multiples of 1PK, so that the eigenstates can be written in the form
In;o) = -' _cA(a)ln,k, + AK). Considering the magnetic translation group
[19] it can be shown that, if the commensurability condition (1) holds, the quantum

numbers a = (k, j) can be chosen as a wavevector /defined on the magnetic Brillouin
zone (MBZ) Ikl 5 rl/aq, IkJI < r/a [6,15] and a discrete number j = 1_., p that
labels the eigenstatesof an effective pxp Harhiltonian matrix h(1)(K:) with eigenvalues
c(k;j), which determine p energy subbands Ej(k) = E, + Cc(k;j) per LL. The

allowed c•(;j) plotted versus the ratio q/p of Eq.(1) yield the self-similar [20,21]
pattern shown in Fig. 1.

Contrary to the unmodulated case, the velocity operator now has nonzero intra-
LL matrix elements which are diagonal in k but not in the subband quantum number
j. It can be shown that the matrix elements of the velocity operators can be calcu-
lated from the p x p matrices [6,151

* v•,')(T) = h` L. Oh(P)(:)/ak,,, (8)

where/p = x, y, and the matrix v,! 1(kV) is independent of the modulation amplitude
V,, in p-direction and depends only on the modulation in the other direction, just
as the classical drift velocity.

3 Experiments
Typical results for the magnetoresistivity obtained by Weiss et al. [12] on samples
with a I D superlattice are shown in Fig. 3. For the simultaneous measurement of the
resistance parallel (Pl = p,,) and perpendicular (pj = P,,) to the equipotential lines,
L-shaped samples were used as sketched in the inset of Fig. 3. In addition to the
usual Shubnikov-de Haas (SdH) oscillations, which occur for B > 0.5T, pronounced
novel oscillations appear in p± and weaker oscillations with a phase shift of 180" are
seen in Pli, whereas the Hall resistance shows no sizable oscillations. Similar to the
SdH oscillations, the novel oscillations are periodic in 1/1B. The period depends.
however, on the period a of the modulation, with minima of p± and maxima of Pl1
if the cyclotron radius R, = PkF at the Fermi level EF = h2k0-/2m satisfies the
commensurability condition (6) with R. = R,.

The first theoretical explanation of these findings was based on the quantum
mechanical picture [13,22]: the group velocity (v,,) according to Eq. (5) leads a "band
conductivity" [221 a,,, which determines the novel oscillations of p,. However, this
"band conductivity" can also be obtained from a quasi-classical calculation [23]
emphasizing the importance of the guiding center drift of the cyclotron orbits in the
weak electric field of the I D superlattice.

The weaker antiphase oscillations of Pgj, which are observed in all the high-
mobility samples [12,101, can neither be explained by the quasi-classical approach
[23], nor by the quantum mechanical approach assuming ad hoc a constant relaxation
time [13]. These oscillations reflect the quantum oscillations of the electron-impurity
scattering rate [17], which is determined by the thermal average of the square of
the density of states (DOS) [1]. As an immediate consequence of the band-width
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Figure 3: Magnetoresistivity p and Hall resistance RH parallel and perpendicular to
the interference fringes (equipotential lines). The inset defines the use of the indices
I and I1 with respect to the latter. From Ref. [121.

Figure 4: Magnetoresistance in a grating (with modulation in x-direction) and a grid
potential for two periods and samples. The insets sketch the creation of the potential
(a) by in situ holographic illumination, and (b) the resulting pattern. The arrows
indicate the fiat band situation defined by Eq.(6) (the second illumination always
increases the electron density). The grid potential, created as superposition of two
gratings at right angles, suppresses the bandconductivity in high-mobility samples,
and the oscillations due to the scattering rate (with maxima at the arrow positions)
dominate. From Ref. [141

oscillations, the Landau DOS shows an B'-periodic amplitude modulation. This
results in envelope oscillations of the magnetocapacitance signal [24].

Recently, also the effects of two-dimensional superlattices on a 2DEG have been
studied. Figure 4 summarizes typical results of a series of experiments in which a
grid modulation with square-lattice symmetry was created in two steps by hologra-
phic illumination [12,13]. In a first step a split laser beam reflected from two mirrors,
as sketched in the inset of Fig. 4a, produced an interference line pattern. Thus, a
grating potential with modulation in x-direction was created and the anisotropic
resistivity components (') (Fig. 4b) and g(I d) (Fig. 4a) for the unidirectionally mo-
dulated (ID) systems were measured. The second illumination, with the sample
rotated by 90', results in a grid potential with modulation in x- and in y-direction.
As demonstrated in Fig. 4, the resistivities p., N,(d) of the bidirectionally mo-
dulated (2D) samples show oscillations which, at small magnetic fields (B < 0.6T),
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are similar to and in phase with the weak oscillations of p,, (Fig. 4a), but smaller

than and 1800 out of phase with the large-amplitude oscillations of p(') in the cor-
responding ID situation. The data shown in Fig. 4a were obtained from a sample
with mobility 1.4 • 106cm2 /Vs and electron density N, = 5.1 . 10 1 1 cM- 2 after the
second illumination, those of Fig. 4b from a sample with mobility 1.2 - 10cmr2/Vs
and N, = 3.7- 1011cn-'2 .

Figure 4 shows that a square superlattice leads to magnetoconductance oscillati-
ons with the same period in B-1 as a ID superlattice with the same lattice constant
a. This is immediately understood if the oscillations result from the bandwidth
oscillations of the modulation-broadened LLs, since the C. factors are the same for
the ID and the 2D superlattice. Phase and amplitudes of the oscillations clearly
show that the band conductivity is strongly suppressed by the 2D superlattice in
these high-mobility samples. This behavior is not expected within the quasi-classical
approach [I I]. A quantum mechanical approach, using the simplest approximations
for both modulation potential and collision broadening, explains this suppression as
a consequence of the subband splitting of the Hofstadter-type spectrum, cf. Fig. 1.

4 Collision broadening and conductivities
We (17,14,11] describe collision broadening effects by a quantum-number indepen-
dent self-energy (a cut off n < 2EF/hwo is implied)

S(1 2/ d'k (9)

with the Green's function Gno(E) = [E- E, -E- (E)]-'. In the absence of modu-
lation (V,, = Vi = 0) this reduces to the self-consistent Born approximation (SCBA)
for randomly distributed short-range scatterers [1], with F12 = *hw,. hIT and T the
corresponding life time for zero magnetic field. With the spectral function A,,(E) =

-ImG- (E) this yields for the DOS D(E) = 2Zn,(S) =m(-(E)/(7rIro)2J

where D, (E) = (2ir)- 2 •j f &k A,,,(E) is the DOS of the n-th LL and one spin
direction. For comparison of the ID (V, = 0) and the 2D (V = V4) case, Fig. 5a
shows D,(E) for 1 = 0.23T and a = 300nm, which means p = 5 and q = 1, and for
both small (F10 < V,'C,) and large collision broadening.

Our calculation of conductivities is based on Kubo's formulas [1,171, which for
the diagonal components and in the approximation consistent with Eq.(9) read [17]
0 = fdE [-f'(E)]o>,..(E), with f' the derivative of the Fermi function and

-= r d2k 1 1 I(n ;a Iv.In;a))2A'A.(E)A A (E)A , (10)
nnl' I,.?'

where a (k;j) and a' = (•;j'). For the ID case, Eqs. (10) and the corresponding
equation for the Hall conductivity have been evaluated numerically on the basis
of Eqs. (5) and (9) [171. A typical result is shown in Fig. 6. It reproduces all
the characteristic features of the experiment: the pronounced Weiss oscillations of
p,, and, with opposite phase, p,, superimposed on the SdHI oscillations, which are
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Figure 5: (a) Calculated density of states D,(E) and (b) band conductivity Aao,(E)
for one Landau level and two values of the collision broadening, r0/V,=I.0 and
0.05. Solid (dashed) curves are for a grid (grating) potential with VC,=VLJ£,=V,
(V•£,,=V,, V1=0) and p/q=5. For r 0/Vý=I.0 the internal bandstructure is not
resolved, D,(E) and Aazy(E) [here 15 x Aay(E) is plotted] are similar for grid and
grating. For Fo/V,=0.05, the resolved subband splitting dramatically reduces AaY,
for the grid. From Ref. [14]

Figure 6: Calculated resistivity in units of 10- 3 h/e 2 =25.8f2 for a 2DEG with
mean density N, =3.4- 10 1 cm-2 , collision broadening ro=0.056-/-B[TjmeV and an
one-dimensional potential modulation in x-direction with V,=0.25meV and period
a= 294nm at temperature T=4.2K. From Ref. [17]

resolved only at higher magnetic fields, whereas the Weiss oscillations extend to
much lower B-values, and no sizable oscillations of the Hall resistance.

To gain a deeper understanding of these effects [14,15] it is important to di-
stinguish two contributions to Eq. (10), a,,(E) = ao, (E) + Aaou(E), a band con-
ductivity Aat(E) arising from intra-LL contributions (n' = n) which diverges in
the absence of random scatterers and vanishes for the unmodulated syster.,, and
an inter-LL (n' j n) contribution ac (E), which arises from scattering and is the
only contribution in the unmodulated case. These contributions are further inve-
stigated to lowest order in the modulation (V1, V4, 4 <« hw,) and in the collision
broadening (war >> 1). Then, for the Hall conductivity the free electron result
ary . C'e2N./mwn is sufficient, and the resitivity components are given by the con-
ductivities according to p,,• a•/a• ', p~y :ti and p~, = Ila,,.

Since the intra-LL (n' = n) velocity matrix elements are proportional to the
modulation potential, one might calculate Aa,,(E) to lowest order in the modu-
lation using the approximation A,,(E)Ao,,(E) : [A,(E)]2 . The resulting Aa, is
independent of V, and equals exactly the result for a unidirectional modulation in



124

x-direction [15]. At flat bands the velocity matrix elements and thus Aaoo vanish.
In the interesting range of temperatures, where kBT is larger than hw, but smaller
than the energy separation A. ; mwa 2 (A - 1) of adjacent flat bands, this reduces
to the result of the quasi-classical approach, but it can not explain the suppression
of the band conduct: 'ity observed in e.peiinient.

To understand this suppression, we must take the peculiar subband splitting of
the Hofstadter-type energy spectrum seriously. From the mobility at zero magnetic
field, one can estimate [17] that, in the experiments shown in Fig. 4, the collision
broadening is indeed small enough to resolve the gross features of the Hofstadter
spectrum (if one is not near a flat band situation). If the splitting of the subbands
Ij and j' is resolved, the corresponding spectral functions in Eq. (10) do not overlap,
and thus the non-diagonal matrix elements of the velocity between these subbands
do not contribute to Ao,,(E). Then the band conductivity of the system with a 2D
superlattice is considerably smaller than that of same system with a ID superlattice,
as is visualized for a typical situation by the numerical results in Fig. 5b.

In the inter-LL contribution ac to the conductivity, one may neglect the effect
of the modulation on the velocity matrix elements [17]. Then, the modulation
affects asc (E) only via the self-energy and one gets o,,i(E) = (e 2/h)Z,,(2n +
1) [2irl 2Fo0D(E)]2, the same analytical form as for zero modulation [1]. In the
interesting temperature range, hw, < kBT < A,\, a- is then proportional to an

pg

effective scattering rate f,/h defined by

Fn, 27rIdE [27r 12 FoD.(E)]2  (11)

which oscillates as a function of n with maxima for flat bands. It is obvious from
Eq. (11) that ops, o becomes maximum if the Landau bands at the Fermi energy be-
come flat (and the peaks of the DOS become high near E = EF). In this situation
the band conductivitybecomes minimum, since the intra-LL velocity matrix elements
approach zero.

5 Summary
We have sketched a straightforward quantum transport theory which explains all
the novel magnetoresistance oscillations observed experimentally 112,15,11]. Among
these, only the large-amplitude 'band conductivity' oscillations, observed in unidi-
rectionally modulated systems when the current flows in the modulation direction,
can be understood within a quasi-classical approach 123]. The weaker antiphase
oscillations, observed when the current flows in the other direction and determined
by the 'scattering conductivity', as well as the suppression of the band conductivity
in bidirectionally modulated systems reflect properties of the peculiar, quantized
energy spectrum, which persist at elevated temperatures where the individual SdH
oscillations are not resolved. The key for the understanding is the oscillatory width
of the modulation-broadened Landau bands. If these become narrow, the density
of states and the scattering conductivity become large, whereas the group velocity
and the band conductivity become small. The experiment reflects these antiphase
oscillations at the Fermi energy.
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Our theory predicts that at very low temperatures the novel oscillations ap-
pear as amplitude modulations of the Sd~l oscillations. For a 2D grid modulation.
the magnitude of the band conductivity depends on the values of V. and F0 in
a complicated manner and may dominate the scattering conductivity or not [11].
Experimentally both situations are possible, too, as has been shown recently for a
gatea nign-mobiiity sample in which th- niodulatign streng~b (•,alt ;ý, tined ower
a wide range [151.

In summary, the existing experiments are well explained by our quantum theory,
and, in particular, the observed suppression of the band conductivity indicates a
subband splitting of the Landau levels. For a direct resolution of such a Hofstadter-
type energy spectrum, however, still smaller nanostructures are required. In the
experimental situation of Fig. 4, with a period a - 300nm, the flux ratio of Eq. (1)
is at B = 0.2T about Ba2/4p_ = 5, corresponding to q/p = 0.2 in Fig. 1. The
Fermi energy (EF - 12meV) is then in a high Landau band (n - 35). Due to the
Laguerre polynomial factors [cf. Eq. (7)], these bands are very narrow [cf. Fig. 2]
and internal structure can not be resolved. At higher magnetic fields (B - 10T),
EF is in the lowest Landau band. But then q/p is so small and the subbands in
Fig. I are so dense, that the subband structure again can not be resolved. It is not
only the temperature that prohibits to resolve these structures, but also mesoscopic
fluctuations of the electrostatic potential across the sample. For superlattices with
a - 6Onm the situation would be much better. Experimental progress in this di-
rection is expected for the near future. Thus we may hope that a fascinating area
of physics, which so far was a reserved playground for theorists, will soon become
accessible to experimental investigation.

It is a pleasure to thank Dieter Weiss for stimulating and fruitful cooperation
and Klaus v. Klitzing for continuous interest and support. I also would like to ex-
press my sincere gratitude to my theoretical coworkers Chao Zhang, Ulrich WuIlf,
and Daniela Pfannkuche for helpful discussions and valuable nume-rical contributi-
ons. The work was supported in part by the Bundesministerium ffir Forschung und
Technologie, Germany.
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Symmetries, Points, Superselection

Rudolf Haag

I1. Institut f. theoret. Phys.
U..i'.r,,;tit Hai-aburg

It was in 195i2 in Copenhagen that I was first drawn into the spell of

Wignerism. Arthur Wightman. then a fervent missionary of this creed

told me that I absolutely must read the 19339 paper by Wigner on the

irreducible, unitary representations of the inhomogeneuus Lorentz group.

Returning to my home base. Munirh, after the conference I sat down,

read it and indeed found it a revelation which dominated the direction of

my work for many years. Here was a rational approach, leading from a

few simple principles tn important physical consequences. I list a few.

1) Pure states correspond to rays rather than vectors in Hilbert space.

Therefore a symmetry in quantum physics is described by either a unitar),

or an antiunitary operator. In the case of a continuous symmetry group

we need a unitary representation up to a phase factor, a projective re-

presentation. This is equivalent to a true representation of the covering

group.

2) In the context of special relativity the geometric symmetry group is

the inhomogeneous Lorentz group, nowadays called the Poincare group.

The first task is therefore to classify the irreducible, unitary representa-

tions of its covering group.

3) This task being done one recognizes that among the resulting repre-

sent- ations there are some which correspond to the simplest physical

systems, namely to single particles. These are the representations in

which the generator of time translations, the energy, has positive spec-

trum. There are two classification parameters, the mass and the spin ( or

in the case of zero mass the helicity). To conserve the positivity of the

energy the operator corresponding to time reversal must be antiunitary.
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This 1939 paper, its results but perhaps even more its spirit, provided

the ignition spark for the developmnet of axiomatic (general )quantum

field theory in the fifties. in fact, many of the ingredients were there.

The main one yet missing was the principle of locality. Wigner addressed

this in his beautiful study of the localization properties of single partic-

le states ['17. The conclusion: no Lorentz covariant definition of the po-

sition operator of a particle is possible. Localization of a particle is a

qualitative concept, meaningful up to length scales of the order of the

Compton wave length (for zero mass particles not at all). On the other

hand we have the tremendous impact of the locality principle in classical

physics (Faraday- Maxwell- Einstein) and its transcription to quantum phy-

sics in quantum field theory. One regards a 4-dimensional space-time

continuum as the basic arena of physics and, as long as we do not go

beyond special relativity, this continuum is equipped with a known causal

and metric structure. Strict locality is implemented in the quantum theo-

ry by the requirement of commutativity between any two observables

which are attached to mutually space-like regions.

Between 1957 and 1959 I had the benefit of many personal discussions

with Wigner. I was a little disappointed by noting that he did not belie-

ve in quantum field theory. When I once mentioned this hc repiied:

"That is an understatement". Here it may be perhaps app. -riate to re-

call a few other of his remarks, unforgettable because of their unique

combination of penetrating perception with courteousness and benevolent

irony. Talking once about a collegue who had spent a few years in Ger-

many he said: "..,and when he came back he was transformed into a

German physicist". Puzzled, I asked "'What is a German physicist?" The

answer: "Well, an American physicist, if he has no ideas, he makes him-

self useful, perhaps he calculates something. A German physicist, if he

has no ideas, he just does nothing". Or once. I complained that it was a

shame that nobody had properly thought about collision theory in quan-

tum physics. Reply: "Surely somebody must have thought of this. Perhaps

it was Mott. But that was a few years before you were born".
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Coming back to the question of locality we may recall that in the

decades between 1940 and 1970 there was a strong undercurrent of dis-

satisfaction with our uncritical acceptance of Minkowski space, with

strict locality and the excessive formalism of quantum field theory. The

ideas about a fundamental length, pure S-matrix theory where space-time

enters only on the macroscopic level, are examples. We can say now

that the pendulum has swung back and that the principle of locality has

proved its worth to a much finer level of accuracy than one had an'

reason to expect. This implied a dethronization of the concept of partic-

les as the basic building blocks of the theory and the realization that

the concepts of particles and fields are not closelk related. Fields are

the vehicle to implement the principle of locality. Particles are states of

special interest, related in general in a complicated way to the basic

fields. The distinction between elementary and composite particles is not

fundamental; no sharp definition is known.

Let us come now to the third item in the title. Again it was Wigrer

who recognized first that the superposition principle could not have un-

restricted validity. In f2j it was suggested that the Hilbert space of

state vectors we usually consider decomposes into a direct sum of mu-

tually incoherent subspaces, the superselection sectors. The search for a

natural understanding of this feature was the seed for the so called

"algebraic approach to quantum field theory". The essential point here is

that the algebras generated by local observables must be regarded as

abstract algebras, not primarily as algebras of operators acting in a Hil-

bert space. The latter result by representations of the abstract algebra

and. if there are inequivalent representations then each equivalence class

gives a superselection sector. In particle ph)sics the superselection quan-

tum numbers correspond to generalized charges. The abstract point of

view leads to an understanding of the possible types of exchange sym-

metry compatible with the locality principle (the Bose-Fermi-alternative

and its generalizations, up to braid group statistics in low dimensional

models). It relates the composition and conjugation rules of the charges
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to global gauge groups. But the range of superselection rules is not ex-

hausted by this. One may, for instance, consider thermal equilibrium sta-

tes of an infinitely extended medium. Then the temperature and chemical

potentials appear as superselection parameters.

Let us turn back once more to the problem of locality. Apain I take

very seriously the question which Wigner put at the end of a talk by

me a few years ago: "There are those of us who think there are no

points, What do you think?" Somewhat later he elaborated on this by

pointing out that if we consider space-time points as basic in the theory

then we must, at least in principle, give a physical method to mark

them. If particles are not adequate foi this, what else? We should bear

this in mind, in particular in view of the challenge to quantum field

theory posed by general .-elativit).

1 Newton, T.D. and Wigner, E.P. Localized states for elementar.i su-
stems Rev. Mod. Ph~s. 21. 1O0 (1949)

2 Wick. JC. , Wightman, A.S. and Wigner. E.P. The intrinsic paritL of
elementary particles Phys, Rev. 88, 101 (1952)
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Abstract

It has been suggested that the Standard Model SU(2) x U(1) be embedded

in the supergroup SU(2/1). The successful features relate mostly to the

composition of the spectrum of leptons and quarks and to the Higgs field

assignment. The result sin 2 8 = .25 involves normalization of the algebra

by traces rather than by supertraces. We derive this result from the

"superconnection" geometry and discuss the present state of the theory.
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1.SU(2/1). The Weinberg-Sala., theory involves a large number of independent

assumptions: 6 choices of SU(2)xU(1) multiplets for leptons and quarks

[(vL,eL),eR,uR,(uL,dL),dR] and for the Higgs Goldstone scalar field 0, 5
couplings [g, sinle, -MI, A, gHj. It was suggested [1,2] in 1979 that this
apparent arbitrariness be reduced by embedding SU(2)xU(1) in the supergroup

SU(2/1). The fermion multiplets are grouped in the 3 (leptons) and 4

(quarks), the fundamental representations of SU(2/1) [3.4]; moreover, the 4
reduces into 3+1 for integer charges! The assignment for 0 is forced by the

superalgebra structure. All couplings except for -M2 are related; the eleven

independent choices are thus reduced to four. About twenty papers on

SU(2/I) were published between 1979 and 1982; two basic difficulties were

encountered: the apparent loss of the spin-statistics correlation in repre-
sentations and the fact that sin 26 = .25 involves normalization of the

algebra's p matrices bý tr(lj2 ) = N (ihile supertraces yield no result).
The answer was given in 1982 [5], in the form of a method for the gauging of

an internal supergroup, further developed in 1990 [6]. An alternative
approach was suggested in 1986 [7]. The theory has recently been
"rediscovered", causing a new flurry of excitement [8]. It has been linked

with the methods of non-commutative geometry [9] - related to the conceptual
advances we introduced in ref. [5]. We review the status of the theory in

this study.

The possibility explored in ref. [7] assumes that SU(2/l) is an acci-
dental low energy "flavour-type' symmetry (like the eigntfold way). The
emergence of SU(2/1) may just be due [10] to the fact that, to the extent
that we correlate gradin~s with chirality assignments for the lepton and

quark multiplets, and since the electric charges 0 are the same for left and
right chtrallties of the same particle, str(0) = 0. Since weak isospin IW
is confined to left-chiral states, tr(Iw) = 0 implies str(IW) = 0. Applying

the Gell-Mann I Nishijima rule, we then get str(Yw) = 0 too. Our postulate
would thus amount to the embedding of the "naturally" supertraceless

SU(2)xU(1) within the smallest supergroup with that property. We predict [7]
M(O) = 2 M(W) - 175 GeV; should the mass formula for mesons be written for

M2 instead of M, as in SU(3), we would have M2(0) = 2 12 (W), i.e. M(0) - 125

GeV. Note that SU(211) was extended so as to include SU(3)cojour; the

embedding supergroup is SU(7/1), with 4 generations of quark and leptons

[11] and vanishing anomalies [12]. Since the ZO decays limit the number of

generations to 3, the fourth would presumably involve a very heavy neutrino.
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Now to the spin-statistics problem. In a lepton or quark multiplet, if
the left- (or right-) chiral states are fermionic, are the right- (or left-)

chiral states to be considered as bosonic? This should be so within
Lagrangian field theory, as applied to the superalgebra generators in a
Noether theorem, according to the spin-statistics constraints. The answer

is that the odd generators of SU(2/1) contain the Parity operator (YO
matrix), as they relate left and right chiralities. They operate on a
direct sum (1/2,0)+(0,1/2); the odd operators are in (1/2,1/2) . Acting on

the SL( 2 ,C)L representation, for instance, they connect 1/2 to 0 (and simi-

larly in SL( 2 ,C)R ). The R state is thus a spinless boson under SL(2,C)L
and vice versa. The lesson is then to use doubled representations [4]. This
interpretation still does not tell us what are the K* -like "femionic4

vector-mesons accompanying the WT, Z, y, in the vector (j = 1) octet, though
we understand how they arise. We shall return to that point in what

follows. Note, however, that in the case of the Higgs field 0, the sta-
tistics do fit "natural" field assignments: its companions in the spin 0

meson multiplet are identifiable with the (fermionic) ghosts of the WT, Z, y
vector mesons (of course, the entire issue does not arise if we assume

SU(2/1) to merely represent a set of "accidental" algebraic constraints, as

treated in refs. [7,10]). An answer was provided in ref.[5], in which the

method of gauging an internal supergroup was developed, including the
construction of "superconnections", later independently suggested in mathe-

matics [9]. The new gauge ghosts fit into the appropriate BRST equations

[5,13,14), but the situation is not entirely clear for the lepton and quark
ghost-like states. Another open question relates to the "-m202 " term

triggering the spontaneous symmetry breakdown. In [5] it was put in "by
hand"; can it have a dynamical or geometrical derivation? A tentative
geometric answer has been suggested in the new work [8), based on the addi-

tion of a discrete piece to the exterior derivative operator; an alternative
dynamical triggering has been tried in ref.[14] but appears to yield too
small a mass for the Higgs field.

In what follows, we shall discuss the resolution of the sin28 = .25
paradox. This result is derived with a normalization of the superalgebra's p

matrices by the traces, as in SU(3), whereas the Killing metric of SU(2/1)

would have involved nor malization by str (PA P A) = N, which in this case

would have yielded no result; similarly, the (gauge) geometric Lagrangian

with the XV' coupling Involves the compact metric ot SU(3), rather than that

of SU(2/1) with its unwanted minus sign.
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2. The Supergroup. G is a supergroup gauged internally, r its Lie
superalgebra r = r+ + r-, r+ the even and r- the odd generators, with the
Lie superbrackets [ra,r6] = ifsC r!, [ra,ri] ifaiJ r3 , Ir¶,rj3  = dl)a ra,
with &,a6 c r+ and rc, € r-. Selecting a section over the superbundle, x is
the (spacetime) horizontal coordinate, y the (internal) vertical. We
construct the Grassmann algebra A(x,y) over both, with A = A+ + A-, the even
and odd pieces (AG,A,..)c A+, (AI,A ,..)a A- ; for forms in x, An: n S 4,
whereas n s N, N a dim A'(y) for forms in y. Notice that the y coordinate
itself is commutative, like x; to supply an anticonviiuting parameter for
r, we simply use odd order forms, e.g. rj.fim(xy) dym ý rI.F. The anti-
commutativity property of the parameter F1 derives from its being a one-form
in the y variable. The carets ^ over the indices indicate the presence of a
superalgebra, i.e. the caret over the 1 index contains the information about
the anticommutation property, which is not yet present in the function
fi(x,y). Here the i index stands for the same subalgebraic quantum numbers,
but taken within the related (even) Lie algebra within the "Hermitian Lie
algebra" [15,16]. Such a Hermitian Lie algebra occurs when the same basic
set of generators can close either as a Lie algeora, or by selecting a
5ubalgebra r+ and imposing a Z(2) grading and driticofrlnutation rules for
F- = rir/ , they close on a superalgebra. For our application, we use
U(3) - U(2/1). For the i-i transition, the transformation relates only to
the change in the generalized Lie bracket with j-j, from 11j} to ji,jJ; for
the a-a transition, the change is only in the decomposition over the (P8 ,P0 )
versus (A8,XO) vectors In the (8,0) plane, since str(p8) = 0, but tr(A8 ) = 0.
In ref. [5], F1'= f0- dxP was used explicitly, the forms being taken over
A(x), i.e. only over space time. As a result, gauging involved higher ten-
sors as gauge fields (such as the Kalb-Ramond Biv). However, we shall now
show that the identification of the Higgs field used A(y), an important
point in the understanding of the emergence of the U(3) metric.

3. Connections and gauge, ghost and Higgs fields. Connections C over a
Principal Fibre Bundle (. a Yang-Mills gauge theory) enter D = A + C and
when acting on the forms over that bundle (coordinates x,y) increase their
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degree by one, with D = Dt + D- (vertical and horizontal - projecting over a

selected section) A = d + s with d the horizontal exterior derivative
d = dxlJ alaxlh and s the vertical exterior derivative s = dym 3/8ym. In the

geometric interpretation [17-19] s is the BRST operator, C = A + X where A

is the horizontal one-form A . Aa 1a dxP, with Aa,(x,y) the Yang-Mills
field for the algebra Aa. Here X = Xa(x,Y) Aa and Xa . Xam dym is the ghost

field. Note that physics texts write Aa1P(x) and xa(x), making no mention of
the y dependence, but this is just the selection of a gauge, since the usual

local gauge transformation will induce such a dependence. Note that this
geometric interpretation of s and Xa(x,y) and the identification of the
anticommutative property of ghost fields (originally derived from the
Feynman diagram analysis) with the characteristic feature of odd degree

forms was resisted for a number of years but is now accepted by the scien-
tific concensus [20). Note that there is no nilpotence problem [21] because
we are working in quantum field theory, A and X are fields, i.e. distribu-
tions and their products in the Lagrangian, etc are taken at different

points x.

Changing now to a supergroup, but staying still with the Yang-Mills
picture in which y (and not yet A) spans the fibre, we can immediately iden-
tify the Higgs field. The connection C is still an anticommutative one-form

and so are A and X. However, A = AaV Pa 4xV + A1V p, dxvx and
X = Xam Pa dym + X1mp, dgym. We have underlined in-each term the factors
inducing fermion behaviour, whether it is the odd degree of the form or the
odd part in the superalgebra. We note that whereas xa = xam gy is indeed a
fermionic scalar ghost field, X1 = X-IM dym has boson statistics (the fermi
feature in x is supplied here by the p!). This is how SU(2/1) occured to
Ne'eman [1] (Fairlle arrived at the supergroup from dimensional reduction
arguments). Here the Higgs is a one-form valued in the odd part of the
superalgebra. We now change to the "superconnection" geometry of refs.

[5,6]. The fibre is no more spanned by y, it is spanned by A(y). The para-
meters Fa(x,y) c A+(x,y) and F1 (x,y) E A-(x,y). The gauge field has the

quantum numbers of the parameters it gauges (this is the essence of the

Yang-Mills idea) and a degree higher by one, in the variable of the relevant

parallel-transport (covarlant derivative) it spans. For Fa(x,y) nothing has
changed if it is taken from AO(x,y); should it, however, involve a higher
even degree, such as A2 (x,y), the relevant piece of the connection is the

gauge totally antlsymmetrlc tensor Ca Vo of [5].
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Now take the action of the odd generator rl, the F! e A1 (x,y) parame-
ters, one-forms in dym. For the vertical projection ("the ghost") of the
connection Hi(x,y) = X~n dyn = h mn(x,y) ym -.-gyn. H1 (our former Xi) is

now an even-order form in -•y. In ref. [5]. using a symmetric
(Curci-Ferrari) BRST with A(x,yj), • the complex conjugate of y, we found a

two-form 1i = himn(x,y,) dym ^ d . The forms dy have ghost number 1,

those in dj have -1. Thus the 41 has ghost number 0 and appears accor-
dingly in the horizontal (and thus non-vanishing) part of the "generalized"
curvature of the superconnection, i.e. in the relevant BRST equations (14].
The transition from the Principal Fibre Bundle (Yang-Mills) [221 geometry

for an internal supergauge to that of the Superconnection [5,r] thus puts
the 0' field in the even part of the Grassmann algebra and with the relevant
U(3) index instead of U(2/1). As a matter of fact, we can generalize the
result and directly identify Oi with a zero-form [6]. The supercurvature

involve, (daij 41 iJ), which is then squared, yielding the A 04 term. Since
the geometry of the superconnection makes the transition from U(2/1) to U(3)

for the entire algebra (the "super" feature having been relegated to the dy
parameter field), we get the sin~e = .25. However, U(3) is not simple, and

we should still check whether or not this coupling is preserved in the
renormalization procedure.
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Abstract: W-algebras are defined as polynomial extensions of the Virasoro algebra by
primary fields, and their occurrence in the context of Kac-Moody (KM) algebras and inte-
grable systems is recalled. It is shown that their occurrence in 2-dimensional Toda theories
is explained by the fact that the Toda theories can be regarded as Wess-Zumino-Novikov-
WiLia (,VZNW) theories which are reduced by a set of first-class conformal-invariant
constraints. The general form of such constraints, which leads to other 2-dimensional
integrable systems with W-algebras as symmetry algebras, is sketched.

1 Introduction.

In recent years two-dimensional conformally-invariant field theories have attracted

an enormous amount of attention. This is due to the fact they they span a number

of hitherto unrelated physical and mathematical disciplines such as statistical me-

chanics, string theory and the theories of integrable systems, Riemann surfaces and

Hamiltonian reductions. All these properties are based on the fact that the two-

dimensional conformal group is much less trivial than its higher-dimensional coun-

terparts, consisting of all analytic transformations x+ -* f(x+ ) and x --- g(z ),

where x± £ x ]= t (or x ± it in the Euclidean case), where x, t are the conventional

space-time coordinates. Correspondingly, its Lie algebra is the direct sum of two

Virasoro algebras [1} of the form

{L(y), L(y')} -z 95 L(y)b(y -- y') + L(y)ayb(y -- y') i c(ay) 3 6(y - Y'), (1.1)
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where y = x±, the bracket is either Poisson or commutator and c is a constant that
characterizes the one-parameter central extension. The physical meaning of the
generators L(y) = L(x±) is that they are the components T++(z+) and T__(z_)
of the energy -momentum tensor T,, (which are chiral because of translational
invariance and the vanishing of the trace, T+_(z,t) = 0). Thus the generators of
the Virasoro algebra carry all of the physical information contained in the energy

momentum tensor.

The continuous unitary irreducible representations of the 2-dimensional con-
formal group can be classified using essentially the same methods as were used by
Wigner for the 4-dimensional Poincare group in 1939, and can be realized in terms
of local tensor fields. These fields, called primary fields, transform according to

O(X +, X _ ) - ( )- - •*) (f(x+ ), _), (1.2)

and similiarly for z_, where the indices s± are called the conformal weights. The
infinitesimal form of (1.2) is easily seen to be

{L(zr), ¢(y',j)} -- %Ose(yj)5(y - y') + (1 - s)¢(yj)O5(y - y') (1.3)

where L(y) are the Virasoro generators and y = x± and ý = x:=.

In 1984 Zamolodchikov [2] considered the possibility that given a Virasoro
algebra with generators L(z) and a finite set of primary fields qk(z) the Poisson
brackets or commutators of the primary fields with themselves might close to yield
a polynomial in the Virasoro operator, the primary fields and their derivatives. If
the the space-time coordinates are assigned a conformal weight (-1), in which case
the delta-functions would have unit conformal weight, then the polynomial has to

be homogeneous and the brackets would be of the general form

{f.,(y)t(y')} = Z(09)Q€ (•)(O q~(z)(8•)c .... - y), (1.4)

wherea+b+c+±...+u+v.+w+... -n+l =s+t. Such algebras arecalledW-
algebras and since their first proposal have been realized in a number of different

situations.

The most straightforward realization of W-algebras is in the context of KM
algebras, which [1] are current-algebras of the form

{Ja(y), Jb(y)} = ,ab .J,(Y))(y - y') + ,gbo•9(y - y'), (1.5)
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where the f,*b and the gab are the structure constants and Cartan metric of a semi-
simple Lie algebra G and r is a constant. For these a (Poisson-bracket) W-algebra
is generated by the Sugawara-Virasoro operator

L(y) = gbJ(y)Jt(y), (1.6)

(suitably normal-ordered in the quantum case) and the set of primary fields

W.(y) = dabc...J(y)J (y)JC(y)... where C, = do.bC...XaXbXc... (1.8)

are the Casimir operators of order s for the generators Xa of a simple Lie group G.
This was first shown by Zamolodchikov himself [21 for the SU(3) case. (Whether
the Poisson brackets can be generalized to commutator brackets for all represen-

tations is not yet clear [3]).

Shortly afterwards it was found that a set of Poisson-bracket algebras already
considered by the mathemations in connection with KdV hierarchies [4] were W-
algebras. In a further development it was found that W-algebras were realized in
a variety of Lax-pair systems [5] and in particular in Toda systems [6]. It is the
Toda realization (and its generalizations) that I wish to consider in the present

talk.

The main point is that this and other aspects of Toda theory (such as their
integrability) can be very easily understood by the observation [7] that Toda theory
is nothing but a Wess-Zumino-Novokov-Witten (WZNW) theory which is reduced
by a set of first-class linear constraints. Using these constraints the general solution
of the Toda field equations is easily deduced from the (trivial) general WZNW
solution and the W-algebras emerge as the canonical symmetry algebras of the
Toda system. They are also seen to be the algebras of gauge-invariant polynomials
of the constrained KM currents and to be the Dirac star-algebras of the second-
class constraints produced by gauge-fixing.

2 Standard Two-Dimensional Conformal Field Theories.

For scalar fields the general two dimensional conformal action is [8] of the form

I(Ok) = Zf d2z{C,)((00,8k) + g'eK k. (2.1)

where C, K and g are constants i.e. it has exponential-type potentials. The special
case in which there is only one field is the well-known Liouville theory which occurrs
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in a variety of situations. In particular it is just the action for the two-dimensional

gravity theory induced by renormalization in standard string theory, expressed in
the conformal gauge [9]. The Liouville theory is integrable but for more than one

scalar field the system (2.1) is in general not integrable. On the other hand it is

well-known that for any number of fields it becomes integrable if the g's are unity

and C and K are the Coxeter and Killing matrices of any simple Lie algebra of

rank I with fundamental roots a, i.e.

g -1, Ck - 4(a, ,ak) and K,k -2(a,, a (2.2)

Equations (2.1) and (2.2) define the Toda theories [10. It is not clear at this
level why the association of couplings in (2.1) with the C-K matrices of a simple

Lie group makes the system integrable, but this is one of the questions which is

clarified by the WZNW reduction.

The natural generalization of the above examples to non-abelian groups is the

WZNW action [1], for which the fields g(x) take their values in a simple Lie group

G and the action takes the form

I(g) = r, d2 xtr(J±(-)J.-(.)) + 2r.f d3 tr(Jr(x)J.(X)Jt(X))' (2.3)

where

w ee +(x = (x)O,+g-'(x) and J (x) - (& _g-'(X))g(a). (2.4)

Here the 3-dimensional integral is topological in the sense that its vartation is

a pure divergence and thus reduces to an integral over its boundary, which is

assumed to be the 2-dimensional space under consideration. The insertion of this

term has the consequence that the field equations take the simple form

,9-J+(x) =0 and a+J.(x) = 0, (2.5)

which simply state that the currents J(x) are chiral i.e. are functions of X± only.

The WZNW action (2.3) is invariant with respect to the global transformations

g(x) - g(x+)g(z) and g(x)-- g(x)g(x-., (2.6)

and the Noether currents for these transformations are just the chiral currents

J±(x±). As a result each of these currents satisfies a KM algebra of the form (1.5)

and commutes with the other one. Thus the WZNW theories provide a natural

Lagrangian realization of the KM algebras.

I
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Since the WZNW theory is conformally-invariant the trace T+-(z,t) of the
WZNW energy-momentum tensor is zero and the remaining two components are
the Virasoro operators. These are actually quadratic in the currents and take the

form

L(y) = K)tr(J(y))2, where L(y) =T++(x+) or T__(z.), (2.7)

and 2K = 2 r and (2r + g) where g is the Coxeter number of G in tne classical

and quantum cases respectively.

3 Conformal Reduction.

In this section we wish to show that the WZNW theories can be reduced to the
Toda theories by means of first class constraints. The form of the first-class con-
straints can be expressed very simply at the KM level as follows: Let the KM
currents J(y) of (1.5) be those in the Cartan basis i.e. {Jc,(y), J,(y), J,(y)} in
conventional notation. Then the reduction is simply to let

J- 1,(y) = I and J_,(y) = 0, (3.1)

according as the roots are fundamental or not fundamental. This reduction is first
class since from (1.5) the commutation relations of any two negative components
has no central term and no fundamental root. Of course, this reduction is only pos-
sible for those Lie algebras which are the real linear spans of the Cartan generators,
the so-called split Lie algebras. These Lie algebras are highly non-compact and for
each series of Lie algebras there is just one. For example, for the A and D series
of Lie algebras they are the Lie algebras of SL(N, R) and SO(N, N) respectively

To obtain an intuitive feeling for the meaning of the reduction (3.1) it is useful
to consider the SL(N, R) case, for which the reduced current takes the form

(111(Y) j12(Y) i13(Y)..............j.i(Yi)

I j22(Y) J23(y) ........... j2,(Y)|
1 j33(Y) ........... 3•3 (Y)

jcon sr. (Z) = 0 0 1 ........... i4n(Y) (3.2)0 0 1 ............ is,,(Y)

0 0 0 1 i~n(Y)

Although the first-class nature of the reductiun (3.1) is obvious the conformal
invariance is not, since KM currents have conformal spins (±1) and hence to put
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some of them equal to constants breaks the conformal invariance generated by the

WZNW Virasoro algebra (2.9). So how is the conformal invariance preserved? The

answer is that the Virasoro generators can be modified so that the components of

the currents which are set equal to constants become scalars. The modification is

L(y) - A(y) = L(y) + iH(y), where H(y) = (H, J(x)), (3.3)

and H is the (unique) element of the Cartan subalgebra for which all the funda-

mental roots have weight unity, JH, E') = E'. It is easy to verify from the KM

algebra that with respect to the conformal group generated by A(y) the conformal

spins of the KM current-components become (I + h) where the h are their weights

with respect to H. Thus in particular the components corresponding to the nega-

tive fundamental roots E` become scalars. Setting them equal to constants then

preserves the conformal invariance.

Of course, since there are two chiral sectors a similiar procedure must be carried

out for each one. So far the procedures have been chosen to be dual in the sense

that for the respective chiral sectors it is the J±,(y) that are are constrained, and

L(y) - L(y) ± a9H(y) that are the modifications.

The physical meaning of the field H(y) is two-fold. First, in Toda theories

(and their generalizations) the field H(x_ ) + H(x+) can be interpreted as a 2-

dimensional gravitational connection [11]. Second the modified Virasoro generators

A(z-j) turn out to be the components of the improved energy momentum tensor

in the reduced theory.

4 Reduction of the WZNW Action.

For any set of first-class constraints there is a standard strategy for obtaining

the reduced action. This is to gauge the original action with respect to the group

generated by the constraints, omitting kinetic terms for the gauge fields which

then appear as Lagrange-multipliers, and then to eliminate the gauge-fields means

of their Euler-Lagrange equations (or by functional integration in the quantum

case).

Applying this general strategy to our case we see that the gauge groups for

our constraints are the KM transformations generated by the current components

J:•(z±)) and hence the gauge fields are simply

A+(x+) = a-,(z+)E' and A_(x_) = a,,(z-)E- , (4.1)
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respectively. Accordingly, the gauged WZNW action is

Iwz(g) + J d2xtr{A+(J - M_ ) + A-(J - M+) + A+gA-g-1}, (4.2)

and the Euler-Lagrange field equations for the Lagrange-multiplier fields A± are

A' = (E",g(J - M+)g-1) and A-' = (E-',g-(J - M_)g). (4.3)

If one re-inserts these values of A± in (4.2) and makes the (Gauss) decomposition

g = ec'(z t)E'eO,(z't)H'e'- (z't)E-0  (4.4)

of g one finds that the fields c±(x, t) drop out and (4.2) reduces to exactly the Toda

action (2.3) for the fields ,k(x, t). This derivation of the Toda theory explains why

that theory is associated with the C-K matrices of a semi-simple Lie group. It also

explains the integrability of the Toda theory. Indeed the general solution of the

Toda field equations can be obtained directly from the well-known general solution

g(x, t) = g+(x+)g_ (x-) of the WZNW field equations ý71.

5 W-algebras and their Interpretation.

A KM algebra such as (1.5) may be thought of as a defining a closed symplectic

form and hence a phase space for the current components ja(y) . (a, J(y)). In

such a phase space the canonical transformations generated by functionals F(J)

of the currents would be then of the form

6JW(y) = {F, J0 (y)} J dY/ 6F J5 (Y'), J } ( 5.1)S{ b5,j 
6  

(y} ( .1

Let us now consider those functionals which preserve the constrained form of

the current i.e. such that

(E',6Ja (y)) 0, (5.2)

for the chiral sector with positive a (and similiarly for the other sector). This

property is evidently preserved under the Poisson bracket operation and hence the

set of all such functionals, which will be denoted by W(J), forms a closed algebra

(the little algebra of the constrained currents within the canonical algebra) with

respect to Poisson brackets. It will be seen below that for the constraints of section

3 it is a W-algebra in the sense of Zamolodchikov.

Because the W-algebras as just defined are chiral they preserve the WZNW field

equations (2.7) and since by definition they respect the constraints on the currents
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it follows that they preserve also the Toda equations. Thus the W-algebras emerge
as symmetry algebras of the Toda system and their Noether charges are conserved
by the Toda field equations. Furthermore, it turns out that there are as many
independent generators of the W-algebras as there are independent components of
the Toda fields, so in a certain sense they give a complete description of the Toda

system.

A second interpretation of the W-algebras can be obtained if one recalls that
the constrained components of the KM currents generate a gauge group. Then
the fact that the the generators W of the W-algebras commute (weakly) with
the constraints means that the W are gauge-invariant functions of the currents.
(And, conversely, every gauge invariant functional of the currents qualifies as a
W). Hence an alternative definition of the W-algebras is as the algebras of gauge-
invariant functions of the constrained currents.

Although for general reductions the bases for such algebras would not be a set
of polynomial functions, the present reduction is such that they are polynomials
and thus the W-algebra is a polynomial algebi as specified by Zamolodchikov. To
see this one first notes that the gauge transformations of the currents are of the

form

J(y) -- JP(y) = ea°(Y)8°(J(y) + aY)e-a.(y)O', where J(y) = j(11) + M, (5.3)

the j(y) are zero on the negative root sector and (M- )rs =,3+1. With respect to
the grading operator H the current components are non-negative and the parame-
ters are strictly positive and the crucial point is that there exist a set of gauges (the
so-called Drinfeld-Sokolov (DS) gauges [121) in which the current has no zero grade
components and only one component for each positive grade. Furthermore these
gauge-fixings are complete, so the current-components in these gauges constitute
a complete set of gauge-invariant functions. Their polynomiality then follows from
the fact that according to (5.3) the J 9 (y) are polynomials in the parameters a(y)
and their derivatives, and according to (5.3), using J9(y) = JDS(y) ai.d iterat-
ing in the grades, that the parameters themselves are polynomials in the original
currents and their derivatives. The explicit details are given in [6].

A final interpretation of the W-algebras may be obtained by noting that total
set of constraints consisting of the original first-class constraints and the DS gauge-
fixing form a second-class system of constraints in the sense of Dirac. But since the
ordinary and Dirac star-brakets for the functionals W(J) coincide (because they

- , • l i III l
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respect the first-class constraints) and because theW(J)'s reduce to the current

components in the DS gauges we have

{W(J(y)),W(J(y'))} = {W4(J(y)),W(J(y'))}" = {jDS(y),jDS(y,)}.. (5.4)

Thus we obtain a final interpretation of the W-algebras as the Dirac star-algebras

of the gauge-fixed currents.

6 General Structure of Reduction and Generalizations.

More recent work 1131 [141 151 concerns the analysis of the WZNW-. Toda re-
duction with a view to simplifying and generalizing it. As the general structure is

actually quite simple (in some respects simpler than the specific Toda example) I

should like to conclude by sketching this structure. The general idea is to impose

hinear constraints of the form

J(y) = j(y) + Al, where (-,j(Y)) 0, for -yeF, (6.1)

on a a KM algebra (1.5), where F is a subalgebra of the Lie algebra G, and Al is

a constant element of the Lie algebra whi,-h is not zero and not in F.

The conditions that the contraints described by (6.1) be first-class are two-fold,

namely,

(a, 3) - 0 and w(a, 0) = (A,1, I7, ,) 0, a,3(,F. (6.2)

and follow from the fact that the KM centre K and the constant component Al of

the current are not zero, respectively. The anti-symmetric form w will be recognized

as the Kostant-Kirilov (KK) form for A/ evaluated at the origin. It plays a central

role and can be used to simplify the definition of the DS gauges as follows: The

extension of w to the whole Lie algebra C vanishes ,n the kernel K of the operator
Al, but on any subspace of G complementary to K it is non-degenerate. Hence

if we assume that 1" does not intersect K we can choose a complementary space

which contains F' and an wo-dual space N. The D)S gauges are then simply the

gauges in which (Oj(y)) 0 for all &N,-.

The condition that the constraints (6.1) be coriformallv-invarzant is that there

should exist some grading element IH in the l.i algebra G such that

i/'I-Y, ' V. (l1,-) t) and IIJ, II .AL (6.3)
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The first condition in (6.3) implies that H should be a grading operator for r
as well as G. The most important condition is the third one which gives a spe-
cific relation between H and M. In particular it implies that the generator M is

nilpotent.

Using the constraints (6.1) satisfying the first-class and conformal invariant
conditions (6.2) and (6.3) one obtains a conformal invariant reduction of the KM
system and hence (using the dual conditions for the opposite chiral sector) of any
concomitant field theory, such as the WZNW theory. The reduced theory will have

symmetry algebras corresponding to the W-algebras of the Toda theory, and, as
before, these will be the algebras of gauge-invariant functions of the constrained
currents, or, equivalently, the Dirac star-algebras of gauge-fixed currents. The only
difference will be that, in general, the gauge-invariant functions will not be poly-
nomials in the constrained KM currents and their derivatives.

A fairly general sufficient condition for the algebras to be polynomial can be
found and can be expressed quite simply in terms of the form w and, using this
condition, a class of WZNW reductions which generalize the Toda reduction can
be constructed. The condition is that if {-,, 0,} is an H-graded basis for the com-

plementary space spanned by {f9, F} such that

(0, 0o) = b,', (6.4)

then the corresponding W-algebra will be polynomial if

,j9  C F for h(-,) > h(0,), (6.5)

where h are the H-grades. This condition is automatically satisfied for the Toda
reduction. But it can be satisfied in a variety of other cases and in these cases
provides new conformal reductions of the WZNW theories to integrable systems

with polynomial W-algebras. For example it provides a generalization of the Toda
system to one which consists of WZNW fields interacting in a nearest-neighbour

fashion. More precisely it provides an action of the form

I(gp) Jp(gp) fJ 2 rtr(g• AlpI 1gp I Alp 1,P), (6.6)

where the gp are WZNW fields belonging to diagonal blocks in the original WZNW

algebra and the l1,,_ I and M,, .,p are constant matrices that connect neigh-
bouring blocks. This system reduces to the original Toda one when the blocks are

1-dimensi,,nal. It also produces the systems discussed recently in 1131 and I141.
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The Wave Equation on Symmetric Spaces

SIGURDUR HELGASON*

1. Introduction. Hadamard's Problem.

To begin with let us consider the wave equation in Euclidean space,

au 2  Ou 2  0 2 u5jt1 = j- a + " + 5-r- 2 ' U(x ,O) = O, ut( .rO) = f (X)

for which one has the classical solution formula of Poisson and Tedone (cf. [7])

1 6'* 2 /t

(1.1) u(x t) - n - t (AI1f)(x)r(t2 
- r 2 )("-3)/2 dr"

0

where (Mr f)(x) denotes the spherical mean value

1 I f(y)dw(y)

with A(r) denoting the area of the sphere S,(x) of radius r. Denoting by Br(x) the
corresponding open ball formula (1.1) implies

(1.2) u(x,t) is determined by fIB,(x),

the vertical bar denoting restriction. If n is odd the right hand side of (1.1) can be

differentiated out and we obtain for certain constants a,,

(n-3))12 k+dk

(1.3) u(rX. t) = Z Okt -t-k(If)(x)"

k=0

This implies that for each c > 0

(1.4) ,(x, t) is determined by fI(Bt+,(x) - Bt-,(x )).

In other words, isx. t) is determined by the initial data in an arbitrarily thin shell
around Sg(x).

This is an instance of the well known Huygens' principle which for general Rie-
mannian manifolds can be formulated as follows. Let X be a Riemannian manifold

Supported by NSF IMS 905665 and SERC (GR/(;O1929).
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with distance function d and let Lx denote the Laplace-Beltrami operator. Consider
the equation with initial data

a2 1
(1.5) = (Lx + c)u, u(x,0) = 0, it,(x,0) = f(x),

c being some constant. Hluygens 'principle is said to hold for (1.5) if property (1.4) holds

for each e > 0. Hadamard proved that if dimX is even, Huygens' principle does not

hold; he posed the problem of finding all X such that Huygens' principle holds for (1.5).

In spite of important work on this problem, particularly by Hadamard, Stellmacher.

Giinther, Asgeirsson and others, the problem cannot be said to be satisfactorily solved

and it appears doubtful that there are simple geometric conditions which are both

necessary and sufficient. For a quick orientation and a deep study of the problem see

Giinther [5c] and [5b), respectively.

2. The Case of a Symmetric Space. The Fourier Transform and the Radon
Transform.

In the group-theoretic spirit of this conference we shall now investigate Hadamard's

problem in the case of a symmetric space X = G/K where G is a connected semisimple

Lie group with finite center and K a maximal compact subgroup. The tools we employ

are a certain Fourier transform and a Radon transform on X. To describe these consider

the Iwasawa decomposition of G and its Lie algebra g,

(2.1) G=NAK, g=n+a+a+

where N and A are nilpotent and abelian, respectively. The Haar measure dg on G

decomposes accordingly. dg = e2P(o°a)dn da dk where p E a*, the dual space of a. By

a horocycle in X is meant an orbit of a point in X under a subgroup of G of the form

gNg-'. If M denotes the centralizer of A in K and o = {K}, ) = N • o then each

horocyle ý has the form

(2.2) = ka.

where kM E K/M and a E A are unique. Thus we have the identification

(2.3) K/M x A ;- -,

where H denotes the space of all horocycles. The coset kM is called the normal to the

horocyle ý in (2.2) and a is called its composite distance from the (.rigin o. If I I is the

norm on a corresponding to the Killing form metric and d the distance function on X

then d(o, ) = Ilog al. Given x E X and b E B = KIM there exists a unique horocycle

ý(x,b) through x with normal b. If b = kM we determine A(x,b) E a by

(2.4) ý(x, kM) kexp A(x, kM) .- ý.

These notions are easily visualized in the case of the hyperbolic plane H2 ; in the unit

disk model the horocycles are the circles tangential to the unit circle.
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Definition. Given a function f on X its Fourier transform ](A,b) is defined by

(2.5) f(A, b) = ff(W)e(-'A+P)(A(r'b))dx, A E a*, b E B,

X

and its Radon transform f(f) by

(2.6) f(= Jf(x)dr(x) E E.

Here dx is the G-invariant volume element on X and din(x) is the induced measure on

These definitions are motivated by analogies with Rn, the horocycles corresponding
to hyperplanes. In fact, if F is a function on Rn we can write its Fourier transform as

(?.7) F'(Aw") = J F(x)e-'A(zw,)dx A E R, w• =1

Rý

and then (x,w) is the distance from 0 to the plane through x with normal w.
While one has inversion- and Plancherel type formulas for the transforms (2.5),

(2.6), (cf. [6a], [6b]), results about their ranges are more useful for applications to

differential equations.

Definition. A C' function 0' on a* x B is said to be of uniform exponential type if
(i) A - i,(A. b) extends to a holornorphic function on the complex space a* = a* +ia*;
(ii) There exists an R > 0 such that for each N > 0

(2.8) sup (1 + IAI)Ne-RIlm Al1,(A'b)I < 0.
(A,b)Ea: x B

Theorem 2.1. The Fourier transform f - I is a bijection of C"(X) onto the space
of functions ¢, of uniform exponential type satisfying the functional equations

I t',(sA, b)e(as"A+P)(A(z'b) )db - ,( , b)e( A +p)(.(z.b))db

BB

for each s in the Weyl group W = W(g, a).

The proof ([6d1) gives at the same time a description of the range of C'(X) under
the Radon transform; this is because of the connection

(2.9) j(A, kMf) =I j(ka. 'o)-A+P)(10°aQ)da.

A

The following corollary is however more suitable for the applications.
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Corollary 2.2. Let R > 0. Suppose f E C'(X) satisfies

f(•)=0 for d(o,0 > R.

Then
(X) = 0 for d(o, x) > R.

These results imply the following solvability result for an arbitrary G -invariant
differential operator D 4 0 on X : DC'(X) = C'(X); in other words, the equation
Du = f is always globally solvable.

For applications to the wave equation we need to extend these results to distribu-
tions T of compact support, that is, elements of C'(X). The definition of the Fourier

transform T(A, b) is obvious: just replace f(x)dx in (2.5) by dT(x). The characterization
in Theorem 2.1 extends to a similar description of E'(X)~ : the condition (2.8) is then
just required to hold for one R > 0 and one N < 0 (cf. [6d], proof of Theorem 8.5 or
[21). This done, defining the polynomial PD(A) by

Dze()X+p)(A(xIb)) = PD(A)e(tAS+p)(A(r.b))'

one proves that for T E O'(X) the equation DS T has a solution S e P'(X) if and
only if T(A, b)/PD(A) is holomorphic on a,.

For a definition of the Radon transform T formula (2.6) is unsuitable since the
restriction of a distribution to a submanifold is not defined. Thus we proceed indirectly:
Given a function 6 on the horocycle space E we define the point function o on X by

(2.10) (W) = Jo()d ),

the average of o over the set of horocycles ý passing through x. The transform 0 -- P is
geometrically dual to f -- f but in addition these transforms are adjoint as operators,
in fact (cf. [6c])

(2.11) J f(x)ý(x)dx- = (ý)o(f)d
x-

where dý is a G-invariant measure on E. This relation suggests defining T by

(2.12) T(O) = T(ý), 0 E Co(-),

Corollary 2.2 now extends as follows (Q6g], p. 119, or [6h]) where we put

3R E E: d(o,ý) < R).
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Theorem 2.3. Let T E 9'(X) and suppose
supp(T) C JR.

Then
supp(T) C BR(o).

Here supp denotes support. We shall also need the inversion formula alluded to
earlier.

Theorem 2.4. There exists a specific pseudodifferential operator A on E such that

(2.13) f = (A)v for f E Cl'ý(X).

Moreover, A is a differential operator exactly when G has all its Cartan subgroups
conjugate.

For the Radon transform on R' (with integration over hyperplanes) one has a
formula like (2.13); then A is a differential operator if and only if n is odd.

3. Huygens' Principle for X = G/K.

Using tools from §2 one can prove the following result about Huygens' principle.

Theorem 3.1. Suppose G has all its Cartan subgroups conjugate and that dimrX is
odd. Then the modified wave equation on X,

(3.1)02u

(3.1) o5--F2 = (Lx + Jp(2 )u u(.r,O) = 0, ut(x,O) = f(x)

satisfies Huygens' principle.

Remarks. The irreducible symmetric spaces X satisfying the conditions of the theorem
are the following:

(i) X = GIK with G simple, complex of odd dimension.
(ii) X = H 2n+,' the (2n + 1)-dimensional hyperbolic space. Here G

SO(2n + 1, 1).
(iii) X = SU*(4n)/Sp(2n).

For cases (i) the result is given in[6el,[6fl. For(ii) an explicit solution formula can
be obtained in various ways([6a], [9a], 18), 16f1) implying in particular the validity of
Huygens' principle. More explicitly, the space H" = SOo(n, 1)/SO(n) has curvature
-1 in the matric g = B/2(n - 1), B being the Killing form. Here p = 1(n - 1)a where
o is the single positive restricted root so Jp(2  (n - 1)/8. Thus

(3.2) Lx + JpJ2 -2(n 1) L +

where L is the Laplace-Beltrami operator for H" relative to g. The equation

(3.3) 82=- L + (" 41)' u u(X,0) = C, u(x,0) = (X)
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has the solution

(3.4) 11(x' t) = c ( -h )

implying Huygens' principle. We remark that the solution formula in [6fl implies that
the solution v to

(3.5) ---- (L+(-)2)at,, v(x,O) = f(x), v(x. 0) = 0

is related to u by

(3.6) V = ut.

While the implication (3.3) r= (3.5) is obvious the converse is less so

Theorem 3.1 in general (even with G reductive) was proved by Olafsson and
Schlichtkrull in [101 using the Radon transfori't on X (Cor. 2.2 and Theorem 2.4).
Such a proof had been indicated without proof by Solomatina [111 and resembles the
proof of Lax-Phillips (9a] for X = H'.

My independent proof proceeds via the Fourier transform and was inspired by the
proof of Branson-6lafsson [1] on the energy equipartition which I shall describe later.

Taking the Fourier transform of (3.1) one obtains

fi,(t, A, b) + IAI2z(t, A, b) = 0

whence

(3.7) ii(t, A.b) = f() , -' X

JAI

(cf. [11). By a generalization of the classical Paley-Wiener theorem (cf. [31, p. 145).

(3.8) sin AIlt f _X(0lo9 a)dT(a),
JAl

A

where T, E V'(A) is unique. On the other hand, the indicated characterization of E'( X)~

shows that

(3.9) sin JIt C(A+P)(A(Zb))d-r(x)

where 7T E £t(X). From an analog of (2.9) to distributions we deduce from (3.8)H3.9)
that

(3.10) = 1 T

the tensor product referring to (2.3). For R > 0 let

a R = {• E E : d(o. ) = R}.

The following lemma, which follows from Theorems 2.3- 2.4, is crucial.
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Lemma 3.2. Suppose G has all its Cartan subgroups conjugate and let R > 0. Then
if T eY(,

supp()t) C OrR supp(T) C SRs(o).

Now the convolution on G induces a convolution * on X. Moreover, if f E C'(X)
and if T E E'(X) is K-invariant we have

(3.11) (f * T)~(A, b) = !(A, b)t(A, b).

In particular, (3.7) implies

(3.12) u(x.t) = (f * 71)(X).

Note that by (3.8) Tt is invariant under a - a-'. Thus T.x(g-' o) 7,\(g , o) and
(3.12) becomes

(3.13) u(g. o,t) ff(g . x)dr,(.).

For dimA > 1 it is well known from Euclidean Fourier analysis (cf. e. g. [4], Ch. II, §3)
that supp(T,) C St(e), the sphere of radius t in A. Thus by (3.10) and Lemma 3.2 we

have supp(r,) C St(o) and Huygens' principle (1.4) follows at once from (3.13).
In the case dim A = 1 the spaces X in the theorem are just the hyperbolic spaces

X = H 2n±I of odd dimension. Now (3.8) shows that Tt is a constant multiple of the
characteristic function of the interval I log al < t. Taking the derivative with respect to
t we get

(3.14) Cos JAIt e )de-('( eS-)dT:(a)= /

A X

(3.15) u,(g . ot) Jf(9. x)dr(r).
x

Now we have supp(Tt) C St(e) so by (3.10) and Lemma 3.2, supp(r;) C St(o). Thus
by (3.6) Huygens' principle holds for equation (3.5). Formula (3.4) shows the sanme for
(3.3).

4. Huygens' Principle for a Compact Lie Group.

Let K be a simply connected semisimple Lie group with the bi-invariant Riemann-

ian metric given by the negative of the Killing form. Determine R > 0 such that the
exponential mapping is a diffeomorphism of BR(O) onto BR(e) (balls in the Lie algebra
and in K).
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Theorem 4.1. Suppose K above has odd dimension and let f E C'( BR(e)). Then the
modified wave equation

a2 it dim K '
(4.1) -52 = (LK - 24 )d u u(k,0) = 0. ut(k, 0)= f((x)

satisfies Huygens' principle.

This is stated in [6el with a proof in [6f]. For dim K = 3 we have K = S 3 so the
wave equation on the 3-sphere satisfies Huygens' principle. This is true more generally
on S2n+1 since the sphere is conformally flat [12]; it can also be proved directly (9b].

Since the spaces (i), (ii) listed after Theorem 3.1 are the symmetric space duals to
the compact groups and the spheres respectively, Olafsson and Schlichtkrull [10] raise
the question whether the modified wave equation on the space SU(4n)/Sp(?z) (which is

dual to SU*(4n)/Sp(2n)) satisfies Huygens' principle. As Olafsson and I have observed,
the equations correspond formally under the substitution x, - ix, and since the
operators are analytic, Giinther's necessary and sufficient moment conditions ([3b], Ch.
VII, Theorem 5.10) apply. This makes a positive answer plausible but a genuine proof
is required.

5. Equipartition of Energy.

Consider again the modified wave equation (1.5), A being again an arbitrary Phe-
mannian manifold The energy is then defined as the integral

(5.1) [AU)J(u2+Idu12_CU2)(tx)dx (u real).

x

Here Idui is the norm of the 1-form du relative to the Riemannian structure. It is known
([1], Lemma 1.1) that for f of compact support, e,(u) is finite and independent of t.
The two terms

x

r(u)(t) = I(Idu 12 - 0u)(t, )dx

are called the kinetic and potential energy, respectively.

Theorem 5.1. With X as in Theorem 3.1 and c = lpj' the solutions to the modified
wave equation (3.1) satisfy

AJ(u)(t) - P(u)(t)

"for t > R, if supp(f) C BR(o).

This is proved in Branson-O1afsson [1], using, among other things, some of the tools
which were applied in the proof of Theorem 3.1.
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Abstract

A review is given of the method of symmetry reduction for partial differential
equations. Two physical applications are presented. One is a solution of the
stimulated Raman scattering equations, the other is a classification of variable
coefficient KdV equations according to their Lie point symmetry groups.

Introduction

The purpose of this presentation is to first review a general method for ob-
tainimig exact analytic solutions of nonlinear partial differential equations kPDEs)
and then to apply the method to two physical systems. The nmethod is that of
symmetry reduction and it goes back to Sophus Lie. There are new twists to
the method and it has been turned into an efficient algorithm. This is due to
developenients in group theory, the theory of integrable dynamical systems and



7i
159

in computer science. Morever, the ever increasing importance of nonlinear phe-
nomena in physics has emphasized the need for mathematical methods, providing
solutions of nonlinear equations.

The applications to be discussed come from nonlinear optics, namely stimu-
lated Raman scattering and from hydrodynamics, namely the variable coefficient
Korteweg-de Vries equation.

1 The Algorithm for Symmetry Reduction

The basic idea is that one looks for solutions of a given systems of PDEs that
are invariant under some group Go, compatible with the equations. The in-
variance condition reduces the number of independent variables in the equation.
This amounts to obtaining solutions, corresponding to boundary conditions with
particular symmetries.

More specifically the algorithm consists of the following steps, applicable to
an arbitrary system of differential equations:

A'(x, u,u 1 , u",. .. ) 0 (1)
P = I.... ,n,x E R, u C R,

where for instance t,, denotes all second derivatives, and the order of the equa-
tion is N, with p. q, 7n and N arbitrary.

Step 1. Find the symmetry group G of local point transformations

f ( (x,u,g) ,i = A(x,u,g) , (2)

such that whenever n(x) is a solution, then fi(i) is also a solution, a• long as
the functions Q and A are defined. Notice that we restrict ourselves to ;oint
transformations: ii and i( do not depend on derivatives of u. The algorithm for
finding the Lie group G, or rather its Lie algebra L is well known and described

.in Ref. [1,2j. Morcver, computer programs using REDUCE [31. MA( SYMA
[4I and other symbolic languages exist, that realize it. The essence is -hat one
constructs . vector field

N" = ý,(X, u)O.rPi + &(.X, u)0uo , (3)

such that its N - th prolongation annihilates fhe equations (1) on thei solution
set

pr- •"' A1= 0 = 0. (4)

Eq.(4) provides a system of linea- PDEs for the function ý,(x, u) and . o).
This system of "determining equations" is usually overdetermniiiied and its only
solution may be ýj = Oý = 0. In this case the method is not applicable. in
interesting cases the solution may depend on k significative integration constants,
and we obtain a k-dimensional symmetry algebra, or the solution may depend
on arbitrary functions of X or ui, and we obtain an infinite dimensional sVmxnetr-
algebra.

Step 2. Identify the Lie algebra L as an abstract Lie algebra by transforming it
to a "canonical" basis. If it is decomposable, it will be decomposed into a direct
sum of Lie algebras. Each component will be visibly simple, solvable, or its Levi
decomposition into a semidirect sum with a solvable ideal (the radical) will be

L
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maiinifest. Algorithmns performiniig this idlent ificat ion exist ['5 aid hlave to sonic(
degree beeni com~puiterized.

Stcp V. Cla~ssify lie siibalgebras of L iflt- conjilgacy classes under the actioni of
tesnimletry group G. Algorithmic inc liods [6,71 for doring this exist, differenlt

for simaple Lie algeb~ras, direct sumns, or Lie algebras with nontrivial ideval~s (See
Rcf.2 for aI review).

Sfcp 4. Once the suhbalgebras L, C L are knowni wve finid thle invariants of thle cor-
rcsjpoidiiig subgroup G7, c G7 il the sp~ace A x U of independent andl (lependult

varliables. III the opt Iiinal e ase we can find k invariaiits , .r).. ().0 < Ak <p
det'pendinfg only oil the inll epenident variabl es x and ( q invariant s I, (.r, it).... Tj .r. i I

such that the ,Jacobiaii of the transformation (ui ui ) I, (I . , ) Ii., Iion-
siigiilar. W\e then set

Lý(x.1 a1) = Fý 1  . k . q~) =5.

aind solve for a1, toi iditaii

smiilsit utiiig G6 ) into the originial sNstemi (1) we obtain a reduced ;vsteril

Sinec we lvive k <,q, we obtainn a (hiniiiiioliad redluctioiisn nti cu
t ion" i .c. fe'werI i1( in eiindeiit variab1 les. Far k 0 we ob t am ll~1iai c(Ilia t ion.
for k s I aI systeml of iodiii;irv diffcerential eymual iis.

Sh 1p 5. Solve tIle refduceil equations 71) (if liossiblc)l. They univ belieria e
or lilt egrabld by somle hlear techliiqie , like thle iiivernse scatterling transfornil,
A siiigulztritv ;uinalysýis ( Painilev6 anlalysýis) univi hielp to solve Tliciii .Altcri~ativelv.
mnore group theory canl be iisedl to reduice thelini'iuiber of v~r~lsfurther, or to
redliie the order of tho eqiiationis for- ODEs.

Sf up 6. Do pdiysics %Nt Ii t lie soliitiinis. I.(-. iiiilvksi their 't aliiliiv. thecir asviiui
totI*I'.. (*ca.l'liti' various. observablel quinitities,. etc. The' last step is o)f cou.usc the

S ;i.t ;doitlixhiiic oll'.
We iiii'n1tiiui t huit groulp thiisir call p)rovidle soulutioniis cviii if ciuiihit ins1 1i'~cs

in Step -1 iir nit satit~icd. ThIms. if thle variables 11, (Ibpill( onl (,Ilw of the
lep'eiideiit vaniahles. ?t,. we ohbtaili imtplicit soluitionls. If tile tratnsforiiatl' ioi -

a i~iiiivrt il.vc 111;l" ibt am arial iiiv;u Iantslit in I

2 So! utiozis of the Stin-olated Ramnan Scatterinig Equations

Fliii ;ippilii;itioii to kvi iollidid I ici i. joint wiirk- wit Ii D.ILeii anid ()lirtivik
112' . 'Fll, SRS cqnjiti() oilscw ihe Si il ii Iaiioililita iteriiit ionl of lircef i> lineni

compileix wlives. fir iii~taliii whien ids ji iiare pieriodlically hoistvil lby anI oyticd
poutij !1.141. Illi 'imiplified notait ion thei SRS vqiat ions are

t, i I. i c *, , (1ýv*,I ii . I ., - I (IoI .; I -*

Wt. -hall1 PIdeitif * Il iý adia 1" withiilhe Stiikcs wivc (the sigtial 1., the plimnp

;ulo'i to A~illtnii e I ilt o iiitiow Ill par icliilar xe are litit vcnstel ill a -ihivsic;il
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solution in which vi for t fixed goes to a constant nonzero value for x -- +C
where v2 and v3 go to zero in the same limit.

The symmetry algebra for eq.(8) is infinite dimensional. A basis can be writ-
ten as

1
P=Oi, D= xO4 -- (eoO + e02+ 2,+3Oe 3 )

V = -0,¢ + O3 ,U(h) = h(t)(-D,9 + a3) (9)
1.

T(f) = f(t)M - I "f(t)(eO1o + (e2
8

e 2 ),
2

where f(t) and h(t) are arbitrary functions of time. We obtain translations
P, T(1), dilations D and T(t), constant and time dependent changes of phase V
and U(h). More generally T(f) corresponds to a reparametrization of time and
the corresponding Lie algebra {T(f)} is isomorphic to the Virasoro algebra (with
no central extension).

The Lie algebra L is the direct sum of three Lie algebras

L {P= ,D} (1{V} (f{T(f),U(h)}, (10)

the last one being a fi(1) Kac-Moady ,irazoro algebra [2].
The third step is to classify subalgebras of the symmetry algebra. The SRS

equations involve only two independent variables. We wish to reduce to an ODE,
we hence only need one-dimensional subalgebras (and subgroups). Ten classes of
them exist [121. For instance t- :0 ' *ebra {PI + aT(l) + bV} (ab are constants)
leads to solutions in terms of -'c¼,'Yintic functions, or to solitons. The sub-
algebra {PI + aU(2) - bh17} lea... j ,' ions know as "phase wave solutions" in
optics.

We shall concentrate on solutiow.; invariant under the subgroup generated by
the subalgebra {D -J aT(t) + bVj. The corresponding seven invariants will be
denoted ý, Al, and no and the complex wave amplitudes are expressed as

",l = t-0+01/20 Alll w (0)i•• ý = xt-1l•

V2 = t-('+I)/
2
a e-o(bl)nt A 2( ) C.2(() a 5 0

V3 = 1 t .1 3(C) ,1°3(0
X

We fix the constants a, in (8) to be a3 = (12 = -(Z= 1, as corresponds to the
usual physical situation. We substitute eq.( 11) into eq.(8), separate the real and
imaginary parts and obtain six coupled real ODEs for amplitudes AM, and )lIases
41. Ve make use of two first integrals

b
+± Af. -(12)

to decouple the eqtimtions. For All we obtain a second ordher nonlinear ODE:

A 1,±, Ki (12 (a , -- - III
+ + ++ - q1 & 2a

V , ,, 2 _I,, -,(13)
+ (I, aO -A4ý)AJ4 O(I a2 ao, Af + ýf
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Eq.(13) looks formidable, but it is linear in M1 , rational in MA and M1 , and
analytic (actually also rational) in C. Such equations were studied by Painlev6 and
Gambier (see Ince [15] for a summary of results). They ciatified all equations of
this type that have what is now called the "Painlev6 property". This means that
their solutions have no movable critical points, i.e. no singularities, other than
poles, the position of which depends oil the initial conditions. An algorithmic
necessary test for the Painlev6 property exists [161 and has been turned into
a MACSYMA routine [17]. Eq.(13) passes the test after the transformation
Ml, = H1. A further transformation takes it into a standard form. Thus, we put

I= W
All I, = W- (14)

and obtain the equation for a particular case of the fifth Painlev6 transcendent

IT AP (6•/, 3. 6; 0)

+ 1"2f =(_-v+ • T - ir+
21V7 11" - 1

(W-.. 1) 1 212 b)2 + 2112 1 21,a (15)[-5 - -+ b) I] + 11

1 212 21,
"_-(- + b)2 ,13 = ,-I-6 = .
= 2 11 1 lu6 0

Thus, we have an exact solution for AI(l)l valid for all c, 0 < , < _C. The
other amplitudes .112 , M 3 anld phases a, are then all expressed in terms of -l1 ,
and the integrals 12, 13.

From the point of view of physics, the important question is: given values of
All and a, for ý = 0, how will they develop for ý -* oc. This is the "connection
probflem" for Painlev6 transcendents andi a large literature exists orn this topic

Here we shall address a simpler problem, namely give an asymlptotic formula
for the waves )i. Skipping all details [12], concerning the derivation and the
absence of secular terns, we just present the final result.valid for (1 = -1.

(xtrf P/ ro];A 32 - - V'-) + 3]",2

[3232 I" I

= .rt

For t = to fixed..r -, x we hav'e

V1__ - I 0, '2 -4 ('0710f, V3 -. 0 (17)
were •2 is the Stokes wave. Eq.(17) describes the behaviour of the wave enivelopes,
the waves thelieselves oscillate withiin thI se eivelol)'s. The experimentally ob-
SC1rv(dl behaviour 119] is reproduced very well by eq.(16).
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3 Symimetries of the Variable Coefficient Korteweg-de Vries Equation

In this section we shall discuss the symmetries of an equation containing arbitrary
functions., namnely

U, + f (x, 0t1 li + g(X, t0orxxr 0 (~

f 00, goo

which we ,hall call the variable coefficient Korteweg-de V7ries equation(IVCIdV).
Fvr f and g constant we obtain the original KdV equation. This is the proto-
type of a "soliton equation". It is integrab~le by inverse scattering techniques,
correspondls to a completely integrable Hamiltonian system with infinitely many
integrals of motion in involution, allows for soliton and multisoliton solutions,
as well as periodic and miultiperiodic ones (see e.g. ref.S). Physically the KNdV
describes long small amplllitude waves in shallow water and can be derived from
the basic equations of hydrodynamics in the corresponding approximation.

Eq.(18) is obtained under less restrictive conditions, allowing for a variable
density of the fluid, variable depth, the presence of vorticity and other space and
time dependent effects. Its symmetries for various classes of functions- f and g
were studlied in collaboration with J.P.Gazeau [201.

The lK.dV equation itself has a four-dimensional symmetry group of local poinit
transformations, generated by space andl time trans.lations (P1 , PO), dilations D.
andl Gililei boosts B. It also has infinitely many '-higher symmnetries"'. but we
are not concerned wvith those here.

For tie VC l'dX' equation or aim is twofold:
1. Classify these equations into equivalence classes umnder the -Action oif fiber

p)reserving local point transformations

u = U(.,i,, fi) xr = X(.i'.t), t = T(.i'.t

$U O T /0. (19)

2. Find the Lie point symmetry group) for each class.
The first task. a prelininary classification of equations. is achieved uising

global met hods. rat her than infinitesimal ones. The result is that "allowed t rans-
forimations" taking eq.( 18) into a VC KdV equation, not. necessarily with the
same, fiunctions f andl g. haive the form:

ii(.,f) = Ati(t)+ B(.r,t)

.1 = (I (t).r + ýi(t), o (t) (0

where the funct ions involved must sat isfy

+ 3 ~+ f B = 0, A' +f BA 0, (1

Bt + fJBB, + g B.. = 0,

a 11( the (lots signify t ime dn(eriva tives.
Analyzing the syst(lin (21) that de(termnines the "allowed transformations", we

finzd thIiat we mu ist di st inmgu ishi thle followinzg classes of NT K d 'p iquatioins.
1. The gene(ric c'ase, when f (x.. t) and g(x., t) are arbit rary. Allowved t ranisfor-

mm t ons are dhilationis, transhlations11 aindi thle reparamietriz/at ion ofi t ii ma
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B=0, A =Ao, a ao, 0=!L, 0=0(t). (22)

Additional allowed transformations, and hence additional symmetries, exist
only in the following special cases.

2. f = f(t), g(x, t) arbitrary

PX 0=P---) x,0 q x + h(t) (23)
3.3 f(x, t) =p(t)elitt), g(x, t) = -q3 ±ht)(3

4.

f(x,t) = p(t)[x + qm)]')

g(x,t) 0 r= ( +- {-(x + q)h(t) + (r - 1)i/+ r(x + q)In(x + q)} (24)

r(1 - r2)

The Lie point symmetries were obtained for each class of VC KdV equations
and the results on the symmetry algebra L can be summed up as follows.

1. dim L < 4
2. dimL = 4 if and only if the VC KdV equation can be transformed into the

KdV:

gý = 0, g(t) = f(t) [c, f (s)ds + c21 (25)

The same conditions have been shown to be necessary and sufficient for the
VC KdV equation to have the Painlevý property [21,221.

3. dim L = 3 occurs in precisely the following mutually inequivalent cases:

L = sl(2, R) :

ut + uuX + X u• = 0 (26)

1 1U1 + -no1 +~ -u 1  = 0 (27)

4 2
,at + (X + t)112 uu , _ -4 ( xr + t )2 t 0 (28)

3
L decomposable, but not abelian

lt + XIuu 1 + -U-p = 0 (29)

Ut + nox + t 2 u1  = 0 (30)

L nilpotent:
lit + xTUm + X UiT. = 0 (31)

L solvable (with diagonal action on nilradical):

U= + 1 + t" u... 0, a $ 2 (32)

L solvable (with complex action on nilradical)

It + unit + (1 + t2 )1/2 ('ka,ctant u. 1 = 0 (33)
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L solvable (with Jordan action on nilradical)

ut + uu, + e3
f u~XX = 0 (34)

For a classification of real Lie algebras L with dim L = 3, see ref.23.
4. dim L = 2 and L = 1 occur for infinitely many different VC KdV equations
that in some cases involve arbitrary functions of one variable [20].

4 Conclusions

Lie group theory started out as a tool for solving differential equations. At
present, for most nonlinear PDEs, Lie group theory is the only tool available for
obtaining analytic exact solutions. Morever, it is a powerful tool. The "similar-
ity" solutions provided by group theory tend to be particularly "robust": large
classes of solutions, starting out from quite general initial conditions, approach
the similarity solutions asymptotically. An important part of the symmetry re-
duction algorithm is a classification of subgroups of the symmetry group. From
the physical point of view this is equivalent to a classification of different types
of symmetry breaking by boundary conditions.
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BOHR'S INDETERMINACY PRINCIPLE

IN QUANTUM HOLOGRAPHY,
ADAPTIVE NEURAL NETWORKS,

MOLECULAR COMPUTERS,
AND CORTICAL SELF-ORGANIZATION

Walter Schlempp
Lehrstuhl fuir Mathernatik I

University of Siegen

D-5900 Siegen. Germany

Some ten Years after writing his fundamental papers on optics. Hamilton made
a startling obs(rvation: that the same formati.m applies to mechanics of point par-
ticles. Replace the optical axis by the time. Then the transformation from initial
position and momenta to final position and momenta is always symplectic. This dis-
covery led to remarkable progress in the nineteenth century. In the 1920s - almost
a cfntury later - Hamnilton's analogy betcarn optics and mechanics served as one of
the major clues in the discovery of quantum mechanics.

Shlomo Sternberg (1988)

Great progress was possible thanks to the wonderful tool in atomic physics which
is the laser.

Alain Aspect (1986)

The basic principles of cortical organization are s;nilar at different processing
levels.

Wolf Singer (1990)

Abstract

A rigorous proof of quantum parallelism cannot be based on the Heisen-
berg inequality because the standard deviation of self-adjoint operators is

insensitive to fine structures of :'le interference distribution generated by a
Mach-Zehnder interferoineter. Actually Niels Bohr's indeterminacy principle
of spatio-temporal quantum electrodYnamics cannot be based on any of the
known uncertainty principles.

It is shown how the holographic transform allows to circumvent the difficul-
ties with the standard deviation by using a group theoretical implementation
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of the canonical commutation relation of quantum elect rodynamics. The ge-
ometric quantization approach combined with the emit ter-absorber transac-
tion model of quantum d 'ynamics on the whole real line R allows to describe
by a Liouville densit ' the flow and counterfiow of optical photons in split
fan-in/fan-out coherent optical channels. It nmakes the heuristic arguments
concerning quantum parallelism rigorous by considering wavepackets as syi.ý-
plectic spinors on the hologram plane. Moreover, it implies the existence of
single-photon holograms and includes the standard uncertainty inequality as
a special case.
As an application of quantunm holography to the area of quantum computers.
we study' adaptive neural networks and the photonic implementation of corti-
cal self-organization principles as suggested by recent experimental results in
brain research. These findings establish that synch~ronization reflects global
properties of the stimulus. High resolution spectroscopy leads to the concept
of magnetic resonance imaging (MIRI) and, combined with the imaging ca-
pabilities of optical holography, to the concept of molecular computer. As
another result of the geometric quantization approach to optical holography.
the uncertainits minimizing Gabor wavelets arise. This kind of wavelets forms
excellent approximations to the receptive field profiles and provides useful
wavelet expansions for image analysis. segmentation. and compression.

Es ist cbarakteristiscb fi~r dos Hologramenn, dafli man bei dtr B(leuchtung ti.nes
seinee' TRile stets Infjoimation iibcr das goosef Bild frhifli, uenn ouch wenigfr de-
tailliert und aus wtniger Blickwrinkeln gEschben. Je niebr rorn Hologramin nian
beltuchtel. desto detailliertcr und urnfassender ivird die Information. Subjrkt oder
Objtkt der- Information ist jedoch stfts dieses (in( Ganze. Dif rtr~scbied(enn 7eil
des Hologe-anirms sind nicief Entspi-echungen ron rcirsehiedene~n Teilen des ObjektL..
ViInitnhr icermnittOl jede r eunsetlne Tteil ttva~s ron dei m (anzen.

David Bohmi (1986)

Each photon btoa,- jnfoyrenation about flthentt,-e sjs~tein.
H. John Caulfield (1991)

The Srhr,-di,-9(er equation pirt-n ~erues tM( norm of the unrer function and thus the
numbeir of particles. N.ow it is well known thiat in tlit pre .f rice of sources. photons
can be absorbed or timitted. Tbhus one rfin not introduct a Seb rtdinge r equation for
ai sin gle photon in the prtesene of son ret . In fact. the eleetrornagnetie field itsetlf
must be quantize(d. and photoii-s then occv; as th inc nary ereitations of the quantizefd
field.

C laude ('oleie-Tannoudji (1989)

The basic eh in(m of of the te-ansactiinnal interpretfation is an 177 intitI r-absnrbe r t ra n,-
artion th rough the, e.rcba nge of adran 1CCd ai ld re tadedl nravics. a,, first lesribe el by
Wheeler and Fe yninan.

.John 6. (Cranmer ( 1986)
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1 Holographic Imaging

Optical holography is a two-step coherent imaging process. In the first processing
step, the recording or write-in step. the three-dimensional image is spatio-temporally
coherently encoded in both amplitude and phase information by an interference dis-
tribution in the hologram plane. The interference distribution arises by coherently
mixing the diffuse reference beam at optical frequency ' and the beam coherently
scattered by the object. Thus the hologram forms a linear superposition of inter-
ference fringe patterns which are generated by phase-shifted beam splitter interfer-
ometer experiments. The result of these interferometric experiments are photonic
excitation distributions recording the raw optical data that art transmitted in terms
of both amplitude and relative phase information by the flok dnd counterflow of op-
tical photons in split coherent optical channels. In terms of geometric quantization.
the symplectic hologram plane (R + R. .) which is formed by quantum-sen.sitive
detectors carries the structure of a metaplectic manifold.

In the second processing step. the read-out step. the raw optical data spatio-tempo-
rally, coherently encoded by the hologram as an excitation distribution are spatially
coherently de("ded by an application of the adaptive resonance procedure. A\fter
slice selection by tuning the laser frequency v or an application of the first order
Bragg diffraction condition

2v. sin 3 = 1

(3 = diffraction angle of incidence measured from the normal of the slice) similar to
the spin slice selection procedure in MRI ([201). the three-dimensional image of the
object is simultaneously reconstructed in both amplitude and phase by coherently
diffracting the diffuse readihng light illumination. According to the geometric quan-
tization procedure, the holographic information retrieval is performed by adaptive
resonance within the Hilbert space bundle essociated with the metaplectic manifold
structure of the symplectic hologram plane (R -. R. Q,,).

The most important difference between optical holography and ordinary photogra-
phy is the interferometric recording of the relative phase between the reference and
the object beam during the write-in processing step. Due to this pioperty mecha ii-
cally stable conditions are needed and the quality and tF- reproducibility of optical
holograms strongly depend on the full-filllment of this stability requirement. It is
the inclusion of the relative phase information which t -- orins the adaptability of
the holographic code.

The fundamental information processing steps of optical holography are the adap-
tive encoding and decoding steps. Because these processing steps are concerned with
the flow and counterflow of photons, both the write-in and read-out steps are of a
quantum theoretical character. The quantunt parallelism according to which differ-
ent alternatives at the quantum level are allowed to coexist in linear superposition.
irrespective of how different from one another the quant Inm states mnight be. is equiv-
alent to Niels Bohr's indeterminacy principle of spatio-temporal quantum dynamics
which says that in the phase shifted beam splitter interferoineter experiment the
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interference distribution appeals if and only if we cannot determine the pathways of
the optical photons. Bohr who established his conclusion by a heuristic application
of the uncertainty principle did not realize that the indeterminacy principle allows
to generate single-photon holograms.

The uncertainty principle occupies a peculiar position in physics and in signal pro-
cessing. Since the fundamental 1927 paper by Werner Heisenberg ([21)). it is often
considered as the hallmark of quantum mechanics. In his Chicago lectures of spring
1929. he regarded the inequality

(Aq),.(Ap), > -
-- 2

as the precise mathematical expression of the uncertainty principle within the for-
malism of quantum theory ([22)). On the other hand. although it is easy to derive it
in a rigorous mathematical manner, there is still a great deal of discussion about it-
correct interpretation in physics. information theory, and in the fusion of both ar-
eas ([8]. [23). [24]. [12]. [44]). It turns out that the preceding Cauchy-Schwarz type
inequality has a number of weaknesses. however, particularly related to the fact
that the standard deviations (Aq), and (Ap), only give very general information
about the spread, of the probability density functions of position and momentmn.
respectively. Moreover. in quantum holography we find that (.qq),. or (Ap)) are
divergent. Therefore the inequality is not alpropriate for the purposes of quantum
holography. In fact. it does not conclusively establish Niels Bohr's indeterminacy
principle which states that in the .Mach-Zelinder interferometer "the interference
(list ribut ion appears 'f and only if we cannot dlet erinine the pat hways of the optical
photons.'"

Tt a nc(dainty principh of lh .ibv nbf i., ,,n of t/, ino.,t important an.specti, of
th ('opf nhag(rin/ ittrprn 1(aio??.

John G. ('raner (1986)

D/h conrrd w'ay to uandcrcand the unc riabity rclation., 1, to t, that thtyq rtpm't-
seni an 1ihfrtn/ linitation on tht .. , -t of ,tahtf ,rich can b( prodhicd for quantIio
tn(chanical syt•(ins. but that thcy cannot b( "•xplhint(d or "d1ddn'•d by tht naair
distuirbancl argim ont.

Michael Redhead (1987)

2 The Uncertainty Inequality

Leý .' denote the state vector of a one-dinensional (uantui-ni-mechanical s,ysltem.
Thus ' E L2( R: dt ) satisfies I tic normalizat ion condit ion

I ý, b = (IR I t-(t) - dt)It ' -- 1.

In the emitter-absorber transaction model of quantum dynaniics ([;]) on the whole
real line R. the state vector t, forms a wavepacket density i.((t)dt of normalized
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energy 11 v 112= 1. The position and mnoinýntum translation operators are defined by
the C-linear mappings

q : ii r•'.)

and
p i' h-

where C' denotes the distributional derivative of i.' with respect to the real variable
x, h denotes Planck's constant, and as usual in quantum theory, h = h/27. Suppose

JRI x 121 L-(r) I dx < +3c.

and

Jc I' J 11,F(ý) I' dý < +Dc

where Ft- denotes the Fourier transform of v. in the real variable • which is dual to
the real variable x. Hence

.( R t "(r)- 2JRdr

in the dual state space L 2(R::d.r). Then the position and momentum operators are
self-adjoint operators q and p. respectively. in the complex Hilbert space L 2(R: dlr)
and the expected values of position and momentum are given by

< q >, = / 'R x 1.,(.V) 12d.r.

< q >•= JR P[ ,

Their standard deviations are the expressions

(Aq), = JR i x- < q >,21 ,.(x) 2 J.)':2 .

(.Xp),= ( I- < )> 2 1 Ft'( 1 ) 2I__

YIR sI I? h
Fhe Heisenberg inequality

JR , (.r ) 12 d .r 2 -'( ) d _ T 1(2 < i2 dI.r)2

which is a direct consequence of the Plancherel-Fourier theorem combined with the
('auchy-Schwarz inequality implies the uncertainty inequality

(-Aqk.), . > -h.

mentioned in Section I supra. I1 follows from the Cauchv-Schwarz inequality that
in the preceding inequality identity holds if and only if

v(x) = c.xt,(.r) (c c C)
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holds in L 2(R:ddx). i.e., if and only if I. E L2 (R;d.r) is a vacuum coherent state
vector

t(X) = ('.(-)cjx/2 (0 E R)

where the constant C' E C in front of the Gaussian wavepacket is determined by
the condition 1 L.' 112= 1 up to one overall phase factor. The uncertainty minimizing
property of the coherent states is an important ingredient of the Gabor wavelet
expansions ([91. [101) for image analysis. segmentation and compression: see Section
S infra.

An advantage of the lfbisenbcrg point of rieuw is that it allowis one to dffinf 'two-
time avcraqcs', that is to say. mtan valuts in thf staot of the systcmn of a product of
two opurators taken at two diffurtnt timn.s t and t. Important exarnpls of two-timf
averages are the synmmatric corrdation function.s and the linear r(spone functions.

Claude Cohen-Tannoudji (1989)

Du sichst, niin Sohn, zum Haum w'ird har dif Zed.
Richard Wagner. Parsifal

3 Quantum Holography

The main idea to avoid the difficulties involved in the standard deviation A of self-
adjoint operators is tu start off with the quantum iimechanical commutation relation

q o0p - p o q ih

and to put it in a group theoretical context.

Let G denote the connected Lie group of unipotent matrices Q[50[)

00 1

with the real Lie algebra g spanned by tlie set {P. Q. Z} of mat rices

(01 0 (0 00 (0 01
P= 0 0 0 Q= 0 0 1 Z= 000

(000 000 0 0 0)

which satisfy the commutator condition

[P.Q] = PQ - QP= Z.

In order to analyze the geometry of G one can naturally identify (; with the set
C x R equipped with the non-corammitative group law

(i',r).(u',.s) = (v + v. r + s - Im(r.w)).



173

Then the boundary of the compact unit ball of C2 can naturally be identified with
the one-point compactification of G. The geometry that the group G inherits from
the biholonmorphic geometry of the unit ball has been called Heisenbeig geometr'.
([14]. [15]). For the purposes of quanturm holography, the unitarv dual of G and it,
multilayered coadjoint orbit geometry is of great importance.

Harmonic analysis on the Heisenberg nilpotent Lie group G governs the emitter-
absorber transaction model of quantum dynainics ([8]) on the whole real line R and
therefore the flow and counterflow of optical photons in the photonic implementation
of artificial neural networks. The argument concerning photonic flows and synapses
goes as follows. For any optical frequency v, 7 0. G admit s ai i;rrdcible lrnitary
linear representation U,. unique up to unitary isoinorpthy. acting on E L 2 (R: dit
according to the prescription

0'• W ) (t) = 2 ý;t'l•'/* .)(t R F).
""0 0 1

It is instructive to interpret I", as an induced representation of G from a normal
subgroup. Based on the representation '._ the Heisenberg inequality takes the form
of a Robertson relation ([48]. [44])

AIU(P) At.(0 > , IIZ) .

The mapping defined by the assignment

v(t'),Vdt' :! ,(t).vdt s flb l. :: .r. C).vdxr \ dC

is called the holographic transforin of the temporally coherent t wo-nixinlg waV,,-

packet densities t'(t').vdt" and •(1).vdt of optical frequency I/ t 0. It describes

by complex linear superposition of spatio-tenijorally coherent wavepackets of timle
difference t' - t = ,r and relative phase '"''c tilt niterfI'rence dlistribullt ion in the
syriplectic hologram plane (R-, R.R,). D)irctiuoiid d-rikative, identify ti, ltivr
(Rt.- R.j,,) with each tangent plane to the nalural linear s5y)mpie-tic inalifold
modelled on (RR R. Q,,. 101For each point x.r. c) E R R. a canonical isomnoripillll

R .: R T,, " 7 (R R)

is defined by
d(

for smooth complex-va Ilied functions f on R - R. In the I, laver theory I•V21 the
standard symiplectic form

Q, v.d,, A d (v # 0)

*1 m mm miim )(ui
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carrice the optical frequency v as its scaling factor and determines the diffraction
angle 3 of incidence of Bragg diffraction. It is determined by the polarized primitive

0,, = v.(x.dý).

The density H,(t.,:x. ) with respect to the Liouville two-form QF, = dO on the
hologram plane (R ÷ R, Q,) involved in the holographic transform represents a
phased cross-correlation function. It takes the form of an entry function of the
representation U,:

H,(,:.r)= Jx v(t + x).•(t)c""itdt =< U,( 1 >
R (001

Therefore the Liouville density H,(t, e:...) admits the interpretation of a wavelet
transform. The integration along the whole real line R "freezes up- the time t of the
advanced and retarded wavepackets in order to convert it into the spatial variables
(x.() of the hologram plane (R ± R. ,). It supposes temporal coherence of the
mixing wavepacket densities. Because in the emitter-absorber transaction model of
quantum dynamics ([S]) on the whole real line R the expression

SH ('• x. fl)I' / 11 ý, I11'11 ;, 11'

provides the overlap quantum probability in the hologram plane (R E R, Q,). spa-
tial encoding of the relative phase by means of the coordinate J1 avoids that phase
information gets lost under wavepacket reduction or collapse of the state vector
during the read-out process of optical holography. The overall phase factor C2,,,.- of

UIT( 1 )v E L2(R) has been normalized by setting z = 0. According to the

Stone-von Neumann uniqueness theorem. U' (v 54 0) is determined up to unitary
isomorphy by the central character

( 1 0

Xv 0 1 0~
001)

of G ([50]). Thus the Liouville densities associated with different frequencies v $ 0.
v' 5 0 satisfy the orthogonality condition

< H,,.' ; .) I H,,,0( ,-,¢'; -,.) > = 0 (v ý1 v')

for all amplitudes ., ;, k,.;' belonging to the complex Hilbert space L2(R; dt). It
follows that there is no cross talk between asynchronous excitation distributions
located in different hologram planes (R +R, Q,) and (R+R, flQ,), respectively. For
v = v', however, the Frobenius-Schur-Godement identity

< H••,•..]H(,•..>=< ý,oI ' •> (v 3O )
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shows that the Liouville density H•(i'. ;...) forms a learning kernel of Hebbian
synaptic plasticity ([4]). By an extension, for all f e L 2(R _ R) the kernel

k,(f) : (x, it) 4 (.F..f)(r + i. v.m)

(F,. = Fourier cotransform acting on the second variable) associated to the Hilbert-
Schmidt operator U,(f) on L 2(R; dt) forms a natural generalization of Steinbuch's
notion of learning matrix ([4]). Adopting the terminology of adaptive resonance
theory (ART), the integrated form Ii(f) of the linear Schr6dinger representation
IT, of G acts as a bottom-up adaptive filter in response to input distributions ([5]).

Something stronger is needed to uphold Bohr s conclusion.
John F. Price (1985)

The most surprising findings (and the most difficult to explain) are those con-
cerning the large spatial separations across which stimulus-evoked synchrony may
occur.

Stephen Grossberg (1991)

4 Adaptive Wavelet Decomposition and Quan-
tum Parallelism

It is well known that the Poisson summation procedure plays an important r6le
in the global wavelet decomposition of wavepackets ([58]). In the context of L2

harmonic analysis on the Heisenberg group G. for any optical frequency v :p 0 the
Poisson summation type operator

W, : ?L-! 1 (g 1 C- 2,,iv
z 

E Ze 2 r
ivmr?(nl + .r))

( 0,1) -Z

performs the adaptive wavelet decomposition w,(t,) of i, E L2 (R; dt). It maps for
v = 1 the linear Schr6dinger representation U, of G onto the right translations 61
of G. The linear lattice representation 61 of G generates the global wavelet decom-
position

H, (ii,,; x,) :< 61( 01 )Ul(0• 1 u1 (ý)>
( 0

The quantum geometric background behind this periodization construction is the
fact that G can be projected onto the compact Heisenberg nilmanifold which forms a
principal circle bundle over the two-dimensional flat torus T 2 . Because the compact
oriented surface T 2 of R3 has the topological genus g = 1, the symplectic hologram
plane (R E R,Q Q) can be identified with the cohomology group H1 (T 2 ,R) of real
dimension 2g, see [2].
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The global wavelet decomposition identity gives rise to a "distributed" form of the
holographic transform

ý,(t').vdt' - ;(t).vdt - H•(c',;:x,•).Q,.

The quadratic lattice
Sz +ý z

which is at the basis of the global wavelet decomposition has unit cells which are
cooperatively coupled by adaptive filtering. It gives rise to k-fold periodic tilings
(k E {2,3.4.61) of the hologram plane and allows to introduce the notion of holo-
graphic fractal ([51]. [52]). These fractals reflect for each specific tiling width the
translational and rotational symmetries of the kernel ki(f) associated with the
Hilbert-Schmidt operator U1,(f) on L2 (R). Perturbations breaking the planar synm-
metry of the holographic fractals lead to the speckle phenomenon of coherent optics.
This result is in accord with the fact that self-organizing systems react extremely

sensitively to symmetry-breaking perturbations of self-similar structures.

As another application, the same global wavelet decomposition forms the mathe-
matical basis to rigorously establish Niels Bohr's indeterminacy principle of spatio-
temporal quantum dynamics ([7]). Indeed, unfolding of the flat torus T2 estab-
lishes that the hologram appears if and only if the photons cannot be localized on
their pathways for an arbitrary short time interval. Experimental evidence of this
mathematical result are the single-photon holograms which can be generated by
the commercially available Photon-counting Image Acquisition System (PIAS) of
Hamamatsu Photonics.

As a final important consequence of this reasoning one concludes that it is impossible
to construct an operator corresponding within the Heisenberg picture to the posi-
tion of an individual optical photon. The non-existence of a position operator which
describes the trajectory of an optical photons within the photonic flow and coun-
terflow implies the quantum parallelism by global synchronization. It plays a rale
in bosonic string theory ([35]). too. Howevcr. ,,orc Uhan Bohr', con lusion about
quantum parallelism in split transmission channels actually is true. Electrophysio-

logical experiments have shown that quantum parallelism by global synchronization
of different cortical areas plays an important r6le as a self-organization principle
of the visual cortex ([11], [16]. [17], [29]. [54]. [19]). Indeed. simultaneous nmulti-

electrode extracellular recordings established large spatial separations across which

stimulus-evoked synchrony of firing activity may occur. The nonlocality of quantum
dynamics described by the emitter-absorber transaction model ([8]) on the whole
real line R provides a natural explanation for these most surprising findings.

The anatomical substrates of different parts of the cortex appear similar. uwhithcr
these parts be dae oted to various sensory. motor. o, "a'asociational" tasks.

Richard Miles (1991)

Wir baben a ntdfckt. daft die Anivortun von Merkmalsdetektoren rhythmir;ch sind
und mit (iner inittltrcn Frqiien: von dtiro 40 Hertz oszilliuren. rir haben ferntr
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beobachtet. dafi riiurnlich verteilt liegende Gruppen von Merkmalsdetektoren ihre
rhythmischen Akti'itdten synehronisiaren kA'nntn and dann in Phase schwingen.

Solche Synchronisationen traten bfsondcrs hiiufig auf zwischen Zellgruppen, die
iihnliche Merkmale codieren, also zum Beispiel zwischen Neuronen, die iihnliche
Richtungs- und Orientierongspriiferenzen aufweisen. Die oszillierenden Antworten
raumlich verteilter Merkmalsdetektoren beginnen in Phase zu schwingen, wenn im
Bereich ihrer rezeptiven Felder Konturen angfboten werden, die sich mit gleicher
Geschwindigkeit in die gliche Richtung bewegen.

Wolf Singer (1990)

Multilayer optical neural network architceturs based on storing weights as holo-
graphic gratings in photorefractive crystals have been proposed which are capable of
implementing such neural network paradigms as backward propagation and simulated
annealing.

Yuri Owechko (1989)

5 Adaptive Neural Network Organization

The organization of neural networks is based on
- complex-valued signals

and
- synaptic interconnections.

The signals simultaneously transmit both amplitude and relative phase information
whereas the neurons act as coherence detectors ([601). As a consequeuce, the r6le
of the field C of complex numbers and its anti-automorphism ý, + tL of complex
conjugation is in the theory of neural network organization as crucial as in the de-
scription of quantum dynamical phenomena. Notice, however, that the Schr6dinger
equation does not have advanced solutions 0,([8]).

The interconnections transmit the signal flows and counterflows and are character-
ized by their synaptic weights. The simplest module of a neural network is formed
by a McCulloch-Pitts neuron which acts as a. adaptive filter. A neural network gen-
erates by adaptive resonance certain excitation distributions which are determined
by the structure of the network and by the input distribution. Due to synaptic
plasticity, interconnections are modified in strenght in response to signals in the
excitation distribution. The competition rule for synaptic connections says that
only the more successful synapses can grow. the less successful ones weaken and
eventually disappear.

For the holographic implementation of neural networks, the identity of the preced-
ing section establishes that the information distributed by the holographic encoding
procedure on the natural linear symplectic manifold structure of the symplectic
hologram plane (RI, R, 1h) is a nonlocal one. The term nonlocality implies phased
correlations across spatial distances. Similar experimental results in brain research
concerning locally and globally synchronized connections in neural oscillator layers
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are supporting the holographic hypothesis of memory structure in brain function
and perception ([3]. [39], [40], [41]): Cell assemblies adaptively coding for coherent
features in visual scenes may not be distinguished by the fact that the constitut-
ing neurons are particularly active. Rather it appears that such cell assemblies are
characterized by global synchronization of oscillatory responses over considerable
tangential distances across spatially separate functional columns and even between
spatially separate regions of the cortex. In particular, these studies prcsent exper-
imental evidence that temporal coherence and resonance form a basic principle of
the dynamics of cortical coding and the cortical self-organization ([11], [16], [17].
[29]. [.541, [57], [60]. [611).

From the theory of symplectic spinors ([30]) it is known that the symplectic holo-
gram plane (R , R, Q,) forms the base of a fiber bundle, the fiber at each of its
points (xo. o) being a copy' of the three-dimensional Heisenberg nilpotent group G.
More precisely, a choice of a symplectic frame in a tangent plane at (Xo, o) to the
natural symplectic manifold modelled on (R-±-R. Q,) determines a definite Lie group
isomorphism of a central extension ([50]) of the tangent plane onto G. This definite
isomorphism models the information redundancy of the holographic encoding pro-
cedure: Each part of the optical hologram contains all the information stored by the
whole optical hologram. In view of Niels Bohr's indeterminacy principle, the exci-
tation distribution spatio-temporally coherently encoded by the hologram generates
a synchronized neural network modelled by the associated Hilbert space bundle.
The associative holographic memory of this adaptive optical neural network can be
spatial coherently decoded by the fundamental read-out formula

, . f - .r, = 5(t).,dt ( 1)

The proof follows from the Frobenius-Schur-Godement identity of Section 3 supra.

The read-out formula which is written for a fiber at ,r0 = 0. ýo = 0 represents the
locally synchronized response by adaptive resonance of the neural network and there-
fore forms the associative recall ([6]). It is this adaptive resonance read-out which
performs the plasticity in the self-organization of the holographic neural network. In
this context, self-organization means the spontaneous generation of complexity rep-
resented by the information bearing object beam which which is exchanged by the
no information bearing reference beam. In the visual system, the self-organization
is performed by an exchange of the retinal input signals and internally generated
gating signals.



179

The transactional interpretation is so apparent in the Schrgdinger-Dirac form
of the quanturn-mechanical formalism, which its combinations of normal and time-
reversed waves, that one might fairly ask why this obvious interpretation of the for-
malism had not been made previously. No one can, of course, explain why something
did not occur in the history of the development of quantum physics.

John G. Cramer (1986)

6 Counterflow

The read-out formula shows that timing is crucial in neural network dynamics. The
phase conjugation involved alluws to implement the feedback learning mode of the
counterpropagation neural network by degenerate four-wave mixing. In this way.
the Owechko-Soffer resonator ([34], [155]. [56]), for instance, efficiently uses the a&so-
ciative holographic memory function of volume holograms stored in photorefractive
crystals ([12]. [13]. [37]) in the fields of pattern recognition and pattern completion.
A disadvantage of this design is the surprisingly slow speed by which the plasticity
in the self-organization is performed. Currently available photorefractive crystals
operate as phase conjugate mirrors with time constants measured in hundreds of
milliseconds. Therefore considerable advancement in materials and techniques must
be made before such devices become suitable for practical applications. However.
the Owechko-Soffer resonator proves that all-optical neurocomputers actually can
be built and that their performance can be improved by the application of hybrid
architectures.

In spatio-temporal quantum dynamics, \Vigner's theorem ([53]) establishes the linear
transformation of quantum state vectors in time. It says the transformation from
one time scale t to a shifted time scale t' = t + .r can be performed by an operator
that is either linear or antilinear. Both operators acting on L2 (R; dt) are uniquely
determined up to one overall phase factor. The contragredient representation U. to
U(T of G which is determined tip to unitary isomorphy by the central character

0 0

describes the counterflow in neural network dynamics. Obviously the identity

(0 0 1 ) 0 0•= ,-ll. 1 )

01 X0

holds for all elements 0 1 E G. The Liouville density associated with U,

i0 0 h)in the hologram plane (R +P R. 9-,) gives rise by an application of the adaptive
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resonance procedure ([4], [5]) to a similar read-out formula for the holographic in-
formation retrieval from the counterpropagating neural network. The learning kernelassociated with the Hilbert-Schmidt operator 0-1 (f) on L'(Rtz dr) is given by k, ()).In ART architectures ([5]), it acts as a top-down adaptive filter that leads to code

self-stabilization.

Spectral hole burning is not only a powerful method for the investigation of rnolc-
ule,- properties and guest-host interactions but is also of considerablc interest in the
field of high density optical storage. 1he frequ,-cy and electric field multiplexing
properties of spectral holf burning have been combined with the imaging capability of
holography, leading to image-storing devices.

Urs P. Wild (1989)

7 Molecular Computers
In the concept of Next Generation Computer architectures, the distinction between
hardware and software and between memory and processor will become superflu-
ous. Data processing will occur directly in the memory and neither transportation
nor processing in separate devices will be needed. Besides photorefractive crystals
other recording media for optical holograms are certain specific dye-doped polymer
films like oxazine-4 in polyvinylbutyral (PVB) immersed in superfluid liquid helium
between transparent electrodes in a bath cryostat at extremely low temperat,,res of
1V - 20 K. Using a tunable single-mode dye laser source, these recording materials
for spectrally narrow optical holograms allow to implement molecular computers by
the spectral hole-burning method of high resolution laser spectroscopy ([32]. [2.5).
[31], [43], [45]. [46], [47]. [49]. [62]. [63], [64]. [65). [20]). The interference distribution
generated by coherent two-wave mixing is stored as a spectral hole burned by the
laser in the absorption spectrum of the dye molecules. Similar to the holographic
time-reversal by "volume holograms stored in photorefractive crystals ([12], [13], [37]).
adaptive resonance read-out of the burned holograms by a coherent beam which is
antiparallel to the reference beam generates the phase conjugate object beam ([431)
of the counterpropagating neural network. The experiments performed with molec-
ular computers ([62]) suggest that up to 20.000 holograin6 could be stored at a
temperature of 1.70 K. As in the neurophysiology of simple cells of the visual cortex
([38]) cyclic phase changes between adjacent holograms can decrease the cross-talk.
The development of molecular computers based on the spectral hole-burning method
is hampered by such major limitations as cryogenic operating conditions, lack of a
recording threshold which limits the number of read-out cycles, and the special need
for a wavelength-tunable laser. But because such processors can be considered as
quantum computers, quantum holography provides a new approach to that highly
active area of quantum computation which exploits the high temporal bandwidth of
optics and the massive parallelism inherent in arrays of photonic devices. Because of
continued progress, such as the development of new recording materials, molecular
computers continue to be promising designs for the future.
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Gabor proposed a new method for analyzing arbitrary signals: a type of local-
in-time frequency analysis. The primary message of Gabor's paper was that the
optimal set of basis functions for analyzi,ng signals consists of sinusoidal functions
of time multiplied by a Gaussian function of time. The sinusoidal portion of this
.signal introduces a "w-ariness." uwhtras the Gaussian portion of the signal localizes
it primarily to a region in time surrounding the time corresponding to the "n man" of
the Gaussian. Gabor showed that. for a signal of finite duration, the use of such basis
functions minimizes our joint uncertainty regarding the product of the effective time
duration of the signal tim•s its effectire bandw'idth. Vo other set of basis functions
has this property. Such Gaussian-weighted sinnsoids u'rte dubbed logons by Gabor.

Robert Hecht-Nielsen (1990)

Comtpressed data sare memory space. it is true, but entail more computational
wo rk.

Tommaso Toffoli (1990)

8 The Gabor Filter

In a two-dimensional real symplectic vector space. any line is totally isotropic. hence
a Lagrangian vector subspace. If V and It denote two transversal lines of the
tangent space at the point (xo.co) to the natural symplectic manifold modelled on
(R j, R. f,), the one-dimensional complex vector space G1 tempered distributions
on the plane R ER annihilated by the vacuum state Ut' -+- I for the Lagrangian
vector subspace V - It' of g is spanned by the Gaussian envelope at (a70. ,):

( ,r . ) • e - x|'q . . . + b, U - ý0 ), )

where the real coefficients a, b determine a positive semi-definite quadratic form at
the point (xo,(o). Notice that it forms the generating function of the family of
orthogonal wavelet transforms

(Hl(hm.h.;x - re. - o))_>0

where h. denotes the normalized Hermite function based on the Gaussian weight
and the classical Ilermite polynomial of degree in > 0 ([50]. [18]). The interpretation
of the learning kernel H,(h., hn:.r -. ro.• - ýo) as a matching polynomial of the
complete bichromatic graph

Km,(.ron) (m > n > 0)

admitting m + n vertices in the tangent plane at the point (,r0.ý0) shows that
the wavelet transform performs the local Hebbian synaptic plasticity on clusters
of postsynaptic neurons in a competitive neural network. Lifting from the polarized
cross-section to the central extension ([50]) at (xo. o) E R z. R yields the resolution
generator or analyzing Gabor wavelet

(x,f •) • e •(( -•°+ "-°). '•4x-°% •• •?
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where the real modulatior parameters i ' determine a phase factor at the position
(x0, o). This family of complex-valued functions on R - R for which identity holds
in the Heisenberg inequality for L2(R ± R) give rise to expansions which provide
excellent fits to the empirical simple cell neural receptive field profiles ([26]. [27].
[28]). Its action by convolution is called the Gabor filter.

One might speculate that somewhere deep in the brain, cells are to be found of
single quantum sensitivity. If this proves to be the case, then quantum mechanics
will be significantly involved in brain activity.

Roger Penrose (1989)

The assembly of detectors which respond to coherent features of a scene becomes
distinguished from detectors responding to non-coherent features by the fact that the
oscillatory responses of the cells in the assembly coding for coherent features are
synchronous and in-phase .. The circuits responsible for synchronization have not
been identified with certainty but the tangential intracortica! connections are good
candidates. How synchronization is achi(ved is yet unresolved.

Wolf Singer (1990)

The source of the 40-60 Hz oscillations that have been reported has yet to be
identified.

Stephen Grossherg (1991)

Until a few years ago the developed glial tissue was mainly and generally thought
of as a pure support and supply medium for the neuron network. But during the
last decade several bioscientists have been led by accurate experiments to state that
peculiar ion transport processes, affecting the biotlectrical activity of the neurons
and of the cerebral cortex as a whole, certainly take place inside it. The sodium and
potassium ion displacements cooperate in order to generate a self-sustaining linear
electrochemical wave which propagates throughout the glial tissue.

Renato Nobili (198.5)

9 Quantum Dynamics and Brain Activity
Using the basis {P, Q, Z} of the Heisenberg Lie algebra g let

l= I(P + iQ), R+ = (P- iQ).

Then the boson annihilation and creation operators, respectivc!y. of quantum field
theory are defined by

a = U, (R), a+ = U,'(R+)

and satisfy the boson commutation relation

[a+, =T.

It follows for the harmonic oscillator wave functions (h,)m>0 of degree m:

a(hm) = -(rTn)"/ 2hm. 1 (m > 1). a+(h.) = (ir(m+l))1 /2 hm+l (rn > 0).
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In the Bargmann-Fock-Segal model the standard symplectic form Q,. v.dx A dA
(v 5 0) is determined by the isotropic primitive

V0 = -. (.r.d( - ý.dx).
2

The Bargmann-Fock-Segal representation ([50]) of G acts by left and right trans-
lations on the Fock space of entire holomorphic functions on C square-integrable
with respect to the Gaussian measure on C. By standard facts about square inte-

grable unitary group representations. the linear Schr6dinger representation U1 of G
is isomorphic to the action of the right representation restricted to the Hilbert space
spanned by the total family of entry functions

R - R 3 (qp) ý- (mr'fl!)I/ 2 < (a+'")(ho)I U(exp(qQ + pP))(ho) >

From this group representational reasoning the single quantum resolution of the
read-out formula fcTows. As a consequence the global synchronization of oscilla-
tory responses over tangential distances across spatially separate cortical areas is
mathematically equivalent to single quantum sensitivity of postsynaptic neurons. It
is well known that the vertebrate's retina morphologically forms part of the brain.
Electrophysiological experiments have shown that cells with single-photon sensitiv-
ity are present in the retina: the absorption of a single photon impinging on the
dark-adapted retina can be sufficient to trigger a macroscopi- nerve signal by a reti-
nal rod. Thus the synchronization as the basic neurobiological signaling mechanism
and fundamental cortical self-organization principle corresponds to the ultra high
sensitivity of the detectors.

The Bargmann-Fock-Segal form of the Liouville density in the hologram plane
(R ý-- R.Q,) again is illustrated by single-photon holograms. The quantum fluc-
tuations which are implicit in this formula have been observed as vacuum state
holograms or daydreaming phenomena in a holographic ring resonator memory ([Q1).

[ch babe t'or mehr als zu,,5f Jahren auf der Grundlage bfkanntcr Faktfn der

Neuroanatomie und Neurophysiologif fine pra'zis( Theorie formuliert, die die aus-
gedchnte Speicherung von Geddchtnis m G(hirn nach dem Prinzip des Hologramms
erklhiren kann. Seither haben viele eigene und fremdf E.rperimentf diesc These
gestitzt.

Karl. H. Pribram (1986)

There is considerable controversy as to whuther holography can serve as a good
model for certain aspects of brain function. The roots of this controversy arc often
to be found in misunderstanding of what holography is and what the proponents of
a holographic hypothesis are claiming.

Karl H. Pribram (1987)

Ich bin der Ansicht, daft das Hologramm fin Beispifl fir die eingefaltete oder
implizite Ordnung ist.

David Bohm (1986)
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10 Neural Network Simulations

The quantum hologc aphic rnod(el does not intend to rejresent in (let ail act uAd net-
works of neurons within the brain nor the neuroanatom;,-a' or neurophysiological
details. but rather to shed light on the basic cortical self-organizational principles
by a functional photoni, implementation which works massisely paraliel. The nun-
locality of quantum holography in particular establishes the global synchronization
of oscillatory responses O\er tangential distances across spatially separate columns
and even between cort' al areas. In a specific -omputer simulation of a sample
neural network, the details of the simulation depend on the connectivity pattern of
the model network as it exist• in the c'omputer hardware. But in a convenionai
digital comput ,r the information is not available to make sure that the model net-
work matches the details of the sample neural network. It is impossible to predict
the firing rate of a particular cluster of neurons at a given t im., hi view of this
fundamental res: ctions. hard wired computer simulations of the plasticilY in the
cortical self-organization actuallv are of a limited value ([361. [59i). In a ,tuan' urn
holographic computer implementation. however, the gate coefficients C,., of a san-
pIe distribution f E L2(R R--) are automatically and mas•sively parallels complite,:
according to the t)rescription

c,... =< f !Hi(h._ h,,:...) > (m > 0. n >0).

Then the orthogonal projection on the Gabor wavelet

c,,.. H , (h ... h,,: .. .)

defines the synaptic weights of the complete vbichromat ic graph K,, (0. 0) ([51- By
wavepacket reduction or collapse of the state vector ([>i). the :iumbers

1c,....2 / 1

represent the transit ion probabilities of the competet ive neural network. Not ice th;t
these probabilities are determin,-d by the input distribution f i 0 in L2 (R-- R)
and photonically generate by the threshold conditions

Ic ,... 1'>_ d 1I f 11' (1) > 0)

the synaptic interconnections of the local model neural network K, ... (0.0) isidc the
qu,-ntum holographic computer. The self-organization is performed bI the phase
information via adaptive resonance ([51) and linear superposition.

Ein ('ompput r ist in( Organisati•nsfrni , If in Wlart r fun ktionalet r hornpont n -
tfen. an dn- n fia,' das lVfrhale-n d•.s gauz•z .Sq.tc ms iur ihvc Funktion reIl rant it.

Herbert A. Sinw n (1990)

The- u. -depp ndt dit modifications of .oynaptr lrhjn..,-,slon u'hich prtsurnably nif -

diat( lear,.ing in the- adult brain depend on sinilar rnechanis.ns as fxp(ri t nct -df pe( -
de-nt self-organizahon of neuronai conne-etivity duruiq de vtilopinieat.

Wolf Singer (1990)
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11 Conclusions

Information technology plays an increasingly important r6le in modern life. New
and faster computers are presently used in many areas and the need of even greater

computing power is accompanied by the need to store even larger quantities of infor-
mation. Looking beyond the intrinsic limits of today's information systems - inte
gration density. interconnection speed, storage density - alternative concepts ([183)
have to be developed. Keywords such as self-organization, massive parallel infor-
mation processors. photonic computers, adaptive neural networks, neurocomputer
architectures, molecular electronics, and even quantum computers appear in the
discussions of future high-performance information processing technologies. Neural
network models form a dramatic departure from the conventional digital computing
paradigm. Thc massive parallelism of photonic and molecular computation cannot
be based on any, known version of the uncertainty principle. The aim of this pa-
per. however, is to establish that quantum holography provides a mathematically
rigorous approach to describe by means of a Liouville density fhe flow and coun-
terflow of optical photons within split fan-in/fan-out optical channels. In particular
this quantum field approach proves Niels Bohr's fundamental indeterminacy prin-
ciple and the non-existence of a position operator describing the trajectory of an
individual optical photon. Finally, an application of the

- linear Schr6dinger representation

- linear lat t ice representation
- Bargmann-Fock-Segal representation

of the Heisenberg group G to quantum holography p)rovides mathematical insight,

into the recently discovered principles of
- cortical self-organization by adaptive resonance
-globai synchronization and quanrttum parallelism
- single-photon sensitivity

which are shown to be mathematically equivalent.
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I. Introduction

Neural networks is presently in an explosive phase. Over the last

5 years or so there has been an exponential increase in activity in

the subject, as evidenced by the numbers of people entering the field

and the numbers of papers published (and by the numbers of new

journals!) [1]. We must remember that this is a second revolution in

the field; there was an earlier one, starting in the late SO's and the

60's and associated with the attack on the subject made by Minsky and

Papert in 1969 [21, which was effective due not only to the intrinsic

shortcomings of the perceptron and its variants but also due to at

least two other key features: Wi) the hype that had accompanied the

subject, with claims of having plumbed the 'secrets of the brain', and

(ii) the remoteness of the subject from related areas, ýn particular

neurobiological modelling and information theory. The successor to

neural networks in the 70's and early 80's, artificial intelligence (or

All, has apparently also fallen prey to the first of these diseases.

The second time round there seems to have been more care taken by

researchers in neural networks to avoid the earlier exaggerated claims

(although see [1). At the same time an interdisciplinary

character has emerged for the subject, with not only neurobiology but

psychology, philosophy, linguistics, mathematics physics and

numerious other subjects involved. Moreover a vast range of

successful applications of neural networks have emerged, so that the

engineering community are also heavily involved (as evinced by

the new Neural Networks chapter of the IEEE).

We can recognise that there are effectively two separate (although

related) motivations for neural network activity, which can be
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displayed by the following diagram:

ARTIFICIAL -) REVERSE ENGINEERING(I)
NNS'

NEUROBIOLOG[CAL EXPLAIN BRAIN(2)
MODELLING FUNCTION

The first of these tries to use simplified models of neurons and

architectures ('art~ficial') to copst,-It systems able to solve

information processing problems, possibly even by hardware devices

Ireverse engineering'). The second approach is to be regarded as a

branch of biology, trying to mode! brain function by successively mere

sophisticated models. There is a strong relationship between the two

motivations ; more effective models of brain function can be expected

to lead to better 'reverse engineering' solutions of information

processing tasks, whilst conversely a more powerful understanding of the

general nati'e of information handling should lead to more effective

models of brain activity.

The ultimate goal of constructing information processing systems

is to be able to create autonomous devices with intelligence.

Consciousness and attention are clearly important concomitants of our

own ability to solve tasks in an intelligent manner. It is therefore

important to understand consciousness ; that is one of the areas of

increasing growth in neut'al network research. It is appropriate to

consider this topic at this Wigner Symposium. Eugene Wigner pointed

two theses [3) :

"if certain physico-chemical conditions are satisfied, a

consciousness ..... arises" (I)

"Does, conversely, the consciousness influence the physico-

chemical conditions?" (11)

I wish to add a further thesis of my own :

"Consciousness is explicable without quantum mechanics

directly but quanta, oscillat ions and phases may be

important" (111)

The purpose of this contribution is to explore these theses through

recent theoretical and experimental work on neural networks, the

theoretical side involving statistical mechanics, temporal sequence

storage and coupled oscillators, with neurobiology and coupled channel

magneto-encephalography (MEG) included in the experimental one. The

contribution begins with an introduction to neural nets, reviews the

statistical mechanical approach, and then turns to the problem of

'thinking' neural nets.
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2. Introduction to Neural Networks

A model neuron is considered as an multi input-single output

device

u, u u2 . U (1)

where the inputs u un are evaluated at some time t, and the

output u of the neuron will be assumed to arise at some time delay T

afterwards IT arising from various axonal and synaptic delay times in

the neuron). Of the many functions which may be described by (1) it is

usual to choose the simplest, involving a linear weighted sum of the

inputs u ... un, the weights ai being termed the connection weights.

Then (1) becomes

u(t + r) = fNZ a..u.(t) - to) (2)
i Y i 0

where t is a threshold value. The inputs u. and output u may all be0 1

binary, with u=O(l) corresponding to no activity (activity) on the

corresponding line ; f is then the unit step function. On the other

hand u. and u may be taken to belong to R, denoting the mean firing

activity on the corresponding lines. In that case f is often taken to

be the sigmoidal function fix) = [1 + e-I x.-1, for suitable P.

The above equation (2) becomes that for a network if an additional

suffix i is added to both sides, so becoming

u.(t f -0 = NZ a.. u.(t) - t. + input.) (3)
I i J j I

In (3) the inputi denotes input from outside the net apposing on neuron

i, whereas the summation term in f is the total weighted activity from

the other neurons (including the ith if a. .0). As before t. is a

threshold. The net dynamics is determined by (3). together with

initial values of activity and external inputs given at all the times

considered.

It was already known in the 40's that neural nets could perform

logical functions on the inputs in the binary case. Regarding the set

(ah ..... aiN) as a vector ai (N being the number of neurons in the

net). the activity in f in (3) is of form aru, where u=(uI .... u N).

Response is thus determined by geometry, where this latter is of the

hyperplanes with normals a.. Thus for one binary neuron two classes-- I

arise, one with a.u<s, the other with a.u>s.

The perceptron learning algorithm changes the weights ai to

achieve a correct classification if it had been incorrect : increase a.

if a.u<t but one should have a.>t, for a given input u, or decrease it
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if vice versa (and otherwise leave -a unchanged). This learning

algorithm is termed supervised, since the desired classification of the

various feature vectors u is supposed known. It has been extended to

the case when there are 'hidden' units, whose desired output is not

known directly, by the back-error propagation method. This learning

method, whilst slow in training, has proved effective in a broad range

of applications (l]. Other learning paradigms have also been proposed

for training NNs, these being of either supervised, unsupervised (with

no teacher) or reinforcement (with only a single evaluation of the NN

response) types. All of these arc bcing developed, compared to each

other and non-NN techniques in solving specific problems, and applied

to an enormous range of real-world problems in vision, time-series.

control, finance, etc [I].

3. Hopfield Nets and Statistical Mechanics

One of the important contributions to NNs in the 80's, and a prime

factor in the emergence of the second revolution in the subjct. was

Hopfield's method of setting up a relaxat;on net with given centres of

attraction; the Hopfield net could act as a content-addressible memory,

functioning very effectively in pattern completion.

Under the conditions

a..= 0 , a..= a.. (4)

the energy function

E = - Z a..u.u. + Z u.t. (5)I<J .j I j i J J

may be shown not to increase if single neurons are updated as binary

decision neurons (31:

Z a. .u.>t at time t € u. = (1) at time (t+ll. (6)
ii j< I 1 0

Patterns u(S) (s=1....P) may be stored by using an outer product form-- !

P

a.. = Q l2u S 1-)(2u. -1 ) (7)

(a)
where on average the pattern u reproduces itself with few errors if

P/N = a<,, - 0.14 (41 otherwise cross-talk noise between patternsC

becomes large.

The system can be analysed by statistical mechanics using the

energy function E of (5), and the spin variables s.= (2u.-l) .± 1.
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Thus the NN becomes an interacting spin system with local field

h. = Z a..s. at neuron i.I J tj J

At non-zero temperature 13-1 the partition function is

Z = Z exp[-0H(s)l (8)

where

H(s) = - E a. .ss.+ t.s (9)UI Jj --

Statistical concepts, such as disorder, frustration, competition, etc

can now be used. Also the powerful mean field approximation can be

employed. In the case of (71, and defining the overlaps, for

E=l ... P,

(t) M- (•l
m = Z s. <S.> (10)! I

then one obtains the mean field equations

m(f)= << Sa. tanh (trm.si)>> (W)
I -i

where the double brackets denotes averaging over uncorrelated stored

patterns. For T=f3 >1 there are no solutions, but for T< there are a

range of solutions. In the range 0.4598(T(I the only stable states are

those corresponding to non-zero overlap with a single pattern, but for

lower T there are other states, which are termed spurious, and degrade

the recall. The general phase diagram in the (T,a) plane has been

calculated, and the interested reader is referred to [51 for details.

This statistical mechanical analysis has been extended to

asymmetric weights, to dilute nets, to graded activity, to synaptic

weights with decay, and to a variety of other modifications. One

important modification is to introduce biological realism into the

system other then by the temperature )3_ of (8). Living neurons have

synaptic noise in all nerve impulse transmission due to the

probabilistic release of chemical transmitter vesicles at the synapse

both on stimulation by arrival of a nerve impulse and spontaneously.

The amount of chemical transmitter in the synaptic cleft is thus a

random variable with some distribution functions p(q), which may be

binomial or multi-binomial; the most popular is the single vesicle

case:

p(q) = pS(q-qo) 0+ ( - p)1(q) (12)

where p is the probability of release of one vesicle of amount q.o The
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connection weight a will be the product of q and the efficiency e of

post-synaptic up take of transmitter.

This framework leads to the random iterative riet (PIN) approach

[6]. based on the earlier work [71 of modelling noisy synaptic

transmission. RINs arise from (3) (with f the unit step function Y) by

replacing a.j by qij eij. so leading to the probability p(i0u) of the

i neuron firing one time step after the net activity is u as

PHlu) = fPldq.dt.p(q. .)p(t.).Y(Eq. .e..u.- ti) (13)

Note that threshold noise has been included in (13). so incorporating

the spin-glass approach above by suitable choices of the p's 16]. A

Markov chain then ensues on the states u of the net, and functional

techniques to analyse recall can then be developed and applied to

obtain recall in various dilution limits. The RIN framework can thus

be recognised as biologically realistic, and incorporating the

statistical mechanical approach.

At the same time a hardware realisation of synaptically noisy

neurons has been achieved in terms of probabilistic RAMs~pRAMs), :81 in

which the content at any address in a RAM is a probability. Tiis is

used to generate spike trains. Hardware version of the pRAM have been

built (91 and hardware-realisable learning algorithms developed. By

the end of '91 a chip with about 1300 pRAM neurons should be available.

4. Towards Thinking Neural Nets

To achieve more powerful information processing, ever more

powerful forms of neurons (leaky integrators, compartmental, active

membranes, noisy synapses, etc) and architectures (hidden layers,

recurrent connections, time delays, etc) are being extracted from

living neural systems and employed in artificial systems. But whilst

these lead to better classification and generalisation systems they

have not led to any clear advance towards modelling higher brain

function, especially that associated with reasoning. There are the

beginnings of ideas associated with temporal sequence storage (TSS)

[10!, where concatination of suitable TSSs allows a neural system to

determine if a suitable set of activities lead to a desired goal. This

is related to finding sub-goals whose achievement had already been

learnt by the system. But this still seems to leave untouched the

question of attention and consciousness. There have been very recent

results which indicate that a new paradigm may be appropriate here, and
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that new data over the next few years should lead to much greater

clarity about how to solve that problem.

The new data have arisen from the deployment of multi-channel MEG

(Squid) detectors of the low-level magnetic fields concomitant with

neural activity. The main advance that MEG results make over EEGs is

that the former allow detection of activity at deep as well as

superficial levels; magnetic fields do not lead to polarisation effects

in intervening cortex. This has allowed inverse problem programs to

determine simultaneous cortical and brain stem neural activity whilst

a subject is awake. In particular it has been found [Ill that there

appears to be a sweep of neural activity at about 40Hz from front to

back of the head, with brain stem activity leading that in cortex by

about 3msec. Such a correlated sweep may be functioning as a phase

difference detector for controlling attention in the following manner

[121. Activity from the hippocampus or nearby cortex excited by

slightly earlier experience, but also determined by considerably

earlier experience (episodic memory), is sent to frontal and/or

parietal lobes. It functions therefore as an 'expectancy' wave. It

is compared with new activity from primary sensory cortex. If the

expectancy is met (the new activity is highly correlated with that

expected) attention is not directed to the new stimulus for

further processing; if the expectancy is not met then attention is

switched and the new stimulus examined further. There is good

evidence that such attention disengagement occurs in parietal and

frontal lobes (with brain stem causing movement and re-engagement

of attention). The model can be made more precise by using

coupled oscillatory neurons, and taking account of the detailed

architecture of the brain stem 1121. It also appears that the model

fits naturally into the general framework for 'thinking' machines

given in [131, in which meaning and conscious content are

determined by the overlap thesis: the meaning of an experience

is given by the relations between that experience and past (episodic)

memories related to the experience. It was necessary to have a

discriminator unit to be able to determine the degree of this

overlap; that may well be provided by the phase comparisons in

frontal/parietal lobe.

This model is explicated in more detail in [121, to which the

reader is recommended.

I
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1. Introduction

Let S be a cuantum system in a pure state W P[ •p ] and A a discre-

te observable with eigenvalues ai such that y is not an eigenstate of A . The

pair ( W, A ) then defines a probability distribution p(W ,ai ). the experi-

mental meaning of which is given by the statistical interpretation of quan-

tum mechanics: The number p(W, ai ) is the probability to obtain the result

ai if the observable A is measured on the system S in the preparation state

W . This "minimal interpretation" does not necessarily mean that after the

measuring process by means of which the result ai was obtained , the object

system S actually possesses the value ai . This is the case only for ideal

premeasurements, whereas in the general case the object is disturbed in some

way . Hence in the most general situation one knows merely that the mea-

suring apparatus possesses the value Zi of the pointer which shows that ai

was measured.(1 )

In addition to the minimal interpretation one could tentatively assume

that a certain value ai of A pertains obyctzvely to the system S before the

measurement , i. e. in state W, but that this value is subjectzvely unknown to

the observer who knows only the probability p(W,ai ) of the value ai . The

hypothetical attribution of a certain A-value ai to the system S will be

called weak objectificatzon. It corresponds to the "ignorance interpretation" of

the probability distribution p(W,ai)
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It is obvious that one could also make the stronger assumption that the

system S does not only possess a value ai but that S is actually in an ei-

genstate gai of A. Th state W would then merely describe the observer's

incomplete knowledge about the actual state cpai of the system. The hypo-

thetical attribution of a certain eigenstate of A to the system S as its actual

state will be called strong objectification .It corresponds to a strengthening of

the "ignorance interpretation" of the probability distribution.

2. Nonobjectification theorems for pure states

The question whether the strong or weak objectification hypothesis can

be applied to a system in a pure state can be answered by the following two

theorems which make use of the same way of reasoning: From the assumpti-

on of the strong ( or weak ) objectification hypothesis probabilistic relations

are derived which are known to be violated experimentally in agreement

with quantum mechanics.(2)

Theorem I : Let S be a proper quantum system which is prepared in a pure

state W, and let A be a discrete observable with eigenvalues ai such

that W is not an eigenstate of A. Then it is not possible to attribute

an eigenstate Tai of A which belongs to the value ai to the system such

that S is actually in one of the states qai but the observer knows only

its probability p(W, ai).

It is obvious that theorem I does not excude automatically the hypothesis of

weak objectification. In fact one could imagine that for the system in the

state W, the values ai of A can be attributed to the system in a hypo-

thetical way. This possibility is excluded by

Theorem // : Let S be a proper quantum system in a pure state W and let A

be a discrete observable with eigenvalues ai such that W is not an
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eigenstate of A. Then it is not possible to assign a value ai to the

system such that ai pertains objectively to the system but that this

value is subjectively unknown to the observer.

3. Nonobjectification theorems for mixed states

The nonobjectification theorems I and II are of particular importance

for the interpretation of quantum mechanics. They show that for the system

S with state W the value ai of A is not only subjectively unknown to the

observer but objectively undecided. The same argument applies even more to

the eigenstates y'i of A. On the basis of this interpretation the following

problem arises. If A is not objective in W and if A can be measured such

that after the measuring process the system is in an eigenstate of A and

hence possesses a value ai, then the measuring process must provide the

objectification of A. Hence one could expect that the mixed state WS' of S

after the premeasurement(1) admits the strong or weak ignorance interpre-

tation i.e. S would be in an eigenstate qgai of A or it would at least possess

one of the values ai. In case of non-ideal measurements one would at least

expect that the mixed state WM' of the measuring apparatus admits the

strong or the weak ignorance interpretion, i.e. that M is in an eigenstate CDzi

of Z or that a value Zi of Z pertains to M.

In order to discuss this question we consider the compound system S

M in the pure state V'(S ÷M) = U (yY - ) = 21 (Tai, o) yai xzi after the

premeasurement. U is the unitary operator which provides the premeasure-

ment of the observable A For simplicity we have assumed here an ideal

unitary premeasurement. If the compound system is in the pure state W'=

P[1'] the subsystems S and M will be in the states Ws'=1p(cp,ai)P[cai]

and WM'=2Xp(9,ai )P[OZi] with p(fp, ai) = I(9,9ai) 12, which are in

general mixed states.(1)
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If the system S is separated from the apparatus M without thereby

changing the state W' of the compound system, then the system S will be in

the mixed state WS' and M in the mixed state WM'. The question whether

mixed states which are prepared in this way by separation, admit an "igno-

rance interpretation" - in the strong or weak sense - is answered by the fol-

lowing theorems. (2)

Theorem III: Let S be a subsystem of the compound system S + M which is

prepared in a pure state W'= P[(V'] and let A be a discrete observable

of S with values ai and eigenstates cp'i such that W' is not an eigensta-

te of the extension A= Ax 1 1., of A with respect to the compound

system. Then S is prepared in a well defined mixed state WS' which

does not allow the assumption that S is actually in a state cpai which

is merely unknown to the observer. Hence the system S in state WS'

does not generally admit a " strong ignorance interpretation".

Theorem III equally applies to the apparatus M in the mixed state WM'.In

this case it means that it is not possible to assume that after the premeasure-

ment the apparatus M is actually in an eigenstate (DZi of the pointer obser-

vable Z which is merely unknown to the observer. Theorem III does not

necessarily exclude the weak objectifiation for mixed states prepared by

separation. However this hypothesis is excluded by(2)

Theorem TIV: Let S be a system in the mixed state WS' which is prepared by

separation and assume that the compound system S + M is in a pure

state W= P['"] .Then it is not possible to attribute a value ai of the

observable A to S such that ai pertains to S with probability p(Ws',ai)

- except when W is an eigenstate of the extension A = A × IM of the

observable A. Hence a system S prepared in a mixed state does not

generally admit a " weak ignorance interpretation
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4. Results

Theorems I and 11 show that a proper quantum system S in a pure state W

does generally not admit a strong or weak objectification of the observable

A, except when W is an eigenstate of A. These statements are essential for

any interpretation of quantum mechanics. However, even after the prernca-

surement of the observable A the objectification of A can not be acchieved.

The systems S and M will then be in the mixed states WS' and WM', and

theorems III and IV show that these mixed states do not admit an ignorance

interpretation, neither in its strong nor in its weak version. Hence the system

S and the measuring apparatus M will not be in eigenstates of A and Z, nor

will these systems objectively possess values ai and Zi of A and of the poin-

ter observable Z , respectivly. On the other hand the "minimal interpretati-

on" of quantum mechanics assumes that the pointer observable is weakly

objectified and thus presupposes that the mixed state WM' of the measuring

apparatus after the premeasurement admits at least the weak ignorance

interpretation. Consequently a unitary premeasurement cannot justify the

"minimal interpretation" of quantum mechanics usually considered as one of

the starting points of the theory .(1)

Notes and References

(*) This paper is based essentially on a more extensive investigation by P.

Busch and the present author ( ref. (2)).

(1) Busch, P., Lahti, P. and Mittelstaedt, P. ( 1991 ) , The Quantum Theory

of Measurement , Berlin, Heidelberg, New York : Springer.

(2) Busch, P. and Mittelstaedt, P. ( 1991 ), " The Problem of Objectification

in Quantum Mechanics", Foundations of Physics , forthcoming.
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Measurements in a Quantum Universe
H. D. Zeh

Institut for Theoretische Physik
Universitat Heidelberg

A measurement has to be considered as a physical process, that is, as an interaction
between the system S to be measured and an apparatus A. The 'pointer position' must
thereby t.hange in dependence on the value of the measured quantity. In the quahLuwi
formalism this has been described by von Neumann's interaction

S A S A
t

where, more generally, the state of the system may also change due to a back reaction.

However, the superposition 1i ci Vs of the system S leads then to an entangled state for
the whole system,

Q • C•S•TA, ._t i i •iS IA'

instead of the observed states with specific pointer positions. For measurements proper
(that is, when the pointer position is read), this measurement problem is usually 'solved'
by applying the collapse of the wave function which is defined to pick out one of the
factorizing components. This leads to the open questions of what this second dynamics
means, and what distinguishes a measurement from a 'normal' interaction.

Even when the apparatus is not read, there remains an effect of measurements on the
system S. As is best known from the two-slit experiment with measurement of the
particle's passage, one observes a loss of interference between the contributions from
different values of the measured quantity. In order to describe this effect, no collapse is
required. The resulting entanglement corresponds to the local loss of interference

described by the local density matrix p5 = "c J2 
iI 1/s* which results from

tracing out system A.

Such a local loss of coherence results also from 'measurement-like processes'.
They are defined by the same type of von Neumann interaction, but under the more
general assumption that the 'pointer position' is uncontrollable (not macroscopic), so that
no reading would in general be possible.

The point to be stressed here is that this type of interaction is extremely important for all
macroscopic' systems S in leading to their unavoidable 'continuous measurement' by

their normal environment. This interaction leads to the local disappearance of certain
phase relations ('decoherence') which is characteristic for classical phenomena. When I
first tried to point this out in a preprint of 1968, it was only Professor Eugene Wigner
who responded positively, encouraged me to further elaborate on the idea, and later
helped me to get it published. 1 am thus very grateful for this opportunity to express my
thanks to him!

Some examples may illustrate the widespread occurrence of decoherence in quantum
mechanics:
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a) Chiral states are found for many large or medium sized molecules like sugar or
alanine instead of the energy (parity) eigenstates observed in microscopic objects.
'Measurement' of chirality by means of the scattering of unavoidably present particles
would decohere superpositions of different chirality. In contrast, an ammonia molecule is
still 'microscopic' in not being continuously measured in this sense. A side effect for
such discrete quantum states is Zeno's quantum paradox, that is, the suppression of
transitions between different chirality states. In contrast to popular belief (also expressed
at this conference), continuous measurement does not lead to the freezing of motion in
general, that is, not for systems with sufficiently dense sprectra. 2

b) Superselection rules can be explained, for example, by unavoidable irreversible
,measurements' of the charge of a particle by its environment 3 (to be distinguished from
its mere 'dressing' by a cloud of 'virtual' particles).

c) Positions and orientations of macroscopic objects like dust grains are
continuously measured by scattered photons and other particles even in intergalactic
space. Classical (here particle) properties emerge thereby from a Schr'odinger wave
function in configuration space. 4

d) Quantum jumps occur apparently instead of a unitary evolution if the decay status is
permanently 'measured'. They may be described by master equations which lead to an
exact exponential decay law and to the exclusion of any 'revival' of the decaying state in
this case. 2 This difference between closed systems and those under continuous measure-
ment can be nicely studied in laser physics.

e) Incoherent light ('different photons') may be understood by the decoherence of the
corresponding parts of the quantum state of the electromagnetic field caused by its source
(as by the decay of different atoms leading to orthogonal final states of the source).

f) Classical spacetime geometry emerges from quantum gravity, since curvature is
unavoidably 'measured' by the matter fields.5,6

The quantitative estimate of these effects can in all cases be based on the same
assumptions: ordinary quantum mechanics of interacting systems together with a realistic
model for their normal environment. (It is the second part where models often fail.)

These considerations also allow one to describe a realistic measurement situation. Not
only is the system measured by the apparatus - the macroscopic pointer positions (like
Schrddinger's cats) are further decohered by their environment.

All measurements of this kind (without reading) are based on an arrow of time: 7 they
transform product states into entangled states. As usual this requires very special initial
conditions (in this case initially non-entangled states). The origin of this quantum arrow
of time is a major problem of quantum cosmology. It is intimately connected with the
thermodynamical arrow, although far more delicate. For example, even two thermal
equilibrium systems with the same temperature T still offer considerable capacity for
correlations to arise according to

ex{ } ® exp{ .}- ex{-}
H4!ktJ HTtXp-

because of the strong entanglement of the eigenstates of H * H, + H2 as a result of their
dense spectra.

The above arguments are still unrealistic if the environment itself possesses another
environment. For a realistic quantum mechanical treatment of all but the smallest systems,
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one either has to apply open systems quantum mechanics or to accept quantum
cosmology, that is, to consider the wave function of the whole universe.

The first approach is phenomenological. In an entangled universe, 'outside the system'
means 'under the rug'. Major problems swept under the rug thereby are the arrow of
time, the collapse of the wave function, and the role of the observer.

Quantum cosmology, on the other hand, is meant to be fundamental: For example, Gell-
Mann and Hartleg claim that "Quantum mechanics is best and most fundamentally
understood in the framework of quantum cosmology." ... "It is the initial condition of the
universe that explains the origin of quasiclassical domains within quantum theory itself."

As the universe contains its observer (who is assumed to be local), the collapse can then
not be attributed to the intervention of an outside observer. Hence, decoherence does not
yet solve the problem of measurements proper. For this purpose one either has to
introduce an explicit collapse dynamics, 9 or to accept some variant of the Everett
interpretation. The former approach must lead to deviations from the unitary Schrtdinger
dynamics which would have to show up somewhere.

Since the universe as a whole depends essentially on gravity, quantum cosmology must

necessarily contain quantum gravity and its entanglement with matter. Vice versa,
quantum gravity was a motivation for studying quantum cosmology.10 This leads to new
and dramatic conceptual problems. Since quantum gravity quantizes the spacetime metric,

time itself has to be quantized.

In its canonical form, quantum gravity leads to the Wheeler-DeWitt equation which is of
the form of a stationary Schr'dinger equation, H'P = 0. This is the way how Mach's
principle has to be taken into account in the absence of classical orbits in configuration
space which could otherwise be parametrized by a time parameter. However, if there is
no time, how can the dynamics of measurements, and how can the arrow of time (with its
special initial state) be described?

Conventional quantum theory tells us that dynamics (time dependence) has now to be
replaced by the entanglement of physical clocks with all other variables. I In particular,
there is a fundamental clock in general relativity: spatial geometry on space-like
hypersurfaces.12 Banks has therefore proposed to derive a semiclassical fundamental
clock from a Born-Oppenheimer approximation with respect to the Planck mass.13 One
may then parametrize the orbits of geometrical optics in the configuration space of gravity
by a variable called 't', and derive from the Wheeler-DeWitt equation a unitary dynamics
for the matter part %matte of the universal wave function along each orbit:14

.is

li(Pmatter = nmatter(matter if TP = eie ` matter .

In order to solve it, one also needs an initial condition for cpmatter at each orbit. This must
also be obtained from the total wave function P. If this initial condition is appropriate,
the solution may describe measurements (increasing entanglement and branching into
dynamically independent components) in one direction of t.

The question remains of how to determine the universal T. Only its structure can explain
the arrow of time required for measurements in a general sense.

The Wheeler-DeWitt equation H T = 0 seems to define an eigenvalue problem with
fixed eigenvalue. As conjectured by DeWitt, it may possess a unique solution in a
realistic theory. However, the 'stationary' Wheeler-DeWitt equation turns out to be
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hyperbolic on Friedmann type topologies, with the logarithm of the expansion parameter,
ot = In a, as a 'time-like' variable. The Wheeler-DeWitt Hamiltonian can therefore be
written in the form' 3

H . .. + V(a,{Xk})
2 2

a k aXk

that is, as an intrinsic Klein-Gordon dynamics which defines an initial value problem in
a. The potential V has a typical structure of the form

V(ct,{xl}) = f(a) +I e'n' vfl({xk}) with pn > 0

n

-RO f(x) for a -- -- ,

This asymptotic independence of V of all Xk allows one to impose a completely
symmetric intrinsic initial condition (SIC!) 15

1 a 1
'P(ct,{xk}) 1-) .aX -~tX}d'--,tOO

at the big bang and the big crunch (which form one common 'state' with respect to the
intrinsic dynamics).

The time arrow of measurement is hence given by the expansion of the universe. For
extensions of the universe beyond the Planck scale it leads to decoherence growing with
increasing a. It thereby turns out that a is itself the 'most classical' quantity of the
universe in being most efficiently 'measured' by the matter fields. 6 So we can at least be
quite sure that we may never observe any interference between different sizes (i. e. ages)
of the universe.

1 H.D. Zeh (1970): Found.Phys. 1, 69
2 E. Joos (1984): Phys. Rev. D29, 1626
3 0. Kiibler and H.D. Zeh (1973): Ann. Phys. (N.Y.) 76, 405; W.H. Zurek (1982): Phys. Rev. D26,
1862

4 E. Joos and H.D. Zeh (1985): Z. Phys. B59, 223
5 E. Joos (1986): Phys. Lett. Al16, 6; H. D. Zch (1986): Phys. Lett. A116, 9
6 C. Kiefer (1987): Class. Qu. Gravity 4, 1369
1 H.D. Zch (1989): The Physical Basis of the Direction of Time (Springer) - Revised edition
to appear in 1992
8 M. Gell-Mann and J.B. Hartle (1990) in Complexity, Entropy and the Physics of
Information, W.H. Zurek, edt., (Addison-Wesley)
9 G. C. Ghirardi, A. Rimini, and T. Weber (1986): Phys. Rev. D34, 470; L. Di6si (1987): Phys. Lett.
A120, 377; R. Penrose (1986): in Quantum Concepts in Space and Time, R. Penrose and C.J.
Isham, edts., (Clarendon Press)
10 1.B. Hartle and S.W Hawking (1983): Phys. Rev. D28, 2960
11 W.K. Wootters (1983): Int. J. Theor. Phys. 23, 701
12 R.G. Baierlein, D.H. Sharp and J.A. Wheeler (1962): Phys. Rev. 126, 1864
13 T. Banks (1985): Nucl. Physics B249, 332
14 V.G. Lapchinsky and V.A. Rubakov (1974): Acta Physica Polonica, BI0, 1041; JJ. Halliwell and
S.W. Hawking (1985): Phys. Rev. D31, 1777
15 H. D. Conradi and H. D. Zch (1991): Phys. Lett. A154, 321
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SOME REMARKS ON QUANTUM PROBABILITIES

EG.Beltrametti
Department of Physics of the Genoa University and I.N.F.N., Genoa, Italy
M.J.Maczynsky
Institute of Mathematics, Technical University of Warsaw. Warsaw. Poland

1. Introduction

In the quantum description of a physical system the states can be viewed as prob-
ability measures on the lattice P(H) of projectors in the Hilbert space H associated
with the physical system. When dim H > 3, Gleason theorem says that a probability
measure a on P(H) has to take the form a(P) - tr (DP), P E P(H), for some density
operator D. Given D the probability that the value of some observable A is in the Borel
set E of R is accordingly given by tr (DPA(E)) where PA(E) is the prr;.>,ctor associated
to the pair A, E by the spectral theorem. Thus the notion of quantum probability rests
on the triple (H,P(H),o) in which the elements of P(H) are viewed as the "'events",
while a is a state.

In a similar way, the notion of classical probability rests on a triple (Q, F, P) where
Q? is a set interpreted as the "phase space" of the system, 1 a Boolean a-algebra of
subsets of Q and p a probability measure on E. The elements of E are viewed as the
events, while p is a state.

The key difference between the classical and the quantum case is that E is distribu-
tive, while P(H) is only orthomodular. This causes a series of departures between the
two cases. One might for instance think of the notion of conditional probability which
in the classical situation fits with a rule (Bayes rule) which is untenable in the quantum
situation.

In this paper we shall approach the problem from a different point of view: given
a set of empirical probabilities how to decide whether they come from a classical or a
quantum situation? Besides the mathematical interest of the problem. it seems indeed
closer to the experience the idea of looking at the probabilities as primitive, and derive
from them the structure of the events.

2. Some results

To present in a more compact way some results we come to a few definitions. If
S is a non-empty set. interpreted as the set of states, we define an S-probability as
an S-indexed probability, i.e., a function p : S -* [0,11. Should S be a singleton, an S
probability would be an ordinary probability; should S contain n states, an S-probability
would be a sequence (p(1)_.....p(n)) of n probabilities. S-probabilities can be endowed
with a partial ordering p !5 q .4-. p(i) <1 qi')V i E S, and with an orthogonality relation
p 1 q 4== p + q !5 1. A triple pl, p2, P3 of pairwise orthogonal S-probabilities will be
denoted A(PI, P2, P3). By an S-probability measure a on an orthomodular poset L we
shall mean an S-indexed sequence of probability measures on L; we shall say that a is
complete when a < b -.s o(a) <a (b), a, b E L.

Now we can quote some recent results(")
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Representability: Let K be a set of S-probabilities. Then K is the range of a complete
S-probability measure on some orthomodular event system L if and on!y if i) 0 E K.
ii) p E K =•- 1 - p E K. iii) A(p1 -p 2 ,p 3 ) E K , pi + pz + P3 E K.

Classical Representability: Let K be the range of a complete S-probability measure on
L. Then L is classical if and only if for any P -P2 E K there exists A(ql.q2.q 3 ) E K
such that p1 - q, + q2,p2 = q2 + q3.

Non-classical Representability: Let K be the range of a complete S-probabiity measure
on L. Then L is non-classical if and only if there exist PlP2 E K such that whenever
q, < q2 and Pi < q, + q2 for some q1, q 2 E K then p p - p2zA q1 + q 2 - 1.

It is easy, with these criteria, to check the nature of given probabilities. Let us
quote just two simple examples. both referring to the case S = {l,021}. The set
of S-probabilities K = {(0, 0), (1.0), (0.1), (1, 1 )} is classically representable (it might
come. e.g., from observations of a coin with &1,02 referring to the two coin states).
The set K = {(0. 0). (1,0)(0, 1), (3/4.1/4). (1/4.3/4), (1. 1 )} is instead non-classically
representable (it might come, e.g., from observing transmission of a photon through
properly positioned analyzers. 01. 02 being two orthogonal states of linear polarization).
In both examples (0.0) and (1,1) correspond to observing nothing or anything.

3. Other approaches

When the considered set of S-probabilities is sufficiently small (and somewhat
more structured) other approaches become tractable. We refer to Accardi's - statis-
tical invariants -(2) and to Pitowskifs polytope approachIP). By a "correlation se-
quence" of S-probabilities we mean a sequence like (pl..... p....- Pij....). 1 < i < j <_ n.
and we say that it is classically representable if there exists a classical event sys-
tem L. a sequence (a1 ,....an) in L. and an S-probability measure o on L such that
pi = o(ai),pij = o(ai A aj). We can now state some facts(1. 3 A4 '.5)

case n = 2: the correlation sequence P, -P2. P12) is classically representable if and only
if 0 < P12 < P1 < 1. 0 < P12 5 P2 < 1 and pi +p 2 - pi2<1.

case n = 3: the correlation sequence (P, -P2. p3. P23. P13, p12) is classically representable
if and only if 0 < Pij •_ pi p_ 1, 0 • Pij Pj 1. P, + Pj - Pij 1. and the Bell's
inequalities (P1 - P12 - p13 + P23 1Ž 0. P2 - P23 - P12 + P13 Ž? 0. P.3 - p13 - P23 + p1.2
0, PI + P2 + p3 - P12 - P23 - P13 < 1) hold true.

We may notice that in the special case pi + p2 = 1 (Plp2 5 0), and p12 = 0 one
recovers a 2-slit like situation, P1, P2 being the probabilities of going through one or the
other hole, and P3 the probability of reaching some region on the screen. In this case
the above inequalities lead to P3 = P13 + P'23 and pI = (pI - P23/P2)(P13/P1 - P23/p21-l
from which (and by use of Bayes formula for conditional probabilities) one gets Accardi's
statistical invariant(2 ) for the 2-slit experiment.

The case n = 4 would lead( 3 ) to the "Clauser-Horne'" inequalities. But further
increasing n, the number and complexity of inequalities grows so fast that this approach
becomes soon untractable.
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4. On the quantum case

Let us say that the correlation sequence (Pi.p..p i3 .... has a quantum rep-
resentation if there exists an Hilbert space H. a sequence (P 1 . .Pn) in P(H). and a
probability measure a on P(H) s.t. pi = o(Pi),pij = o(Pi A Pj). Call Q0 the set of
the correlation sequences that have a quantum representation: by contrast call C, the
polytope of those which are classically representable. Let An the closed convex polytope
of the correlation sequencies that satisfy the basic inequalities 0 _< pij •5 pi _• 1, 0 <

pij <pj < 1 (0 < i <j < n). Then we have(3): (i) A. D Qn, (ii) An \ Qn is the set of
vertices not classically representable, (iii) Qn D CG.

Let us add a remark on a theorem by Accardi and Fedullo1 4
) which says that, given

three probabilities p, q. r (i.e.. numbers in [0,1]) and denoting f = IP + q + r - 1- 2
pVp-r, there exist three vectors o. (,, \ in a two-dimensional Hilbert space H 2 such that

p = I(',z 4,)12. q - I(,;. \)12, r = ('. \)12 if and only if f < 0. and moreover H2 is over C
if f < 0, over R if f = 0. The proposed interpretation for p. q. r is in terms of conditional
probabilities among three events a, b. c, say p = a (a I b). q = o (a I c). r = a (b I c)
(which requires, in view of the scalar-product forms above, a. b. c to be atomic events).

If, for instance, we deal with a spin-! system and suppose a. b, c to be polarizations
along corresponding axes, then the quoted theorem can be used to draw conclusions on
the Hilbert space of the system: if a. b. c are not coplanar we get f < 0 (with the
above conditional probability interpretation) so that H2 is on C. if they are coplanar
f = 0 and H2 is on R (this fits with known properties of the 2-dimensional projective
representations of rotations).

If, as another example, the three polarizations a. b. c refer to a spin-1 system then
we can have f < 0, f = 0, or f > 0 according to different positionings of the polarization
axes, but we know that a spin-i system needs R3 as its Hilbert space. This outlines
that the last mentioned theorem does not refer, in the general case. to the Hilbert space
needed by the quantum mechanical description of the physical system: it might however
suggest the possibility of generalizations for Hilbert space dimensions higher than two.
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Conditional Probability and Strong Correlal ions
in the Quantum Theory of Measurement

Gianni Cassinelli' and Pekka J. Lahti'2

1. Introduction. The last few years have witnessed an increase of interest in the study
of the measurement process in quantum mechanics. A systematic theory of measurement
has emerged which allows one to analyse and reanalyse various aspects of measurements.
In particular, several probabilistic and information theoretical characterizations of the
measurement process have been worked out, see, e.g. [11. In this contribution we shall
present a continuation of this work Pnalysing the notion of conditional probability in
the quantum theory of measurement.

The notion of conditional probability touches the quantum theory of measurement
in several crucial points, in its probability reproducibility condition, in various correla-
tion conditions, in ideality conditions, and also in the theory of sequential measurements.
Here we shall try to explain a characterize tion of strong correlation measurements in
terms of appropriate conditionings. The very idea that the final states of the object
system and the measuring apparatus are their states after the measurement with the
condition that one of the pointer values occurs is a typical question on conditional prob-
ability. The fact that in quantum mechanics the notion of conditional probability is not
always additive with respect to a partitioning of the conditioning event calls for a special
attention to that notion.

We shall formulate our results within the ordinary Hilbert space formulation of
quantum mechanics. We follow the notations and terminology of Ref. [1). Here we
recall only that any pair (E, T) of an observable E : T P(R -s) [a projection operator
valued measure on a measurable space (Q,.F)] and a state T E T( 7 s )+ [positive trace
one operators] defines a probability measure ET : I.F [0, 1] through the trace formula
ET(X) -- tr[TE(X)]. According to the minimal interpretation, the number ET(X) is
the probability that a measurement of the observable E performed on the system S
in the state T leads to a result in the set .. If T = P[,,H] is a vector state (with a
generating unit vector p). then this probability is simply equal to (;]E(X),,;).

The notion of conditional probability is crucial for this study. Hence we briefly recall
this notion in the context of Hilbert space quantum mechanics. According to Gleason's
theorem the probability measures in quantum mechanics are generated by states T
through the formula: P t-* tr[TP]. P E P(7"s). Consider a state T. and let R E P(hs)
be a projection operator such that tr[TR] # 0. The conditional probability with respect
to R is the probability measure induced by the state T R - r . Contrary to the clas-
sical probability theory, the conditional probability tr[T R ] : P( 7 f(s) - [0, 1] is not. in
general, additive with respect to a partitioning of the conditioning event. If R = E,R, is
a decomposition of the condition R into mutually orthogonal conditions R, E P( 7 s ). the

1. Dipartimento di Fisica, Universitýi di Genova, I.N.F.N. Sezione di Genova. 16146
Genova, Italia.

2. Department of Physics, University of Turku. 20500 Turku. Finland.
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conditional probability with respect to R which is additive over R ! :'R, is the probabil-
ity measure defined by the state TE2' R,- R• R = E r Tri•ihp l

I trITR i r
ity measure defined by lie property tr[TER- P] = t,-[TRpI for each projection operator
P in any segment [0, R,] [21. Clearly. tr[TE ' R] = 1 and tr[TI- R' R,] = tr[TR,[/tr[TR]
for each i.

In its usual formulation the measurement theory of an observable E of the object
system S starts with fixing a measuring apparatus A (with a Hilbert space RA), its
initial (vector) state (D E RA,. a pointer observable PA : -F £(7/.A )+. and a measure-
m-nt coupling ' : s RS, ýHA -* Rs 7.1-A (a unitary operator). The interpretation of the
resulting quadruple (R- A, PA., [, U) as a measurement of E starts with the assumption
that if p E 'Hs is an initial (vector) state of the object system S then U(; :' I) is
the final (vector) state of the compound object-apparatus system S + A. The reduced
states Rs[P[U(p 3 $I)fl and TZA[P[UL(. :- •)J] are then the final states of S and A.
respectively. As a rule. they are mixed states. (Here Rs. RA denote the partial traces
over the apparatus and object system Hilbert spaces R-1A and 'Hs. respectively.) The
basic requirement for (7MA., PA. (D, U) to constitute a measurement of E is the probabil-
ity reproducibility condition: (4]E(X);) = tr[R.A[P[U(; : )]jPA(X)] for all X C F.
and for any vector state ;ý E R-s. Quadruples A4u -_ (HA. PA.(b, U) which fulfil this
condition are known as normal unitary premeasurements of E [1].

We close this preliminary section with recalling the notion of a reading scale. A
reading scale is a countable partition of the value space Q. that is Q = uXX,. X, E F.
X, nXj = 0 for i 5 j. Such a reading scale will be denoted R. A reading scale 7?
determines a discrete. coarse-grained version of the tpointer observable PA. PA
P,,, -- PA(X, ). The Pg-value i refers to the pointer value X, which, in turn. may refer
to the value X, of the measured observable E. It is with respect to such a reading scale
that measurement results are to be recoded.

2. Conditional final states. Consider a premeasurement AMrt- of an observable E.
If , is the initial state of S. then U'(;- :: D) is the final state of S + A. Togther with
a condition 1 :I PA(X). this state defines a (nonnorrialized) conditional final state of

P[U(,ý : ,It,)] , I .:. PA(N )P[i'(,; [: ,)I P.(X )
Up to a normalization. this is the final state of S + A wvith the condition I PA(X A

that is. with the condition that the pointer observable PA has the value X. The corre-
sponding final (nonnornialized) states of S and A are

Rs[I -:: PA(.X)P[U',p 9-. 4)]! PA(X)[ = Rs[P[U(p: D)]I PA(X)1

and

RIA[I i: PA(X)P[U(p :,)]I :: PA(X)ý = PA( 2 '-' A[P[U1.; ()]1]PA(X)

respectively. Let N 2 " ' (,pIE(X),). and denote

Ts(X.V.) -- .2,R 5s[P[U(;: , t)ll PA(X)[

TA(X.;) - .P(X)RAI[P[W(,p ')]]P.(X

1
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whenever V. 2 0. We also define Ts(X.-,) = 0 = TA(X,.) whenever (;[E(X"•) = 0.
We call Ts(X, .p) and TA(X, ,p) the final (X-)component states of S and A. respectively.
These states are conditional sqtates, that is. they give rise to conditional probabilities.
Indeed, TA(X,;) is the final state of A with the condition PA(X). In this state the
pointer observable has the value X in the sense that tr[TA.(X, )PA(X)] = 1. Similarly.
Ts(X,.P) is the final state of S with the condition PA( X). Clearly. tr[Ts(X. )E(X)] =
1 need not hold now; the probability for E(X) in the final X-component state Ts(X.;)
of S need not be equal to one. (For further details, see [31).

Consider still a premeasurement "MI of E. and fix a reading scale 7?. For any
X, E 1 we denote Ts(i.pv) - Ts(Xi,;), TA(i.p) - TA(X,.). and .VN - \V2. These
states are conditional states. They are the final (i-)component states of S and A.
with the condition that the pointer observable PA has the value X,. The reading
scale 7? defines a partitioning of the trivial condition PA(Q) into (mutually orthogonal)
conditions PA., -- PA(X,). The final states of S and A which give rise to conditional
probabilities which are additive over the decomposition PA(Q) = E, PA., induced by R
can be determined. The conditional state of A. defined by the final apparatus state

TA(, P) = TZA[P[U(I 3 It)]] and the condition (reading scale) 7? is

TA(7..P) ZPA.,iTA(Q-)PA., = NYTZ A ý,)

In general, TA(.X7?) 7 TA(Q-,). since TA(Q-..) need not commute with each PA.,
Due to the special structure of the states Ts(X. •) we. however, have

Ts(Q. ) = ZN2,Ts(i.;) - TS(.

for any reading scale R (and for any initial state ; of S).

3. Strong correlation measurements. Consider a premeasurement ."I, of an
observable E, and fix a reading scale R. With respect to this reading scale, if ,; is
the initial state of S. then Ts(i,ý) and TA(i. p) are the final i-cotuponent states of S
and A. The final apparatus state is TA(Q.,) and it can be expressed as TA().,;) =
EjPA.,TA(Q, ;)PA.i. The final state of A with the (additive) condition 7? is. however.
TA(7?,,) = EPAITA(Q,p)PA.. The question which we should like to address here
is the following: when do the above two states coincide? In other words, under which
conditions the final apparatus state equals to the final apparatus state with the condition
that one of the mutually exclusive pointer readings occurs. It turns out that for a given
reading scale 7? and for a given initial state .p of S this is the case exactly when the
final component states Ts(i. •) and TA(i,?.;) are strongly correlated [3]. To formulate
this result properly we remind ourselves that the correlation p(Ts(i. ). T.AO(i. ). U()ý;:
,b)) of the component states Ts(i,i) and TA(i.;) in the final state Ut(,; I P) of S +
A is strong exactly when the (marginal) probability measures defined by the pairs
(Ts (i, ;). Ts(Q.;)) and TA (Ti,.;). TA.( )) are linearly dependent [4].
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Theorem 1. Let (7"i4 , P 4 , 4t, U) be a normal unitary premeasurement of an observable

E. For any reading scale 1Z and for any initial vector state 'P of the object system, the
following two conditions are equivalent:
(a) T 4 (Qp) =TA(To);

(b) p(Ts(iUp),T 4(i,;),U( Olt))= 1 for each i = 1,2,.. forwhichN,2 $0.

We go on with studying a premeasurement "Mu of an observable E. If ; is the
initial state of S, then Ts(X, y), X E F. is the final X-component state of S after
the measurement with the pointer condition PA(X). Moreover. with respect to any
reading scale 1R, Ts(Q,.p) = E iNTs(i,ý) = Ts(TZ,o). As it was already pointed out.
the conditional interpretation of Ts(i, ,)) does not imply that tr[Ts(i,P)E,] = 1 (with
Ej = E(Xi)). Thus the final Xi-component state Ts(i,•2) of S need not be the final
state of S with the condition Ei. Though Ts(Q.•p) = Ts(RTp), the equality Ts(Q,p)
= EiEiTs(Q, ýp)Ej need not hold. We shall now address to the question under which
conditions the final state Ts(Q, V) of S admits a conditional interpretation with respect
to the (additive) condition I = EiEi.

There are, at least, two ways to tuckle this question. The first, and, perhaps. the
most natural approach is to ask when does the equality Ts(%?.P) = .iE,Ts(Q,,;)Ei
hold for a given reading scale 1T and initial state V. It appears that this is the case
exactly when the values of E and P 4 associated with 1Z are strongly correlated in the
final object-apparatus state U(p C 4)). The other, more restrictive approach is to ask
when does the equality Ts(Q., ) = EiEiP[2]Ej hold. It turns out that this is the case if
and only if the measurement is ideal with respect to 1?. Here we shall concentrate only
on the first approach. To do that we shall recall that the correlation p( Ei,. Pi, U(; C" It))
of the values Ei and Pi of E and P 4 (with respect to 7?) in the final state U(; 3 4)
can directly be computed. and the strong value correlation p(Ei. P,, U(" s 4)) = 1
is obtained exactly when the equality tr[Ts(f2.p)Ej] = tr[TA4 (SL )PiJ holds true [4].
Then we obtain [3]:

Theorem 2. Let (MA. PA, -,, U) be a normal unitary premeasurement of an observable
E. For any reading scale 1? and for any initial vector state ) of the object system, the
following two conditions are equivalent:
(a) Ts(Q,;)= Z,E:Ts(Q.,p)Ej;
(b) p(E 1,Pi.U(; Q4))) = 1 for each 1 = 1,2, for which N? # 0.
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A DISCUSSION
ON SOME THEORIES OF QUANTUM MEASUREMENT*
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1. In the ordinary formulation of quantum mechanics the principles concerning
measurement - the probability law (PL) and the reduction postulate (RP) - deal
with the measured system S alone. The measuring apparatus A is supposed to be there
but it remains outside the description. The theory of measurement consists in applying
the quantum principles - first of all the Schr6dinger equation (SE) - to the compound
system S + A and in deducing from such a description the usual postulates dealing with
S alone (or at least in showing the consistency of the two descriptions). This program is
not universally accepted: according to the Copenhagen interpretation the description of
the apparatus is necessarily classical so that a quantum treatment of S +A is impossible.

In the ideal situation the dynamics of the system S + A shall be such that

I'm)A) ,A..SE

where , are the eigenvectors of the measured variable and IAm.,) those of the pointer
variable. Then because of linearity of SE one gets

(1) Z,,.m lmJ m) s_• Z,,amIt',)IAm.... ),

while according to PL+RP (and to common sense) one should find

(2) - am l ) PL+RP

each I happening with probability jail2. In its essence this is the problem of the theory
of quantum measurement.

In the orthodox theories of measurement, the unrestricted validity of the Schr6d-
inger equation and the completeness of the description provided by the state vector
are not questioned. Examples, which will be discussed here, are the orthodox effec-
tive incoherence (OEI) theories and the approaches based on the concept of history.
Counterexamples are models describing reduction as a real physical process and hidden
variable theories.

2. OEI theories go back to the work of Daneri, Loinger and Prosperi.1 They
constitute the most numerous family of theories of measurement. The few references
we give here`- do not exhaust even the most relevant ones. The logical structure of
these theories is schematically

SE + PL + AM equivalent to SAME + RP.

* Supported in part by Ministero dell'Universiti e della Ricerca Scientifica e Tecnologica
and Istituto Nazionale di Fisica Nucleare.
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where AM indicates a suitable assumption on measurability of the quantities of the
system S + A (or S + A + E, E being the environment). A preliminary statement is that
quantum mechanics deals only with ensembles. Then it is shown that, for any actually
measurable quantity of S+A (or S+A+E), probabilities can be calculated omitting the
cross contributions between t;ie terms of the r.h.s. of eq. (1). It is concluded that the
superposition appearing in (1) is effectively incoherent, i.e. equivalent for all purposes
to the mixture given by (2). The various theories differ from one another essentially in
the type of limitation which is invoked. The above account is obviously incomplete and
oversimplified but it gives the essence of the argument.

The question immediately arises about OEI theories whether we can reconcile the
fact that in a single measurement we actually get a definite result with a description of
the system devoid of any counterpart of such a definite result. Remember that the state
vector is always given by the Schr~dinger equation and that the only link between the
state vector and the results of any (allowed) measurement is the probability law. Let
us consider two successive measurements of the same quantity of S. The state vector
undergoes the evolution

Jz4")JA')JA0) -- J:mam.•'m)JA'4msl4 , 2)m[m)" ... _)J ...

If we apply the probability law to a third measurement consisting in looking at the
pointers of the first and second apparatus, we find that the probability of equal results is
1. If, instead, we apply the probability law after the first to the second measurement for
the subensemble, say, for which the result I has been obtained, we find Pr (1) = la, 2 < 1.
We meet an inconsistency, which comes from allowing a selection of the members of
the ensemble. A similar inconsistency is met4 if the description is applied to finite
ensembles. We conclude that OEI theories are consistent only if applied to indivisible
infinite ensembles. One can easily show that this kind of inconsistency disappears
in those theories of measurement in which the description of the system includes a
counterpart of the obtained result. However. effective incoherence is a fact, of vital
importance for any theory of measurement.

3. The history approach was initiated recently by Griffiths5 and continued by
Omn~s6 and Gell-Mann and Hartle.7 A critical study. to which the present discus-
sion is largely inspired, has been given by d'Espagnat.' We shall refer here to the
version of Ref. 7. It is a probabilistic theory of the universe (which implies to in-
terpret probabilities as propensities). The key concept is that of decoherent set of
alternative histories. One starts considering projection operators in the Heis~nberg pic-
ture: P(t) = eiHt/hP(O)e-iHt/h. Then a set of alternatives is a set P{ 0 1 (t) such that
PQ(t)Po(t) = 6.,P0 (t), E,,, P.(t) = I. A particular history [P•] is a particular time se-
quence [P,, (tl), P. 2 (t 2), .... P,. (t,)] of alternatives and a set of alternative histories
(SAH) [P(,,] is a time sequence of sets of alternatives. A history is a coarse(fine)-
graining of another if the set EPQ] of the first (second) history consists of sums of the
[P,,] of the second (first) history. One proceeds further defining for a SAH the decoher-
ence functional

(3) D ([P., I,[P.]) = Tr [P•n,(t.) ... P., ,(ti) ,)(¢,IP., (ti) ... P".n (t.)]
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where I4) is the initial state vector of the universe. A SAH is decoherent (DSAH) when

D([P.,] , [P.1) o0, for any Ck' #'ak.

It is a property of a SAH which depends on 1w) and on the dynamics embodied in
the time evolution operator. SAWs specified at only one time are all decoherent. It
is easily seen that coarse-graining preserves decoherence and fine-graining can destroy
it. Therefore some DSAH's are maximal with respect to fine-graining. Let [P{.)] be a
DSAH, and [As{)] a coarse-graining of it, which is also a DSAH. Then

!z
-D ([Pj], [P,31) :z E D<([P.,],[(P,1)

"all)P notfixedby [P,]

This additivity property allows one to interpret the (diagonal) elements of D as the
probabilities of the various histories within the DSAH to which D refers. One writes
therefore the fundamental formula7

DO([P.,], [P.]) ;:z 6a,'o.. a', Pr ([P,]).

The origins of decoherence have been extensively discussed by the authors of the history
approach. In the situations of interest for the theory of measurement, decoherence is
related to the same limitations on measurability on which are based OEI theories.

In the history theories, the element of our description of physical systems (except
the universe) is no more the state vector, it is the (decoherent) history. This charac-
teristic fact has important consequences. The first one is that the kind of inconsistency
we find in OEI theories is overcome. In fact, in such theories the probability law is
to be applied to the state vector any time we perform a measurement; here, instead.
probabilities refer to whole histories. In the situation considered above, one simply finds
that, in the relevant DSAH, histories with different pointer positions have probability
zero because of dynamics.

Given the initial state of the universe and its dynamics there are many DSAH's
and even many maximal DSAH's. The following question is legitimate: what does
decide, if anything does, between two histories belonging to different DSAH's? It is
not chance, because probabilities can be assigned only within one DSAH. One can
answer that, given IV), it is the dynamics of the universe that decides what is the
relevant DSAH. Alternatively, one can state that we have free will and that it is our
decision about what to measure that chooses the DSAH. The first answer is probably
more adherent to the spirit of a cosmological theory like that of Gell-Mann and Hartle,
even though, in my opinion, denying free will goes beyond a reasonable application of
present day science. Anyhow, the first answer implies that one needs something besides
the fundamental formula, which, on the other hand, seems to incorporate completely the
initial condition and the dynamics through eq. (3). The second type of answer appears
to me less metaphysical. It has some odd consequences as it will be discussed below. I
think that the structure of the space of DSAH's should be studied and the problem of
the choice of the relevant DSAH discussed thoroughly.

At any rate, it has been pointed out by d'Espagnat8 that, as a rule, there are
different equally relevant DSAH's the choice among which is completely arbitrary.
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Suppose that at time to the component S. and at time t2 the component Sý of the
spin of a certain particle are measured. We know from the above discussion that

(to), PS (t2)] is a DSAH. But then also [), Ps,') (t2)

and [PS{, (to),PS, (tP)"PS} (t 2 )] are DSAH's. Since the two specifications at

time tj are incompatible they cannot be both true. According to Omnbs they are reli-
able. But it remains the fact that histories cannot be thought simply as unfoldings of
true assertions about the system.

Another problematic feature of history theories is the future-past relation. 9 In
order to make predictions about a tomorrow's measurement I must foresee what type of
measurement I will perform, consider the corresponding SAH, ascertain its decoherence
(no problem), calculate the probabilities. Assuming free will, what are the relevant
DSAH's depends on what I will decide tomorrow. Since the set of relevant DSAH's
specifies what quantities today have reliable values, we must conclude that in some
sense the future can influence the past.

4. History theories appear to be an important improvement of the Copenhagen
interpretation, essentially because they provide a quantum description of the system
S + A. They are also an improvement with respect to OEI theories, which we found
to be not fully consistent. However, the fact that only a part of the assertions making
up a history can be said to be true (in practice, those more directly related to readings
of instruments) is a severe limitation of our faculty of predicating something about the
system we are considering. If, on the other hand, we tend to give some value of truth
to reliability, then we must either deny free will, or accept that the future can influence
the past.

My conclusion, not a new one, is that the history interpretation of quantum me-
chanics provides a consistent set of precise rules for making previsions, but that it does
not allow to ascribe individual properties to physical systems beyond those directly
related to measurements.
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1. Quantum Measurements.

Measurement and state preparation procedures are often discussed in terms of
the projection postulate, i.e. sudden and non-unitary processes are employed to
accomplish a measurement or a state preparation. Our object here is to try to show
that the mathematical structure of orthodox quantum mechanics is rich enough to
allow the formulation of "continuous" unitary processes for measurements and for
state prepara..

Consider the measurement of an observable A having eigenvalues a,. A typical
quantum measurement process involves the following two steps.

Step one is referred to as a spectral separation step. This involves the splitting up
of the initial wave function into spatially separated components; each component
corresponding to an eigenvalue aj (M. Namiki, Found. Phys. 18 (1988) 28).
These components are then guided towards detectors at different locations. Step
two involves the direct detection of the particle by detectors at various locations; we
call this the local position measurement step.

A spectral separation is a time evolution process. The question is whether there is
an interaction described by an observable H which can produce the desired spectral
separation of the wave function. Mathematically we seek a unitary evolution group
U, where Ut = e-"/4 (t E R), which will cause the initial wave function to undergo
a spectral separation in time.

Suppose A has a discrete and nondegenerate spectrum with eigenvectors Oi cor-
responding to eigenvalues aj. Then A = EajP, where P, = WJ,. Let 0 be
a given initial state. Then we have (1bIA) = E Jcj 2aj, where 1 = E cj4)j, and
ci = (IDJP0q) = (€4ýI). The quantity Icil 2 represents the probability of obtaining
the value a,. Under an evolution group U we have 4b, = ,cjUtoj

To achieve a spectral separation we want the Utoj to evolve into different spatial
regions at large times. Let Ai be a collection of disjoint regions in space R3, and let
tAi denote the set {txIx E Aj}. Then the regions tAi in R 3 are mutually disjoint
for each t > 0. We want each state Ugoj to evolve asymptotically into the region

3~.

The following diagram illustrates the idea.

1
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01

Let be the characteristic function of the region tA3 . We want

Jim IIXtA,U,•II = 1, or equivalently Iim(U*,jXIX,,,j) 1.

The next step is to detect the arrival of the particles at detectors located in various
regions. The count or count rate detected in region tA3 should give, with arbitrary
accuracy, the probabilities Vcil 2 needed to obtain (OIAO).

Let us now carry out a more detailed analysis. Given a finite number N of
detectors we can place them in N disjoint regions, e.g. {TAj11 < j < N}, at
some large time T. This implies we can only positively detect the components
{UTril1 < j 5 N} and therefore can only measure the observable AN = >

4 N=, a3 Pi.
This is good enough because for every 0 in the domain of A we have A, =

limN-o ANO, and the operator AN has the same eigenvectors Oj and eigenvalues
ai as A for j = 1,.. . , N plus an additional infinitely degenerate eigenvalue 0. Writ-
ing 4 = fN + ONA where ON = c•=l cO, and 'f' is orthogonal to 4jv, .we obtain

(0 IAN'0) = yq=1 c3 12a3.
The question now is whether there is an evolution group U which can effect a

spectral separation of the initial state 0) into its components Ut l,. ., UtON, Utok*

The answer is given by the following result.

Theorem 1. (K.K. Wan and R.G. McLean, J. Phys. 24A (1991) L425) Let
{1jl < S < K} be a finite orthonormal set in L2(R 3 ) and let {A 3 Il < j ! K} be a
set of disjoint regions in R 3 . Then there is an evolution group U on L 2(R3 ) such
that

1. limi•.o(UtijIXt,,iUtij) = 1, i.e. Utabj evolves into tAj asymptotically;

2. every element of L 2(R 3 ) is a scattering state of U;

3. the wave operator f1+ = s-lim5.o. U*U' exists and is unitary, where U0 is the
free evolution group.

With K = N + 1, 4'j = Op, IPN+1 = 0D the theorem ensures the desired spectral
separation, i.e. the existence of an evolution group U such that

firn(Ut•jIX,&Ut•#) = 1 (1 S< j _ N)

for some disjoint regions A,.., A.
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We can now obtain each Ic, 12 by a local position measurement at some large time
T using a detector sited in the region TAj; these detectors Di measure the local
position observables XTA*" Intuitively we have:

[D3 TAi

Ut0 U r)2 D2; TA 2

U'4)1  [b-, TAI

Mathematically we have the following consequence of Theorem 1.

Corollary. lim(Ug'Z'IXtN',UtD) = cjV12.

It follows that the probabilities Ic, 1' (1 < j < N) are obtainable by measuring
the local position observable XTA, at time T. Hence we can obtain

N

(IANO)= E Ic,12aj.
j=1

Conclusion. We have indeed a unitary evolution process which reduces a
general measurement to local position measurements.

2. State Preparation.

We want to prepare an arbitrarily chosen state 0 by a unitary evolution process
without a sudden wavepacket reduction. This can be achieved by the following.

Theorem 2. (K.K. Wan and R.G. McLean, preprint, 1991) Given any unit
vector 4 in L2(R 3) there is a selfadjoint operator H with the following properties:

1. HO = 0 i.e. 4 is an eigenvector of A corresponding to the eigenvalue 0;
2. every vector orthogonal to 4 is a scattering state of H;
3. the wave operator Q+ = s-limh-oo UUU° exists, where U is the evolution group

generated by H, i.e. Ut = e-iHIt (t E R).

First consider the case of an ideal particle source, i.e. suppose that we are given
a source which produces particles in a definite but unknown pure state 0 at the
rate of one particle per unit time. We want to "process" these particles to produce
some particles in the desired state 4. Let 0 = aO + bo' where g15 is a unit vector
orthogonal to 4. Theorem 2 then implies the existence of an evolution group U
under which 4 is a bound state and Uq5 = 4 for all t, and 01 is a scattering state
(W.O. Amrein, Non-Relativistic Quantum Dynamics, Reidel, Dordrecht, 1981).
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Now for any bounded operator B on L2(R3 ), limto(0?BUt04?) = 0 (K.K. Wan
and F.E. Harrison, preprint, 1991). So at large times the scattering state 0,L is not
correlated to the bound state 0 by any observables and the linear combination

Ut4b = aO+bU,0'

becomes indistinguishable from the mixture represented by the density operator

Pt = a*aP, + b'bPu,i..

That is lirn (Utt4D BUtD) = lim Tr(Bpt)

for all bounded operators B. In other words at large times T we have a mixture of
the desired state 4? and the state UT0± which is far away.

We can make everything precise by introducing the concepts of states at infinity
(K.K. Wan and R.G. McLean, preprint,1991) and of asymptotic superselection rules
(K.K. Wan and F.E. Harrison, preprint, 1991).

Now consider the case of a random particle source, i.e. suppose that the particle
source produces particles in various states in some random manner, e.g. these various
states form a dense set in L'(R3 ) and they appear with certain probabilities. Then
the same evolution group U again produces particles in the desired state 4? This is
a useful result since in practice a particle source is likely to be a random souico.

Let us now consider spin. The traditional Stern-Gerlach set-up does not lead
to spin measurement with arbitrary accuracy because the set-up cannot eliminate
the overlap of the spin-up and spin-down beams even asymptotically (P. Busch and
F.E. Schroeck Jr., Found. Phys. 19 (1989) 807).

Question: Can spin be accurately measured at all, or equivalently, can the spin-
up and spin-down components be asymptotically separated by some interaction?

Answer: Our present analysis can be extended to prove the existence of an evo-
lution group U' acting on the Hilbert space 7"W = L2 (R3 ) WC2 which can produce
the desired spectral separation, i.e. to separate the spin-up and the spin-down com-
ponents asymptotically. This should allow the measurements of spin with arbitrary
accuracy. Our present analysis can also be extended to allow the preparation of
definite spin states (K.K. Wan and R.G. McLean, preprint,1991).

3. Final Remarks.

In practice we often use the waiting technique to prepare the ground state of a
system, i.e. we simply wait for the system to settle down into the ground state. This
is a method of preparing a state asymptotically in time. L.E. Ballentine (Quantum
Mechanics, Prentice-Hall, 1990) discusses this method and the type of potential re-
quired to prepare certain states. Our analysis is a general mathematical formulation
of an asymptotic method for measurements and for state preparation.
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1. Introduction

In [5], Wigner posed a claim that observables which do not commute with the addi-
tive conserved quantities cannot be measured precisely. Araki and Yanase [1] gave
a proof of this claim, later called the Wigner-Araki-Yanase theorem, for measure-
ments of discrete observables and bounded conserved quantities, and showed that, if
the conserved quantity L1 is of finite rank, an observable A not commuting with L,
can be measured approximately. A little later, Yanase [8] obtained, by macroscopic
approximation, an upper limit for the accuracy of the measurement of the spin com-
ponent in terms of the size of the apparatus. Since then, there has been continuing
researches on this subject, and the following statements are currently supported in
the literature: No observable which does not commute with the additive conserved
quantities (such as linear or angular momentum or electric charge) can be measured
precisely, and in order to increase the accuracy of the measurement one has to use
a very large measuring apparatus [7, p. 14]. However, no rigorous approach to this
subject has been advanced much, and the following problems still remain unanswe-
red; 1) to prove the Wigner-Aralki-Yanase theorem for continuous observables; 2)
to determine if the theorem holds for unbounded conserved quantities; 3) to obtain
the bound for the accuracy of the spin measurement without any macroscopic ap-
proximation. In order to solve these problems, in this paper we shall introduce a
new rigorous approach based on the analysis of commutation relations obeyed by
the noise operators, and give rigorous results for the above problems.

2. Noise commutation relations

Let R, be the Hilbert space of an object and R"2 the Hilbert space of the measuring
apparatus. Let A be the observable (self-adjoint operator) of the object, which is
to be measured by the apparatus, and B the observable in the apparatus actually
measured by the observer. Let U be the unitary operator on R, 0 Rt2 representing
the time evolution of the object-plus-apparatus during the measurement. Suppose
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that there is a pair of observables L1 in W"t1 and L2 in W"/2 representing an additive
conserved quantity, i.e.,

[U,Ll 0 1 + 10 L 2] = 0.
In order to generalize the Wigner-Araki-Yanase theorem to measurements of conti-
nuous observables, it is convenient to discuss the problem in the Heisenberg picture.
The noise operators N, and N2 are then defined by

N, = Ut( 0B)U-A®I,

N2 = U((A0I)U-A01.

The following theorem gives fundamental commutation relations obeyed by the noise
operators.

Theorem 1. We have the following relations:

[N,, Ut(L, 0 1)U] + [N2, Ut(l 3 L 2)U] = [L1.A] 0 1, (1)
[N,,L, C I + 0 L2j = [L,,A] 1 - 1t(l 0[L2 , BD)U, (2)
[N2, L, 01 + 1 0 L 2] = [Li,A] 3 I - Ut([L1,A] 0 1)U, (3)
[N,,Ut(1 0 L2 )U] + [N2, Ut(L, 0 1)U]

= [L,, A] 0D1 - ut([L1 , A] 3 1 + 1 0 [L2, B])U. (4)

3. A generalized Wigner-Araki-Yanase theorem

We say that the unitary U gives an exact measurement of A with meter B, if for any
S> 0 there is some E 7"11 with I = 1 such that for any a, E ?"i2 with I1¢11 = 1
satisfying

(V, D IN IO ) = 0, (5)
(0, ® 'V•, ®20) =0, (6)

10I 1N,( , o 0)11 < •,(7)
IIN2•(-' 0)11 <e (8)

It is easily seen that the above conditions are rigorous requirements for that, when
the apparatus is prepared in the absolute precision before the measurement, the
measurement represented by U satisfies the statistical formula for the outcomes of
the measurement [4, pp. 200-201], and the repeatability hypothesis [4, p. 335].

The following theorem generalizes the Wigner-Araki-Yanase theorem to the case
where the observable has a continuous spectrum.



226

Theorem 2. If [A, L1] # 0, and if LI and L2 are bounded, then A cannot be
measured exactly.

Proof. Suppose that A can be measured exactly. From Eq. (1) and the Schwarz
inequality,

I(•'I[A, L1JI')JI _< 2(ijVi(w' cD ý)I[ JILII + II,2(-4' ,, )11 jIL211)
< 21 (IILLII + I1L211).

Since E and 4, are arbitrary, we have [A., L1] = 0. C3

Contrary to the standard understanding of the Wigner-Araki-Yanase theorem,
the following theorem shows in particular that the momentum conservation law does
not prevent exact position measurements.

Theorem 3. If [A, L1] is a c-number, then A can be measured exactly with B
such that [B. L 2] = 0.

Proof. By uniqueness of representations of the CCR, it suffices to consider the
case where the object is a one-dimensional mass with position x and momentum p.
and A = i. LI = liý, For this case, a counter example is obtained in [2). 0]

4. Bound for the accuracy of spin measurements

Now we shall consider the case where [B, L2] = 0. In this case the measurement of
B is not limited by the additive conservation law of L 2.

Theorem 4. If[B. L 21 = 0, wze have. for any z;' E 2" and H • 7" 2 with I1I = 1.

IK''I[L 1,A1Kt')I < 211A,(v 0 )• II--ALZ' 3 v + L' L23 .

Proof. From Eq. (2) and the Schwarz inequality,

I • ,'[Li,,AI, ' I(A' I[NA , L I C 1 + 1 L 2]14  :':

< 211-& I,(t O, )1D ) IIALiv' - • + t' - L2 .

For tv = r . y , z, let .• be the spin observable in the w-direction of an object
with spin 1/2, oa. the positive spin state, 3,,. the negative spin state, and i•. the
angular momentum of the apparatus in the tc-direction. Yanase [8] considered the
following measuring interaction U of a measurement of the x-component of the spin.

UJ(o,,3) = Q•rJ•X +3x2?l,
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where , is the initial state of the apparatus, and X, and X' are eigenvectors of B
for different eigenvalues. In this case. A = s, and we -hall consider the additive
conservation law of the s-component of the angular momentum. i.e..

[u., 4- + L] = 0.

We suppose that B commutes with L,, and define the total error probability of thi.
measuring apparatus by

f = 1HI2  + 11 ',1 .

Then the following relation is obtained by applying Theorem 4 to v= a, (cf.

[3]):
h 2

C>- 2h2 + 8(,)2'

This relation coincides with the bound obtained by Yanase [8]

h2
> (L?)+ (L

in the macroscopic case where h12 << AL2 ; (LL), and coincides with the Sound
obtained by Wigner [6]

h2

in case where h2 <K AL2 • (L2)/4, the latter relation of which follows for instance
from that L, is uniformly distributed in the pcsitive part of the spectrum.
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The problem of quantizing a simple harmonic oscillator is examined on the basis
of some general fbrmulae. All known, as well as new. methods of quantization are
incorporated into our framework. Remarks are also made on some related problems.

1. Theme

Professor Wigner's original theme on which our following discussions will be based
is the one presented in his 1950 paperi", titled "'Do the Equations of Motion Determine
the Quantum Mechanical Commutation Relations'- For the case of a simple harmonic
oscillator in which we shall hereafter be interested his question can be stated more
explicitly as: whether the canonical commutation relation between the coordinate Q
and its conjugate momentum P Q, that is,

[Q.P)=i (1)

is the unique possibility of quantization, when both the classical equation of motion

Q+Q=0, (2)

and the classical expression for the Hamiltonian

H = 1(p2 + Q2) (3)

are to be preserved after quantization. where our units are such that ni = = 1.

In addition to these the Heisenberg equation of motion, of course, is taken for granted

iA = [A, H] (4)

for any operator A4.
Now, the answer given by Wigner himself to the above question is that there exists

an infinite family of possibilities, parametrized by E0 > 0. the minimum eigenvalu'
of H, and that the canonical quantization corresponds to the simplest nontrivial case
E0 = 1/2.

In the present paper we shall try, so to speak. a number of variations on this theme
by Wigner. and supplement them with some remarks on related problems.

2. Formulation of the problem
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Instead of Q and P we employ three operators a,at and N H such that

1 1
a-- (Q+iP), at -(Q-iP), N=Nt. (5)

Let us then assume that

(J) [a,N] = a, [at,N] = -at; (6)

(II) N = F([at,a].) or [at,a],, = F-1(N) = G(N); (7)

where [A, B]0 = AB + aBA with a 54 0, and G(x) is a real function of x, and (III) that
there exists at least one representation in which the spectrum oi N is bounded below
2)

Since H = N as noted above, (4), (5) and (6) lead us to (2). On the other hand.
(I) and (III) imply that the n-th eigenvalue NY of N is of the form: N, = No + n with
n = 0. 1.2... .(hence E 0 = NO). Thus, a. at and (N - No) play the roles of annihilation.
creation and occupation number of energy-quanta, respectively. Further, the use of (7)
enables us to see that the eigenstate IN, >- In ý> of N with eigenvalue N0 is non-
degenerate, provided 10 > is taken to be so. All matrix elements of a and a t are then
fixed to be

< nlaln + 1 >=< n + loatin >= ,(n), (8)
n

I(n) =_ II atin > 112 (-1)a-(m+l)G(n - rn) > 0, (9)
M=0

where G(n) =_ G(Nn).
Quantization in our formulation is thus completely specified by a. G and No. The

condition (9) determines whether n has no maximal value(Bose-like) or has the maximal
value n.,,, < ce (Fermi-like).

3. Variations

By suitably choosing a., G and NO we can accomodate, in our framework, various
methods of quantization so far proposed. and moreover invent new ones.
Theme: Wigner quantization (Bose-like, N0 > 0). Wigner's results") are reproduced by
putting a = 1. G(N) = 2N, whence I(n) = n +2N 0 (= n+ 1) for n=even(odd). Bose(or
canonical) quantization (N0 = 1/2) and para-Bose quantization'•( No = p/2,p =
1, 2, 3....) are special cases thereof.

Vat.l: para-Fermi quantization3
)(Fermi-like, NO - -p/2 = -na,)- a = -1,G(N) =

2N, whence I(n) = -(n + 2N 0 )(n + 1). Note that no other values than No = -p/2 are
permissible here. Fermi quantization (p = 1) is a special case.

Var.2: q-deformed quantization (Bose-like, q > 0, No real). The choice4 ) a = -q-',
G(N) = _q-(N+l) leads to I(n) = In + 1]qq`0, where [XJq = (q' - q-Z)/(q - q-'). On
the other hand, the choice5 ) a = -1, G(N) = [N]q - IN + 1]q leads to I(n) = (n + 1 +
No]q - [No]q. Note that the above two choices are equivalent only for No =- 0(contrary
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to the statement often made in the literature).

Var.$: q-deformed Wigner quantization (Bose-like, q > 0, No > 0). To generalize the
original theme we put a = 1, G(N) = [2N]q. Then I(n) = [n + 2No]q{n + l}q(=
{n + 2 No}q[n + 1]q) for n=even(odd), where {X}q = (qx + q-z)/(q + q-1 ).

Var.4: q-deformed para-Fermi quantization (Fermi-like, q > 0, N0 = -p/ 2 ). To gen-
eralize Var. 1 we put a = -1, G(N) = [2N]q. Then I(n) = [-(n + 2No)][n + l1q.
Variations similar to Var. 3 and Var. 4 were also discussed by other authors6).

Var.5: O'Raifeartaigh-Ryan-Gruber quantization7) (Bose-likeNo > 0). In this case
a > 0, G(N) = N. The expression for I(n) is easily found from (9).

Var.6: T-D cut-off deformation (Bose-like, q > 1, No real). The choice a = -q,
G(N) = -q-N leads to I(n) = (n + 1)q-(No+n+1). Since I(n) - 0 as n - cc, the
mechanism of the so-called Tamm-Dancoff cut-off is built in here.

Var.7: Greenberg's q-mutator") (Bose-like, -1 < q < 1, N0 = 0). Having a = G(N) =
_q-', this is an exceptional case in that (7) no longer defines N, but serves instead as
"a commutation relation. By using this relation, however, we can determine N in such
"a way that (6) holds true. the result being

N=• (1 - On n. (10)n = 0 ( 1 - q ) ( a t a "

4. Coda: Supplementary remarks

(a) It is possible to express general operators a and at in terms of the ordinary Bose
operators b, bt and Nb =btb together with Ao:

a Ub, a t _ btut;

U .... 1 1-(n) ,btnsin(TlNb)b (11)
n=0 n! n+ 1' 7

(b) It is not difficult either to construct a single coherent state for the operator a. In
the Bose-like case, for example, it is given as

Jý >= [Exp(ý* )1-l/2 Exp(ýat)10 >, (12)

where Exp(x) = •['•=xn/ < n >!, < n >! =-< I >< 2 > ... < n >. < n >=
I(n - 1) and ý is taken to be a complex number. When a set of coherent states are
concerned, corresponding to different eigenvalues ý, ý'...., a question arises, however.
as to what the most convenient way is to express i's. It may be necessary to introduce
new types of numbers more general than e.g. para-Grassmann numbers, g-numberst1 ,
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(c) In order to deal with (4) for the case of a general oscillator in self-interaction we
need the (anti-) commutator [a,at]JF =_ J(•, where < njd:rfn >=- 1(n) :: 1(n - 1).
Owing to the appearance of J(+), the Heisenberg equation for a takes, in general, a
different and more nonlinear form than the corresponding classical( Hamilton) equation
of motion.

(d) We would like to make a corresponding generalization of the commutation relations
for the operators ak, at and Nt(k = 1,2,.. ,J) of many oscillator system. Certainly,
the naive choice [ak,ag]•: = 0, etc. (k # 1) is mathematically possible, but physi-
cally of very limited applicability. We need, therefore, a more sophisticated, possibly
(quantum) group theoretical way of generalization, such as found useful in the case of
parastatistics9 ). If we want to apply the resulting commutation relations to field theory,
however, a further condition has to be imposed on them: that is, those relations be
invariant under unitary tran-formations of the operators ak -- a = -C•-iai. If suc h
is not the case, the statistics to be obeyed by field quanta, which is a consequence of
field quantization, will no longer be a general, but merely state-dependent, property.

References

1) E.P.Wigner, Phys.Rev.77, 711(1950).
2) K.Odaka, T.Kishi and S.Kamefuchi, J.Phys.A:Math.Gen.24.L591(1991).
3) H.S.Green, Phys.Rev.90, 270(1953).
4) L.C.Biedenham, J.Phys.A:Math.Gen.22, L873(1989).
5) A.J.Macfarlane, J.Phys.A:Math.Gen.22, 4581(1989).
6) R.Floreanini and L.Vinet, J.Phys.A:Math.Gen.23.L1019(1990);

E.Celeghini, T.D.Palev and M.Tarlini. Mod.Phys.Lett.B5,187(1991).
7) L.O'Raifeartaigh and C.Ryan, Proc.R.Irish Acad. A62, 83(1963):

B.Gruber and L.O'Raifeartaigh, ibid. A63. 69(1963).
8) O.W.Greenberg, to appear in Proceedings of the Spring Workshop on Quantum

Groups, Argonne, 1990.
9) Y.Ohnuki and S.Kamefuchi, Quantum Field Theory and Parastatistics.

Univ.of Tokyo Press/ Springer Verlag(1982).



232

The Action Uncertainty Principle
in Continuous Quantum Measurements

Michael B. Mensky
P.N.Lebedev Physical Institute

117924 Moscow. USSR

The path-integral approach to quantum theory of continuous measurements de-
veloped in preceding works of the author is applied to derive a simple estimation
for variance of the measurement outputs. This estimation is given in the form
of an inequality containing the action functional S and called the action uncer-
tainty principle (AUP). The most general form of AUP is 6S>•h. It can also be
written (for ideal measurements performed in the quantum regime) symbolically as
A(Equation)A(Path) ý- h. This means that deviation of the observed (measured)
motion from the classical motion is inversely proportional to the uncertainty in a
path (resulting from the measurement error). The consequence of AUP is that im-
proving the measurement precision beyond the threshold of the quantum regime
leads to decreasing information resulting from the measurement.

1 Introduction

The question of measurements was one of the central conceptual problems of quan-
tum mechan'cs from the very beginning and became recently even more burning
(see for example [1) and references therein). An important example of a compli-
cated regime of measurement is continuous (prolonged in time) measurement which
attracted much attention in connection with the so-called quantum Zeno effect (para-
dox) [2]. This effect consists in that the state of a quantum system "is freezed" (it-
change is prevented) if it is observed (measured) continuously.

As a resu!t of the quantum Zeno effect a continuous measurement should give
the trivial oltput (a constant function). However this is valid only for precise
measurement of an observable having a discrete spectrum. If an observable having
a continuous spectrum is measured approximately (an unsharp measurement). then
the continuoeis measurement leads to a nontrivial output (expressed by a function
of time). It i this type of continuous measurement that will be investigated in the
present paper in the framework of the path-integral approach.

The formalism of Feynman path integrals was applied to continuous quantum
measurements in [3, 41 and proved to be natural and efficient. A probability amnpli-
tnde A. for each output o of a continuous measurement cali be presented in the form
of a path integral. The variance bo of probable outputs around the most probable
one cdi, is one of the most important conclusions of the theory. The objective of
the present paper is expression of this variance in a simple form called the action
uncertainty ý_rinciple (AUP).
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The simplest form of AUP is 6S>?h and more complicated form valid for ideal
measurements in the quantum regime is fl"' Aq(t)dt- k.

2 Paths and Continuous Measurements

The amplitude A(q", q') for a quantum system to go over from the point q' (of
configuration space) to the point q" was expressed by Feynman [51 in the form of an
integral of the amplitudes A[q] = exp ('S[q]) corresponding to all possible paths [q]
connecting q' and q". This is however valid only if there is no possibility to find out
what path is realized as a channel for the transition.

Let however suppose that a continuous measurement is performed simultaneously
with this transition. Then this measurement gives some information about the path.
This information can be expressed by some set of paths a. Hf the measurement gives
the result (output) a then the transition is realized through one of the paths [q]
belonging to the set a. Then the amplitude for transition from q' to q" can be
expressed [.31 as an integral over paths belonging to a:

A.(q". q') = f ,ks ql d[q9. (I)

If q'. q" are fixed, the amplitude A. can be thought of as the probability ampli-
tude for the continuous measurement to give the result a. Taking a square modulus
IA4,2 of the amplitude one can obtain the probability density for different results of
the continuous measurement.

3 Classical Regime of Measurement

The natural task arises to obtain restrictions of the type of the uncertainty principle
but for continuous measurements. This can be achieved by analyzing Eq. (1).

The value A, can be interpreted as an amplitude for the measurement to give the
result o. This means that only those measurement results are probable for which
A. is large in absolute value. We shall try to estimate this value analyzing behavior
of the action functional S[q]. In what follows we shall suggest that all sets a have
the same "width" differing only by their forms. Then the value of A, depends only
on how rapidly S[q] varies along a.

It is known that only paths close in a sense to the classical trajectory [q9,1] con-
tribute the unrestricted Feynman integral. This is because the action functional S[q]
changes slowly in the vicinity of [qci 5 ] and all partial amplitudes A[q] = exp (QS[q])
have close phases in this vicinity giving -constructive interference".

Constructive interference maintains in the limits of the set

Iý1. = {[q] I S[q] - Slqcl.]I<h)

and changes into "destructive interference" outside this set when oscillation becomes
rapid. Therefore, main contribution into the Feynman path integral is given by the
set of paths Idl..

It is evident (by analogous argument) that the measurement amplitude (1) has
maximum value for o = Ot.6 where the set 0.1. contains [qc1_s] as its middle path.
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Now classical regime of measurement can be defined by the requirement that
adl_ D I,,.. In this case the integral Ad,,. is practically equal to complete Feyn-
man integral. It is evident that A. remains the same for a D 'da,*. However A,
decays when an intersection k n Id,. grows less tending to zero for a nl ...c = 0.

From the argument of the preceding paragraph one can see that the probable
outputs of the measurement performed in classical regime may be characterized by
the condition [qt,] E a in agreement with classical theory.

4 Quantum Regime and AUP
Consider now quantum regime of measurement when no set a includes Ia., The
most probable in this case is the output corresponding to the set a,,-. lying in
the middle of I,,. However other a are probable too provided that variation of
the action in the limits of this set is small enough. AS:h. For some of probable
outputs a therefore variation of S is AS : h. Taking all probable (emerging with
high probability) sets a and estimating variation 6,5 of S for all of them we obtain
for this variation 6S>h.

This conclusion is made for the quantum regime of measurement. However in the
classical regime _S>h. We conclude thus that for the measurement outputs arising
with compaiatively large probability the variance 6S of S satisfies the following
inequality:

hsZh. (2)

This is the simplest form of the action uncertainty principle. AUP.
In the ca;e of linear system different components of some linear decomposition

of the system motion can be analyzed separately. For a given measurement some
of these components may turn out to be measured in classical regime while other
components are measured (by the same measurement) in quantum regime. The
analysis based upon such a decomposition gives the following form of AUP:

I •-• A-q(t) dtj :t . (3)

Here [q] is the middle path of the set of paths o, and [Aq] is a deviation of [q]
which does iot drive it from o so that [q + Aq] E a too. If the inequality (3) is
fulfilled for a given set ca and for any deflection [Aq] not driving out from o. then
the correspouding measurement output o emerges with high probability.

Since Eq (.3) is a condition for an output n to be probable. there are some
probable out )uts a for which the l.s. of Eq. (3) is of the order of h. Thus

If' 6 SAq(t)[dt[ i h (4)

is valid for -ypical probable outputs of measurement performed in the quantum
regime. The inequality (3) and the equality (4) present another form of the action
uncertainty principle, AUP.

The entity 6 S[q]/ 6 q(t) is nothing else than the left-hand side of the classical
equation of •notion, bS[qj/ 6q(t) = 0. This is why Eq. (4) can be symbolically
rewritten as follows:

A(Equation)A(Path) c- h.
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This means that deviation from classical picture has to be small for rough measure-
ments (when ,.(Path) is large) but it can be large for fine measurements (with small
A(Path)).

The qualitative difference of AUP from the Heisenberg uncertainty principle is
that the first one deals with variance of outputs of a single measurement, not of two
measurements (of complementary variables) as in the second one. This of course is
a direct consequence of this single measurement being continuous, thus containing
in itself information about both complementary observables.

References

[1] C.M.Caves, in "Quantum Optics, Experimental Gravity and Measurement The-
ory", eds. P.Meystre and M.O.Scully (Plenum. New York, 1983). p.56 7 .

[2] C.B.Chiu, E.C.G.Sudarshan and B.Misra, Phys. Rev. D16. 520 (1977);
W.M.Itano et al., Phvs. Rev. A41. 2295 (1990).

[3] M.B.Mensky. Phys. Rev. D20. 384 (1979): Soy. Phys.-JETP. 50. 667 (1979);
"The Path Group: Measurements. Fields. Particles" (Nauka. Moscow. 1983. in
Russian: Japanese translation: Yosioka. Kyoto, 1988).

[4] F.Ya.Khalili, Vestnik Mosk. Universiteta. Ser. 3. Phys., Astr.. 22. :37 (19S1):
A.Barchielli, L.Lanz and G.M.Prosperi. Nuovo Cimento, B72. 79 (1982);
C.M.Caves, Phys. Rev. D33. 1643 (1986): C.M.Caves. Phys. Rev. D3.5, 181.5
(1987).

[5] R.P.Feynman and A.R.Hibbs. "'Quantum Mechanics and Path Integrals".
McGra%%-Hill, New York. 1965.



236

Quantum theory and causality
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". . .quantum mechanics a::,d general relativity
theory are widely separated both in applications and
in concepts and this is a very significant weakness of
present day physics."
(E. P. Wigner)

The strange spacetime behavior of quantum mechanical systems in an EPR type
experiment (or that of a single neutron in a Rauch interferometer[5]) leads to inve-
stigation: What is the correct relation of the spacetime causality to the basic ideas
of quantum theory? According to the standard interpretation of the violation of
Bell inequalities we have to make a dramatic revision of our conception of space and
timef?]. I suggested such a new theory of the structure of spacetime, intrinsically
based on quantum theory[16]. The primary object of the current formulation of ge-
neral relativity is an "underlying set" on which the (causal. topological, geometrical)
structure of spacetime is defined. The elements of this set are called "events". The
meaning of an event is rather vague, especially if we want to abstain from tautology:
defining an event with reference to the spacetime structure itself.

In quantum theory an event means a possible result of a possible measurement
or observation performed on a physical object. I consider the set of all physical
events belonging to the whole universe, rather than to a separate physical system.

This set of events has an immanent "logical" structure, a non-Boolean orthomo-
dular lattice structure on which the quantum-mechanical probability theory can be
defined. The (quantum) spacetime is a structure defined over the quantum lattica of
physical eve nts.

One can make a longer justification of the assumption that the elements of the
quantum lattice play the same role as the subsets of the (classical) spacetime. In
general, a physical event corresponds to a subset of spacetime[16].

A quantum causal structure is given by the causal and chronological future and
past defined as maps

J S - S

I S•S S
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with the following properties:

Qi. A < J±(A)SQ2. I+(A) < J+:(A)

Q3. J+(J±(A)) = J+(A)
Q4. J+(A V B) = J+(A) V J+(B)
Q5. I+(A V B) = I±(A) V I+(B)

Q6. J+(I+(A)) = I+(J+(A)) = I1(A)
Q7. I1(M) $ 0
Q8. x 1z I+(x)
Q9. X < g+(y) 4= y < J-(x)
Q10. x < I+(y) €==• y < l-(x)

Qll. J±(x) = J±(y) =' x = y
where S is the dual of the quantum lattice, x and y are atoms of S, A, B E S, M
and 0 denote the maximal element and the minimal element of .5.

The causality and chronology relations can be defined as

A--< B .4-- B < di(A) or A < J±(B)

A «<B B < B ±(A) or A4<I(B)

A4 and B are spatially separated iff neither A -< B nor B -< A hold.
These axioms are straightforward non-Boolean generalization of the Kronheimer-

Penrose axioms describing an abstract causal space[12J. If S is a Boolean lattice, it
can be represented by a suitable subset lattice and the quantum causality leads to
the usual causality of Kronheimer and Penrose on an "underlying set."

The causality is the most important part of the structure of spacetime. On the
ground of the causal structure one can introduce further structures. In absence of
an underlying set one cannot introduce a topology that could make the quantum
spacetime a topological space. Fortunately, the so called T-structure can generalize
the notion of topology for a non-Boolean case[17]. As is well known the causal
structure on an underlying set singles out a topology called Alexandrov topology
that is the coarsest topology in which each chronological future and past is open.
One can introduce the Alexandrov T-structure in a similar way: as the coarsest
T-structure in which each I±(A) is open.

On the ground of the Alexandrov T-structure one can introduce the covering
dimension of quantum spacetime. Dimension of a quantum causal structure at a
given atom x is the smallest integer d(x) such that for each open covering there is
a refined open covering with overlap d(x) + 1 at x.
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How TO EXPRESS
CAUSALITY

VIA PROBABILITIES?
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Fig. 1. This scheme shows how many questions are related to
the violation of Bell inequalities. It is obvious from this pic-
ture that the heuristic stimulating force of the violation of Bell
inequalities is much more important than its strict logical con-
sequence. The theory of quantum causal structure connects
the proposition calculus of quantum logic to causality. The
numbers denote items from the "Refirrnces" belonging to the
corresponding topic.
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I also investigated the spin correlation experiments in the light of the quantum
causal structures[18J. Exploring all possible quantum causal structures on a model
quantum lattice I found the following surprising result. Non of them makes the
crucial EPR events spatially separated, therefore the causal structure of events does
not exclude the possibility of a direct correlation. If the similar result were valid
on the whole infinite quantum lattice (this question is open yet) it would mean an
interesting resolution of the EPR "paradox".

While some of the most common explanations of the violation of Bell inequalities
provide a good background for such speculations, to avoid the wishful thinking I
would like to emphasize that the violation of Bell inequalities has nothing to do
with the problem of causality. As it was shown[l, 131 it only indicates the fact
that quantum theory is a non-Kolmogorovian probability theory defined over a non-
Boolean lattice of events. Figure 1. shows a scheme on which I summed up the
most important aspects arising with respect to the violation of Bell inequalities.
Some of these aspects have been hotly discussed in the literature. The heuristic
stimulating force of the Bell theorems seems much more important than the real
logical consequences of them.

References

[1] Accardi, L.: The probabilistic roots of the quantum mechanical paradoxes. In
"The Wave-Particle Dualism," S. Diner et al. eds. D. Reidel, 1984.; Foundations
"of quantum mechanics: a quantum probabilistic approach. In "The Nature of
Quantum Paradoxes", G. Tarrozzi and A. Van Der Merwe eds. Kluwer, 1988.

[2] Aerst, D.: A possible explanation for the probabilities of quantum mechanics
and example of a macroscopical system that violates Bell inequalities, In "Re-
cent Developments in Quantum Logic," P. Mittelstaedt and E.W. Stachow eds.
Grundlagen der Exakten Naturwissenschaften, band 6, Wissenschaftverlag. Bi-
bliografisches Institute, Manheim/Wien/Zurich. 1985.

[3] Aerst, D.: "The One and the Many," Ph.D. Thesis, Vrije Universiteit Brussel.
1981.; How do we have to change quantum mechanics in order to describe sepa-
rated systems?, In "The Wave-Particle Dualism." S. Diner et al. eds. D. Reidel,
1984.; Description of Many Separated Physical Entities Without the Paradoxes
Encountered in Quantum Mechanics, Found. of Phys. 12 1131 (1982)

[4] Aerst, D.: A possible explanation for the probabilities of quantum mechanics. J.
Math. Phys. 27 202 (1986); The missing elements of reality in the description
of quantum mechanics of the E.P.R. paradox situation, Helv. Phys. Acta 57
421 (1984)

[51 Aerst, D. and Reignier, J.: On the problem of non-locality in quantum mecha-
nics, VUB/TENA/91/01, to be published in Helvetica Physica Acta.



240

[6] Beltrametti E.G. and Maczynski MN.J.: On a cluiracttrization of classicol and
nonclassical probabilitie s, J. Mathl. Phys. 32 1280 ( 1991 )

[7] Clauser, J.F. and Shiinony, A.: Bell's theorem: experimental tests and implica-
tions, Rep. Prog. Phys. 41 1881 (1978)

[8) Doehner. H.D. and Lficke, WV.: Quantum logic as a consequence of realistic
measurements on detterministic systems. J. Math. Phys. 32 2.50 (1991)

[9] Van Fraassen. B.C.: EPR: 11I7ien is a Correlation not a Mystery?. In "Sympo-
sium on the Foundations of Modern Physics". P. Lathi and P. Mit telstaedt eds.
W'orld Scientific, 1985.

[10] Gudder, S.P.: On hidden-variable theories. J. Math. Phys. 11 101 (1970)

[111 Hellman, G.: Einstein and Bell: Strengthening the Case for Ilicrophysical Ran-
domness. Synthese 53 44.5 (1982): Stochastic Locality and the Bell Theorem PSA
1982, Volum 2, pp. 601-61 3; Stochastic Einste in-Locality and the Bell1 Theore m.
Synthese 54 461 (1982)

[12] Kronbeimer. E.H. and Penrose. R.: On the structure of causal spaces. Proc.
Camb. Phil. Soc. 63 481 (1967)

[13] Pitowsky. I.: "Quantum Probability - Quantum Logic." Lecture Notes in Phy-
sics 321, Springer, 1989.

[14] Py.kacz. J. and Santos. E.: Hidden rariables in quantum logic approach r~ema
mined. J. Math. Phys. 32 1287 (1991)

[1.5] Santos, E.: The Bell inequalities as tests of classical logic. Phys. Letters A 115
363 (1986)

[16] Szalh6, E.L.: Quantumn Causal Structures. J1. Math. Phys. 27 2709 (1986):
Spacetime Structure on Quantumn Iattice to be published in the' proceedings0
of *'Quant um Logics. Gelansk'90'*.

[17] Szab6, E.L.: .4 Simple Example; of Quantum Causal Structure. Int. J. of Theor.
Phys. 26 8:33 (1987); S5tructure of Quantum Space-time(. In -New Theories in
Phy sics". proceedings of the XI W\arsaw Symposiumx on Elementary Particle
Phvsics. NIIazirnierz 1988. \\oldl Scientific 1989.

[18] Szab6. E.L.: Quantum C'ausal Structure and tht L'instein-Podolsky- Ro,,en Ex-
pe~riment, Int. .1. of Theor. Phys. 28 353(1989)



241

DOES THE COVERING LAW FOLLOW FROM LORENTZ COVARIANCE?

George Svet lichny
Departamento de Matemfitica. Pontificia Universidade Cat6lica. Rio de Janeiro, Brasil

e-mail: usergsve .tlncc.bitnet

ABSTRACT: We present arguments that Piron's covering law of quantum logic
can be substantiated byv lorentz covariance and the assumption that correlations in a
physical state cannot be used to send signals between apparatuses te ing commuting
propositions. in particular across space-like intervals.

One sideline of the debates about correlated quantum events taking place at space-
like separations has been concerning the existence or not of superluminal influences or
signals that would in principle mitigate some of the puzzling "'non-realist" or "non-
local" aspects of these correlations. By now it has been reasonably well established that
very general features of ordinary hilbert-space quantum mechanics are sufficient to pre-
vent humanly controlled superlumi7.al communication using such long-range quantum
correlations.

Here we ask a reciprocal question. Assuming the "'no-signal hypothesis" (NS) of the
impossibility of using long-range correlations as a superlumninal signaling device, what
can one deduce about the structure of physical theories? Assuming special relativity,
NS is a very natural hypothesis, for the existence of the proscribed signals would give
rise to well known and paradoxical problems of causality and free will.

Our first result in this direction 1 shows that certain deviations from hilbert space
are precluded by NS We consider an EPR apparatus in which a physical system decom-
poses into two parts which then separate in opposite directions. Focusing on the internal
degrees of freedom of each part which we assume to be described by finite-dimensional
hilbert spaces of the same dimension which is at least three, and assuming for observ-
ables stationed on one arm of the apparatub and for the state vector of the composite
system, the usual projection postulate with the usual calculus of probabilities, we prove.
essentially by Gleason's theorem, that NS implies that at the other arm of the appara-
tus: 1) the expected value in a pure quantum vector state 4 of any observable mus, be
given by the usual expectation value formula (4..4) for some self-adjoint operator A.
2) any state-transfoimer (such as time-evolution) must act linc,.rly on density matrices.
3) any state-transformer that transforms pure state into pure states and whose range
contains more than one state must be given by either a linear or anti-linear operator on
hilbert space.

What this shows is that once a large enough portion of phl sical phenomena obey
the usual quantum mechanical rules, such rules must be universal in order to preclude
superluminal communication. Long-range quantum correlations thus have a globalizing
effect on the quantum formalism making it structurally unstable.

Now this res,:lt is "local" in that it shows that no deviations of certain types from
ordinary hilbert-space quantum mechanics, no matter how small, can be allowed if NS
is to be maintained. But one is then immediately led to ask the interesting "'global"
question as to whetlher NS can be used as an axiom leading to hilbert space itself. This
would provide a truly physical basis for hilbert-spact quantum theory motivated by
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the space-time condition of lorentz covariance. We present some preliminary results in

quantum logics that show that such a thesis is plausible. We know from Piron 2 that

a generalized hilbert-space model can be constructed if the quantum logic obeys the

so-called covering law. It is this law that we shall try to substantiate by space-time

considerations.
Although the detection process, which underlines the notion of signals. is not the

usual fare for quantum logic. it's fortunate that the literature already contains significant

progress in this direction. especially in the papers of the late polish quantum logician
Wawrzyniec Guz 3 - 5. Guz presents various axiomatic schemes in which the covering

law follows from other physically clearer assumptions. One of these schemes concerns

the existence of generalized filters . that is. state transformers that generalize the hilbert-

space projection postulate to more general quantuin logics.

Due to space limitations we can only present here a sketch of the axiom scheme.

We use the notation of Reference 5 to which the reader must refer for more details.

A physical system is represented by a pair of sets (L. S) where L is an orthomodular

poset whose elements are called propositions and S is a (7-convex set of probability
measures oil L which are called states . A further axiom (A3) asserts the existence of

a subset P C S of extreme points whose elements correspond to pure states and from

whose properties one deduces that L is atomic and atomnistic and that if A(L) is the
set of atoms of L, then there is a bijection .s P - A(L) satisfying p(6(p)) I and
p(a) = 1 - .(p) < a.

The atom !s(p) is interpreted as the proposition that identifies the state.

For two pure states p.q E P the number (p : q) = inf{p(a)ja E L.q(a) = 1 is

called the transition probability' of p to q. with the usual physical interpretation, and

can be shown to be equal to p(.,(q)).

Given a E L. a partial mapping E. from P into itself. E,, D( Ea ) P is called a

generalized filter if D(E 0 ) = {p E Pjp(a) > 0} and. setting p. = Eap. if p(O) = tP : A,

and p,(a) = I
Generalized filters provide for state-collapse, that is. subject to an observation of

a E L a state p undergoes a *'collapse" to the state Pa with transition probability

(p : pý ). The covering law follows from the existence of generalized filters provided

some additional properties hold. One of these is: (p : Pm ) = (p q: ) $ 0 => pa = q, It is

this property that we shall try to substantiate by lorentz covariance and the no-signal

hypothesis.

We shall assume that given a set of pair-wise orthogonal propositions { b . , I

there is a physical apparatus that tests them sillIt alneoumsly with mutually exclusive

outcomes. If the state is p E P then the otitcomne that renders proposition b. true and

all the others false occurs with frequency p(bj 6 () : p•, ). Note that in this case the

"*detection rate" of the whole apparatus is 1> %(P : 1)p = E".= m hj) p 10 V .V I

If V"= 1 = 1 then after the state p)asses through the apparatus we suppose it beconies

the mixed state -Zj'I (I : 14, )pb,.

Let us now conlemnplate again an EPR-type space-time situiation ill which one h;o,

a state p and at one site A. all apparatus c,-orresponding to a proposition a E L. and at a

distant site B an apparatus corresponding to the pair-wise ort hogommal set of propositiols

.b. . b } with V" , b, = 1. The arrangement is to oplerate in such a way that the

events corresponding to registries in the apparatuses are space-like separated. We thus
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assume that the propositions a along with the b, form a commuting set. For there to
be no signals from site B to site A due to correlations present in state p, the detection
rate at A must be independent of the apparatus used at site B.

Now because of space-like separation. the temporal order of the registries of the
apparatuses depend on the inertial frame, and in fact in some frame they are simul-
taneous, From this one can argue. if lorentz covariance is to be maintained, that the
following space-like equivalence hypothesis (SE) should hold: The situation described
above can be equivalen.tly viewed as either an observation of {b1 ..... b,} followed by a
or as a single observation of {a A bl,.... a A b }.

Now, viewed as successive observations, the rate of detection at A is given by

"]= I(P : Pb )pb (o) and when viewed as a single observation the rate is p(Vni (aAbj)) =
p(a). This last number is independent of the apparatus at B and we see that the no-
signal hypothesis follows from SE. Lorentz covariance thus motivates SE which in turns
implies the no-signal hypothesis. Now it doesn't seem possible to deduce the covering
law from SE, yet a slightly stronger hypothesis implies both. Let us assume the no-signal
hypothesis not only for space-like separated observations but for any situation formally
as above where only commutativity is assumed. We thus introduce the Commutative
no-signal hypothesis (CNS): Let a. bl,.... bý E L be a commutative set and suppose the
bi pair-wise orthogonal -with V", b, = 1. then E 1 (P : Pb2 )pb,(a) is independent of
the set {bl..... b, }.

Picking the singleton {1i for the set of b, one concludes that the number whose
independence is pos ted has to be p(a). From this SE for detection rates follows imme-
diately.

But CNS likewise implies the covering law. Let a and b be two commuting propo-
sitions. then from the CNS we deduce: (p : pb)pb(a) + (p : 0b,)pb'(O) = p(a) and
(P : Pba,')PbA^'(a) + (p : PbA^)PbAa(a) + (p : Pb' )pb,(a) = p(a) from which using the fact
that pb^•,(a) = 0 and pbA,(a) = 1 we deduce: (p : Pb)pb(a) = (P : PbA^) which is the
same as (p : Pb)(Pb : (Pb)a) = (P : PýAb) which says that the detection rate with the suc-
cessive observations of b followed by a is equal to the detection rate of the observation
of a A b. By complete symmetry we also have (p : pý )(pa : (p )b)= (p : PaAb).

Consider now b = s(qa) where q is any other state. As b < a. the two commute
and we can apply the above results. Now,. since b is an atom. for any state r one has
rb = s-l(b) = q. provided r(b) 5 0. Assume p(b) , 0. then by the last formula of the
previous paragraph one deduces (p : pa)(p : q) = (p : q,). If now (p : pa) = (p : qa)

one concludes that ,Pa : q ) = 1 which implies that pa = qý arxd this is precisely the
property that leads to the covering law in the present axiomatic context.

Some final cons~derations are in order concerning these results. We have been gath-
ering evidence to substantiate the following strong form of our thesis: The covering law
of quantum theory follows from the requirement of lorentz covariance and the hypothesis
that correlations wit,•in physical states cannot be u.sed to transmit saperluminal signals.

Now we havent quite proven this. We have a weaker result in that a stronger
hypothesis (CNS). leads to the covering law in at least one axiomatic framework. Now
CNS can itself be motivated by lorentz covariance as it leads to SE which guarantees
lorentz covariance for detection rates. Within the axiomatic sch.'ne lorentz covariance
and NS do not seem to play independent roles, as the thesis sugge;,ts they should. This is
likely due to another apparent weakness in the scheme, the fact that it cannot distinguish
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space-like separated propositions from other commutative pairs. This last weakness is
at the present stage unavoidable for the only relation that one normally posits between
space-time and quantum logic is that space-like separation leads to commutativity.
Only through a joint axiomatization of both lorentzian space-time and hilbert-space
quantum mechanics can one hope for anything better. Now commutativity is generally
interpreted as "commensurability" and this means the ability to make simultaneous
measurements which in turn suggests that space-like separations always play some role
in commutativity, yet this has never been thoroughly examined. Furthermore if one
believes in general unitary symmetry in hilbert space, it's not hard to find examples
in which a commutative pair of observables pertaining to a single localized system (a
bound pair of particles say) is unitarily equivalent to a pair of observables at the opposite
arms of an EPR apparatus. Such a symmetry would thus extend the requirements on
space-like commutativity to commutativity in general. That arguments pertaining to
space-like commutativity can be carried over to general commutativity has already been
pointed out by Home and Sengupta 6 in relation to Bell's inequalities. It may thus well
be that the weaker thesis with the CNS assumption is not too distant from the strong
thesis especially if one imposes strong symmetry requirements. In any case, it is clear
that one cannot hope to reach a full understanding of hilbert-space quantum mechanics
without linking it to space-time structure.

After this text was written I discovered through e-mail conversations with Nicolas
Gisin that he too has postulated a connection between the covering law and the no-
signaling constraint with results similar to the ones presented here. Details should
appear in a forthcoming publication.
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ABSTRACT: E. P. Wigner [11 was one of the first to rea.lize the
importance of Bell theorem for our understanding of quantum mechanics.

Rercently Greenberger, Horne and Zeilinger (GHZ) have shown, that
this theorem becomes much stronger for the case of more than two
particles.

It will be shown, that the state of light generated in the process
of parametric down conversion produces the following phenomenon. Under
special conditions the correlated counts at four balanced homodyne
detectors show the highly non-classical, non-local, behavior of the type
predicted by GHZ.

The work of Greenberger Home and Zeilinger (GHZ) [21 has shed new light

on the problem of hidden variable theories. By considering three and
four particle correlation (gedanken) experiments, they were able to show
that the very premises which led Einstein, Podolsky and Rosen to their
criterion for an element of reality are ruled out for the case of more
than two particles. In contradistinction with the (two particle) Bell's
theorem [31 a contradiction arises already for the case of perfect
correlations.

It will be shown here, that under certain conditiohs the two photon
emissions of the parametric down conversion process can lead to the four
particle GHZ correlations, If four balanced homodyne detectors are used,
the (weak) coherent local oscillator fields will deliver the two other
photons. The coincident counts reveal the traits of the four particle
GHZ correlations.

The possibility of using measurements of quadrature phases as tests
of other nonclassical classical phenomena (Bell's inequalities has been
suggested earlier in refs 4-7.

The experimental configuration proposed here iý showih i.. figs I and
2. The first represents the typical situation for a non-degenerate
spontaneous down conversion process, the second one the actual
measurements to be performed.

Fig 1: a pump beam L of frequency w falls on a nonlinear crystal,
and in the interaction between the light and the medium the process of
parametric down conversion occurs, which results in fission of some pump
photons into pairs of two lower frequency photons known as the signal
(s) of frequency w(s) and the idler G) of frequency w(i). If the phase
r'atching condition is satisfied, then within the medium the three wave
vectors and frequencies are related by
k k k. k S , (11

W = Wi)+ W(s). (2)
Under suitable conditions, outside the medium the down converted signal
and idler beams form cones with their axes centered on the pump beam.
The most essential feature of (1) is the following one. Since the wave
vector of the pump field, k, is well defined, one can select, by placing
a diaphragm with suitable apertures, pairs of photons of well correlated
directions, and frequencies. The apertures should be followed by very
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narrow filters centered at w(l) z w(i) and w(S) z w(s). The arrangement
of the apertures of the diaphragm D of Fig. I is that tested by Rarity
and Tapster [8]. Four beams 1. 2, 3 and 4, emerge from four linearly
placed pinholes. The phase matching condition, and the filters enable us
to assume that one can expect here only two cases. Either the pair of
photons emerges via beams I (signal) and 4 (idler), or 2 (signal) and 3
(idler). Of course one has here the case of quantum superposition of
those two possibilities. With the use of suitably placed mirrors M, the
four beams (but two photons) are directed towards balanced homodyne
detectors.

The field emerging from the four pinholes can be described by

JI> =(1-1131• "10> , 2-1/f3[b (lb (4) + + b (2)b*(3)]]O>, (3)

where, for the simpljicity of further calculations, the qiscrete mode
creation operators b were used. They satisfy NbOk), b (IM = (kl).
Each mode has well defined frequency w(I) or W(S). They play no role in
the following calculations.

Fig .2: each of the four beams of fig. I is directed to a balanced
homodyne detector. The following intensity correlation function is
measured:

4 40 = <]3 (l(+,jo -0 l04(-,j)>(< 4 I+j)+ l-j)) L (4)

j=1 j'=l
where l(+,j) is the intensity at the detector D(-,j). The balanced
homodyne detector B(j) constituting of D(+,j) and D(-,j) and a perfect
50%-50% beam splitter BS is fed by the light coming from the parametric
down conversion source in mode b(j), and by coherent local oscillator
field (at a suitable frequency) in mode denoted as a(j). If one denotes
the mode reaching D(-,j) by c(j), and D(+,j) by d(j), the quantum
mechanical formula for (10) is given by

E ýM (0 '042'.3'04) =
I 2 3 4 

( 5 )
<:fl (d (j)d(j) - c (j)c(j)) (<:r[ (d (j')d(j') + c (j')c(j')):>)- (5

j=l j'ýl
where :: denotes the normal ordering of the creation and annihilation
operators. The average is over the full state of the whole system IPý
which includes the state of the local oscillator fields:
1,P> = I0>l•4(l),•(x(),oJ3),•m( >, (6)

where a(j) denotes the amplitude of the coherent field feeding the
balanced homodyne detector B(j). It will be assumed that

a(j) = a expli~ ), (7)

i.e. the fields have the same average intensity. It should be remembered
that the local oscillator fields are of frequency w(l) (j=3,4) or w (S)
(j=1,2).

In order to compute the quantum mechanical predictions, one has to
recall the well known relations between the input an output modes of a
perfect 50%-50% beam splitter. For the modes considered here they read:

c(j) = 2-12 [a(j) + ib(j)] = -2- 1/2L[a(j) - b(j)],

d(j) = 2-1/2[ia(j) + b(j)]. (8)

Let us assume that the local oscillator fields are very weak. Therefore.
one should compute the lowest order, in a, contributioai to (5)
Thus one gets
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4

<:l d (d*(j)d(jllh> ( /a4/8[1 + cOs(l +0 - 2-01)],

<:nl (d (j)d(j))c (k)c(k):> z f3 /8[1 - cos(o +4 -95-4 203 (9)

j=1

etc. The final quantum mechanical prediction, in the limit of small a,
reads

EQM(0I,0Z'03,04) = cos(01+04-02-03). (10)

We have the four particle correlations of the type considered by GHZ. As
it has been shown in the paper of GHZ (2] only quite bizarre, non-local
hidden variable theories could reproduce the above quantum mechanical
prediction, even for the case of perfect correlations, i.e. for those
phases for which J EQM(0 4,0 .3,04) I = 1. Neither, the classical

descrition of light can lead to this result. For lack of space, the
reader is asked to consult the work of GHZ, or ref (91, for a
confrontation of the formula (10) with the basic assumptions of local
hidden variable theories.

The proposed experimental configuration is very difficult to
realize in practice. Nevertheless, one may be tempted to say that it a
feasible one. The main problem is in locking of the coherent local
oscillator fields of two different frequencies to the signal and idler
frequencies w(S) and o(l).

The derivation presented here uses the simplest possible approach
(discrete mode description, monochromaticity). The time dependence is
absent within it. Therefore, as we are here interested in coincident
counts, the full description should use the formalism for photons of
finite coherence length (compare e.g. [IO). Results of such a
calculation suggest that the four coincident photons should emerge via a
common generation process. I.e., the sources of the coherent local
oscillator fields must be also involved in the generation of the pump
field for parametric down conversion process. This technical point will
be discussed elsewhere.

(11 E.P. Wigner, Am. J. Phys. 38 (1970) 1005
[2] D.M. Greenberger, M. Home and A. Zeilinger, in Bell's Theorem,
Quantum Theory, and Conceptions of the Universe, edited by M. Kafatos
(Kluwer, Dordrecht, 1989), and D.M. Greenberger, M. Home, A. Shimony
and A. Zeilinger, Am. J. Phys. 58 (1990) 1131
[31 J.S. Bell, Physics 1 (1964) 195
[4] M.D. Reid and P.D.Drummond, Phys. Rev. Lett. 60 (1988) 2447, and
M.D. Reid, Phys. Rev. A 40 (1989) 913
[5] B.J. Oliver and C.R. Stroud Jr., Phys. Lett. .4 135 (1989) 407
(61 P. Grangier, M.J. Potasek, and B. Yurke Phys. Rev. A 38 (1988)
3132
[7] S.M. Tan, M.J. Holland and D.F. Walls, Optics Communications 77
(1990) 285, and S.M. Tan, D.F. Walls, and M.J. Collett, Phys. Rev. Lett.
66 (1991) 252
[81 J.G. Rarity and P.R. Tapster, Phys. Rev. Lett. 64 (1990) 2495
[91 M. Zukowski, Phys. Lett. A (in print, number of August or September
1991)
[10] M. Zukowski, Phys. Lett. A 150 (1990) 136
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Testing Bell's Inequalities With a Mach-Zehnder Interferometer

Lucien Hardy
Department of Mathematical Sciences,

University of Durham, Durham, DHI 3LE, U.K.

A Mach-Zehnder interferometer with a single photon source is arranged so that
one output mode is dark. An atom is then placed in each arm of the interferometer.
By considering only those events for which a photon is detected in the previously dark
output mode we find that the atoms are in an entangled state. Certain measurements
on this entangled state will violate Bell's inequalities.

In a recent paper by Tan, Walls and Collettl it was shown that single photons
can be used to demonstrate nonlocality. In this paper we consider a very different
experimental set up where, again, the nonlocality of a single photon is demonstrated.
We will see that, unlike the proposal of Tan, Walls and Collett, this demonstration can
be generalised to all single particles, fermions as well as bosons.

The experiment is motivated by a recent paper by Elitzur and Vaidman2 illustrating
the possibility of interaction free measurements using a Mach-Zehnder interferometer
with a single photon source. Their idea is simple. The interferometer is arranged so
that, when both routes through it are open, no photons will arrive at the detector D2
(see fig. 1) due to destructive interference. On the other hand, if an obstacle is placed
so that it blocks light througn one route, then it is possible for the photon to arrive
at D2 because there is no longer any destructive interference. However, if the photon
has arrived at D2 then it must have taken the other route through the interferometer
otherwise it would have been blocked by the obtacle. Therefore it did not -touch' the
obstacle. This means that we can deduce the presence of an obstacle without 'touching'
it. The obstacle could, for example, be an atom which, when it is in the state IA).
absorbs the photon with probability equal to one. If the atom is in any other state it
will not absorb the photon. Thus a detection at D 2 lets us know that the atom is in
the state 1A) without interacting with it.

Now consider what happens if we place an atom in each route of the interferometer
(fig.1). Suppose that when the atoms are in the states JA) for atom A and ]B) for atom
B then they absorb the incident photons with probability equal to one and when they
are in the states JA') for atom A and B') for atom B then they are transparent to
incident photons. If a photon arrives at detector D2 then one route must be open and
the other must be closed. Therefore the state of the atoms is given by

ulIA)IB') + vI.A')IB). (1)

In fact. it is not necessary that atoms in the state .4) or JB) absorb the photons with a
probability of one to get the entangled state (1). To see this, first let the atoms A and
B be prepared in in the states

14'A) = cIA) + c'jA'), (2)
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I'B) = dIB) + d'jB'). (3)

The state of the photon moving to the right in the interferometer is represented by II)
and the state of the photon moving up is represented by 12). The operations of the
beam splitters on the state of the photon are

1 - (1) + ij2)). (4)

12) - 1 (12( ) + ill)). (5)

The operations of the fully-silvered mirrors mirrors are

I1) - i12). (6 )

12) - - ill)- (7)

Now, let us relax the requirement that atoms in the state JA) or JB) absorb photons
with a probability one. Thus, the operations of the atoms are

11)JA) - a o1l)l.4) + o'10)lA"), (8)

l1l)B) -- 3j1)IB) + 3'lO)IB"), (9)
[1)[A ) -- [1)A'),(10)

I1)1B ) -- I1)B'>,(11)

where )0) indicates that the photon has been absorbed and JA") and IB") are the states
of atoms A and B respectively when they have absorbed the photon. The evolution of
the state of the photon and two atoms is described by

]l1)N'A)N'B) -- •(11) + i 12)) 1 VA) I 'B),

1
(Qc1)4) +Ao'clO)IA")+ c'll)IA'))lt'B) + U-I"2)l•'a)lB)-

-1(iocl2)JA. + o'fcO)l.4") + ic'12)1.4'))t's) - -I1)1L.4)1•'o).

-I (iacl2) A/ + o'cO)lA") + ic'12)IlA'))t>,B)

2(3'dl)IB) + 3'dlO) B") + d'll)lB'))lL'A),

12)JA) ± a'cJO)J ic' + 12-)IA'))
S 3 + + d' 1 + )

1• £- 2 ( "' 1) + il2))IB) + 3'dlO)IB") + d' (11) + il2))lB') IV'A).
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Simplifying, we get for the final state

II') = - 11) (cd(a + 3)IA)IB) + 2c'd'IA')IB')

+ cd'(1 + a)IA)IB') + c'd(1 + 3)IA')IB))

*212) (cd(o - 3)IA)IB) - cd(l - o)IA)IB') + c'd(1 - 13)A')IB))

*I1)B) + 'dIB") IA)).

We consider only those events in which the photon is detected at D 2. For these events
the state vector collapses onto the second term on the RHS of (12). If the atoms A and
B are identical so that a = 3 then the unnormalised state of the atoms becomes

I1) = c'dlA')IB) - cd'IA)IB'). (13)

To demonstrate nonlocality take identical atoms A and B. By preparing them so that
they have spin +½ along the x-axis, their states can be written

1

1 VA) -(]+)A + I-)A), (14)

1

IV'B) - 1-(+)1 + I-)B), (15)

where the states I±)A and I±)B have spin ±= along the z-axis. Now, if a magnetic field
is applied along the z-axis then Zeeman splitting will occur. We choose the frequency
of our single photon so that it corresponds to some excitation energy of the H-)A and

I-)B states but not to any excitation energy of the I+)A and 1+)B states. Thus, the

I-)A and j-)B states will absorb some of the photons and, therefore, can be identified
with the IA) and IB) states respectively. On the other hand, the A') and B') states
will be transparent to the photons and, therefore, can be identified with the IA') and

IB') states respectively. The initial state of the atoms can be written as a product:

I'Pi) = 1(I+)A + I-)A)(I+)B + I-)B) (16)

However, after interaction with the photon, the state of the atoms becomes entangled:

I,) = 1(1+)A1-)B - I-).•I+)..) (17)

This is a singlet state. It is well known that measurements of spin along appropriate
dirrections on a singlet state will violate Bell's inequalities.3

The experiment proposed by Tan, Walls and Collett depends on the ability to pro-
duce coherent states, and so can only be generalized to single boson sources. However,
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it is clear that the experiment discussed above can be generalised to all single particle
sources. fermions as well as bosons. This is. then, the first demonstration of the
nonlocality of a single particle that holds for all particles.

The author thanks Professor E. J. Squires for helpful discussions on this topic.

1 S. M. Tan, D. F. Walls, and M. J. Collett, Phys. Rev. Lett.66 252 (1991).
2 A. C. Elitzur and L Vaidman, Quantum Mechanical Interaction-Free Measurements,
Tel-Aviv preprint (1991).
3 J. S. Bell, Physics 1 195 (1964), and
J. S. Bell in Foundations of Quantum mechanics, edited by B. d'Espagnat (Academic.
New York, 1971). p17 1.

Fig. 1 Mach-Zender interferometer with single photon source arranged so that there
are no objects in the path pf the routes through it no photons arrive at detector D2.
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PREDICTIONS FOR BELL'S TYPE EXPERIMENTS

IN

STOCHASTIC OPTICS

M. Ferrero and J.M. Getino
Departamento de Fi'Pica

Universidad de Oviedo, 33007 Ot'iedo, Spain

Abstract

T.W. Marshall and E. Santos have proposed recently a theory. called Stochas-
tic Optics, taht explains in a local way some experiments thought to be non
classical.

We generalize their results in order to calculate the difference between quan-
tum mechanics and the stochastic optics model used by them for the optical
test of Bell's inequalities.

The quantum-optical prediction for the coincidence rate in a typical atomic cas-
cade experiment or the decay of the metastable state of atomic hydrogen is. for ideal
experiments 10]:

R12(0) = IRo(1 + 2cos20), (1)
4

where Ro is the rate at which cascades occur.
Most of the experiments designed to test the Bell inequalities using single-channel

polarizers have measured the quantity:

r 1 2(0) = R(a.o +0) = 1(1 + cos 20), (2)R(oo, o) 4

where R(xo, o) is the corresponding prediction for the rate with the polarizers re-
moved.

In order to reproduce this results Marshall and Santos defined the function:

r(O) = (Q(cos 2,p)Q(cos 24)) - f di, f sin 2,Q cos(2;)Q cos(2$)d;, (3)

where p and ý, play the role of hidden variables, with domains 0 :5 < 7r/2 and

0 _< &, < 27r, and:

Q(cos 2D) = 1j/2( 32 cOs2 () + sin2',, - 1 )+ sin 2;odyo (4)

where:

cos2%P = cos 2,cos 20 + sin 2psin 20 cos 0, (5)
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with 0 < 4P < 7r/2, and 3 and I are parameters of the theory. T'he notation (...)+
means putting zero if the argument is negative. Marshall and Santos wrote Q(X) in
terms of Legendre polynomials:

riQ(x) = F• a.P.(-k) (6)

and they showed that the first order approximation Q(\) ( ao + alj gave:

r(0) = 0o + -a cos 20 (7)

so, choosing the values ao = 1/2 and a, = v-3/2 they got the quantum prediction (2).

They have also shown that:

(P2 (cos2,)Po(cos2%P)) = (P 2(cos2•:)PI(cos2%IP))

and

(P2 (cos 2;)P 2 (cos 2,;)) = 1P,(cos 2(8)

making possible to consider a second order approximation Q( \) ,zao + ai\ + a 2P2 ( )
which leads to the result:

r(O) ._ a22 + -Ia, cos 20 + a p2(cos 20)
, ,3

We have found that considering the complete Legendre expansion (6) the corre-
sponding expression for r(O) is:

a2
r(O) = .---- P(cos 20) (10)

n 2n + 1

In order to prove (10) we need to demonstrate first that:

(Pn(cos2,p)Pm(cos2iP)) = 2n +P. (cos20) (11)

To prove (11) we use definition (3):
1 [ 02_/2si2P 2cs•dF .(o- k~ (2

(Pn(cos2;)Pm(cos21P)) = - s0 i 2;P(cos2.p)djPrn(cos2%P)d'I (12)

Applying now the addition theorem for associated Legendre functions:

+~ (n-k)!Pý(o ,: n-(o 0 o (3
P.(cos 2T) = P (cos 2)P,(cos20)+ Y(-+ k)!

k=1

to the integral f12' P, (cos 21P)dOP in (12). we get:

j Pi(cos2%k)dY = 27rPm(cos 2p)Pn(cos20) (14)
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Putting (14) in (12):

(Pn(cos2.•)Pm(cos2q1)) = P.(cos20) 1 sin2.ýP,(cosK•)P.,(cos2.I)d- (15)

and using the orthogonality condition for Legendre functions:

] sin 2•Pn(cos2;)Pm(cos2v-)dk = (16)
2n + I

we get. finally (11).
To obtain the Legend"e expansion of the function r(O) we use the full expansion

(6) of Q(\) in the definition (3):

r(O) = (Q(c-2,•)Q(cos21P))) = oanam(Pn(cos2;)P,(cs 2%P)) (17)
n rMl

and using (11) we get (10).
We will apply now the previous results to the optical test of the Bell's inequalities.

We will do it assuming, as Marshall and Santos did, a perfect correlation between the
hidden variables of the two signals. In this case we can define the angular relations:

Xý = cos(2p) cos(2a) + sin(2;) sin(2a) cos(I) (18)
Xb = cos(2p) cos(2b) + sin(2,p) sin(2b) cos(qI)

The probability of a coincidence count, as proposed by Bell. can be written:

(P. ( \ a) P,( X s))

W, will now prove:

(Pn(Xa)Pm(,)) = ----T- P,(cos 20) (19)
2n + 1

whc:e 0 = a - b.
Using the definition (3):

1 Or/2 02'"

(n(\m(Xb)) = 1- sin 2 ,d P,,(\.)Pm(\b)d'I (20)

and applying the addition theorem for associated Legendre functions to f,` P,,( \ )P,,( \bdO.
we get:

oj Pk.)Pm•( \)db'= 27r P, (cos2a)P,(cos)2,)Pr,(cos2b)P,(cos2;)+

+47" •(- k)!(Y -E P.(cos2a)P,"(cos2y,:)PA(cos2b)IA(cos2ý)ýki (21)
k=1 =, (n + k)!(,n ± 1)!

Puttina back (21) in (20), this last expression can be written:

(PT(q)P.(\b)) = 1 + 12 (22)
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with an obvious identification.
After a straightforward calculation the integrals 11 and II give:

I
I, - P, (cos 2a)P,,(cos 2b)i .....2n + I

""12 (,' - ) (cos 2a) P,'(cos 2b)b•,,,(3
2 n +lkIk=j +2

Putting (23) in (22):

( P ,. 1, (cos 2a)P,,(co., 21) + 2 (n -k)! o2a)P.(co. (212-1 +' I ý) k=1

and applying again the addition theorem of associated Legendre functions to (23). we
get (19).

Using this last result it is very easy to show that:

ri2(a. b) = (Q(X.)Q(\b)) = F aý P.(cos 20) (25)
n2n + 1

We think that with this results it should be possible the generalize the Marshall
and Santos calcuiations [0] and get the difference between the predictions made by
quantum mechanics and the stochastic model proposed by them for atomic cascade
experiments. This problem will be the subject of a future work.
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MAGNETIC TOP: ON THE ORIGIN OF QUANTUM
SPIN AND MAGNETIC MOMENTr
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b. Department of Physqicq, University of Colorado, Campus Box,890, Boulder. USA
c. Institate of Physics, P. 0 Box 57, Belgrade, Yugoslavia

Abstract

Tire qirantirrir spin can be modelled by a top in which the -iiagnetic field couples to
the angular velocity __' A complete svnrplectic theory rc.n be given and the systemn is
initegrable. Althiough thle top performns a complicated inot ion the magnetic mionrent has
tire exact Pauli precession. Thle system is quantized, aid a point charge model is developed
to calculate the gyronragnetic ratio g.

I. Introduction

Thle spin of tile electron was introduced into the quantumn theory directly by the Pauli
or Dirac matrices without quantizing any preexisting classical spin nmodel. This fits (litute

well into the statistical interp~ret at ion of qilratituir miechranics. but thle tunderstanrding oif

the physical natutre anrd origin of spi n arid spin magnetic mromienit is Iac kinrg."I Nei ther of
tire proposed theoretical exp~laniationis (see for examiple hlefs.3-6) was generally accepted.
Spin models have trot been very conclusive in the p~ast because the phlase slia,-( of classical
models seenis tor be larger thair that of (ianrttrm spin.,

In ourr recent work' we removed this shiortlicornings of prevon classical nodlels h
a proper courpling of thre magnretic field B to the angurlar velocityZ of thre top. The cop
with such courplinrg we call tire mragrnetic top. Tire mragnetic miomenet ri of thre magnetic top

performils a simtrple precessio n montion leading itnniedia t l t o the Paiuli equant ion. wh ereas
lie tort itonr of the trip it self is tnt re rouripl iratvd.

Iii ordler tot show Itoiw e~ssential tire form oif thre couitplinrg is. we comrpare tire maugn et ic

ttop withl thre case' whlret tire top) coutple's to a fixedi vectror ott thre topr (a.s iti the case (if

gravitat iotnal coumplinig). There is a b~ig difference.

Becauise thIis minoitel is strccissfmliiin pivn thre Pairli equant ion, one mighrt risk. if
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the possible underlying structure of the top could be revealed in future experiments, or in

understanding the change of phase of the spin1 under 27r rotations. We elaborate further
here on the origin and value of the magnetic moment arid study a simple model where
a point charge t produces the magnetic moment due to the motion of thle top and the

relative motion of charge on the top.

II. Lagrangian and Haniiltonian of the symmetric magnetic top

The Lagrangian and Hamiltonian for the symmetric magnetic top in a magnetic field
are8:

L = T - U = l':2 +.gI. (1)
•2

H=("I -gl) (2)
2 21 21

where I is the moment of inertia, E = Iý the kinetic angular momentum and

= + gIl (3)

is the canonical angular momentum (in analogy with the kinetic linear momentum F7 = nr

and canonical niomuentum ii j = ni7 + (.4 for the point particle Hamiltonian H = -L (g -

c.,) 2 ). The phase space of the top consists of ( X, p. \,pý.p, p\ ), the three Euler angles

and their conjugate momenta. We have here a gauge theory with B playing the role of the
gauge field.

Using the Lagrange and Hamilton equations we showed that in magnetic field 'B(t)

kinetic and canonical angular momenta as well as kinetic (A = -g) and canonical
(it = g.s magnetic moments satisfy the torque equation.

d,7 -=gr xB (t) (4)
dt

Therefore, in the tinie-independent field J_, the vectors E,,., if. ,l simply precess around

the field.
In contrast to this simple one-diniensional motion of ; of the magnetic top, a magnetic

moment fixed to the body, c. g. ni = mioi, satisfies a more comp)licated equation of motion

arid consequently performs a complicated precession with nutation.

III. Quantum magnetic top

The us mal quamtization via Poisson brackets gives the tisual spin algebra

.I,] = ihc6,k."'k (5)
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but (toes not provide us immediately wave functions on the configuration space (0, X. k ) of
the top. hi the Schriidinger quantization the canonical angular momenta operators ;, are
represented by differential operators on the space (0, :. \) which gives the Hamiltonian,
without the ambiguity of operator ordering, as

1I 0 1~" 22
-I 2I +ghB(i )+ 2g IB 2  (6)

& 02 0 1 02 02 ctgO 02
=-h[ý+ctgO2 + 0- + 0j' )2i O] (7)

In particular, for q = 1/2 we obtain the wave functions 111/2(0. r. ) and u_-/2(,) , .,)

which span the subspaces Di/ 2 of the two-valued representations of the rotation group'

11~~~ ~ 11 0c"1 '[(;p12)+(\,/2)] cos,,i/2(o,r',\) = .

27,V 2
1 9,[(;2+ x2]•l

U,,1(O,/,2 ) = sin - (8)

IV. Magnetic moment and g - factor

W,'e adress ourselves now to the question of the origin of the magnetic momient g which
so far was introduced via the coupling U = -gI. B in the Lagrangian. We now show
that a point charge c which mioves on the top aid which is coupled to the electromagnetic
potential A4 by the term j .. 4 = c / .4 can lead to a magnetic nmment coupling g1,2. B.
Then we will compute g.

For a hoiogeneous magnetic field, we can set .4(R) = x 1?. Hence

U=eR.A(R)= R. - Bx RJRx R.B= (9)
2 2

with1
I R x R (10)

2

Using tihe relation
Rp, = Rho~m• 4- x R., (11)

we find:

AJ I --•[, × ) < ( ) + fix R,!= - [•(`2 /( . B) + x ×R] (12)

We now require the relation

S• = - ,- 2 R),- I- ) f ? x Rb] -= -y1, (13)

.... ....
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One simple solution of (13) is obtained by setting:

.. / =0; R x Rb= A, (14)

where A is a constant parameter which is different from zero. The charge moves with
respect to the body in such a way that Ri is always perpendicular to the time dependent

vector 0. Then the g factor is equal to:

g=-(A +R2) (13)
21

Taking into account that moment of inertia, I = f, pdF', of the extended particle, is
different from the moment of inertia I = mR'2 , of the point particle, we conclude that the

g factor takes values different from g = /2m value of the point charged particle.
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TOPOLOGICAL ARROW OF TIME AND QUANTUM-MECHANICAL

EVOLUTION
Pedro F. Gonzilez-Dfaz.
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The quantum measurement problem remains still unsolved'. Actually, it just
expresses the essentially dual character of evolution in quantum mechanics. On
the one hand, the state vector evolves according to deterministic, time-symmetric,
local and unitary laws, such as the Schroedinger equation; during this kind of
evolution the state as a whole remains unobservable. On the other hand, the es-
sential probabilistic nature of the quantum-mechanical predictions requires that
the wave function should evolve following nonunitary, time-asymmetric and non-
local laws during the measurement process which, moreover, is associated with a
loss of quantum coherence. Thus, if we want to render quantum mechanics a pre-
dictive theory, then we will need a collapse of the wave function, and this implies
an arrow of time for the measurement process.

Clearly, quantum mechanics describes the behaviour of ordinary matter in flat
space. At least at the microscopic level, this represents an extremely good approxi-
mation whenever spacetime is considered as a classical construct which is indepen-
dent of the observer. However, if quantum fluctuations of the spacetime topology
are allowed to occur, one could still expect the appearance of gravitationally-
induced important effects during evolution of microscopic matter. I will show that
such effects are precisely those required to induce an arrow of time for quantum
measurement.

Topological fluctuations of spacetime are best described as wormholes which
are microscopic connections between two otherwise disconnected flat regions of
spacetime2 . A wormhole represents a topology change in that it induces an initial
state which is just flat space to evolve into a final state which is flat space plus
a given number of baby universes. Baby universes are very little closed universes
described by just the Lorentzian version of the corresponding wormhole spacetime
which, in turn, can only crop up in Euclidean gravity.

From a topological point of view, two types of wormholes which insert into the
large flat region at only one contact point can be considered. Simply-connected
wormholes are those wormholes describable by a pure quantum state given as a
wave function

3

, here i is the Euclidean action and Cy describes the class of paths in the path inte-
gral (I) associated with Euclidean asymptotically flat four-geometries and asymp-
totically vanishing scalar fields ý which match the configuration [hjj,, 0 } given
by the three-metric h,, and the scalar field value •bo on an inner three-boundary
S, which divides the four-dimensional wormhole manifold into two disconnected
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parts.
Nonsimply-connected wormholes possess a quantum state given by a density

matrix4 , p[hi, Oo; hWi, O',J, that describes a mixed state. It is also given by a path
integral as in (1), but for a class of paths, Cp, having as inner three-boundary
the sum of the disjoint three-surfaces S and their copy S'. This expresses the
distinguishing feature of this kind of wormholes that S does not divide the whole
manifold into two disconnected parts, and leads to a crucial difference between the
effects that the two kinds of wormhole topology have on ordinary matter in the
asymptotic region. In general, the effects of wormholes on conformally invariant
scalar particles at low energy are evaluated by using the propagator 3

< 0 1 -(x)"...-(x,) 10,,, yi €( )...-' (Y') 10 >, (2)

where the x's and the y's are points on the two asymptotic regions, and 0,, is a
filter operator which is given by 1I' >< 4f I for simply-connected wormholes 3 or
by p for nonsimply-connected wormholes4 . The Greer. function (2) can be worked
out to give finally an effective Hamiltonian density in the asymptotic region

H = H0 (0) + • H,(0)A,. (3)

Here, H0 is the usual local Hamiltonian function for scalar particles. The new
scalar particle-wormhole interaction terms HiAj (in which the discrete index i
denotes the type of wormhole) contain both scalar field operators Hi and baby
universe operators Ai. If the wormhole quantum state is given by a wave function,
then3 A, = a, + ai which is associated with an uncorrelated production or annihi-
lation of baby universes characterized by Fock operators a,. If we consider mixed
quantum states given a density matrix, then it turns out that A, will correspond
to the time-correlated production or annihilation of a number of baby universes,
all at a time. For the case of a doubly-connected wormhole e.g., we would have
A, a t2 + a,;.

Now, since uncorrelated baby universes are all closed, such baby universes will
be disconnected from the asymptotic region, and cannot therefore be observed
from it. However, owing to their mutual c(,rrelations, all baby universes which
are branched off from nonsir.. ly-connected wormholes should be connected to the
asymptotic region, making thereby observable the quantum state p.

Single-time correlations among baby universes are destroyed when one chooses
different time orientations on the disjoint three-surfaces from which baby universes
are branched off. An observer in the asymptotic region does not know anything
about the number of disjoint three-surfaces on the inner boundary. It follows that
if, for the sake of making the Euclidean action positive definite (so that the path
integral becomes convergent), one uses complex metrics, then the contributions
from complex metrics and their complex conjugate metrics should be the same
in the case of the wave function, but these contributions ought to be necessarily
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different for a density matrix. This is best seen by using the Laplace transform of
the density matrix p

P[hij, Oo, K; hij 1, K'

j d[h']dh' l]e-i1. fKhpdzIf K'h'½')p[hi, o; h,0, 0' (4)

where hj is the three-metric up to a conformal factor and K, the trace of the
Euclidean second fundamental form, is taken to play the role of a cosmological
time concept'. The Laplace transform P is holomorphic if the real part of K is
positive; K can then be analytically extended so that K -- iKL, with KL being
the Lorentzian version of K. It can be readily seen that complex metrics lead
to a positive real part in KL, and their conjugate counterpart metrics lead to a
negative real part of KL. One has then,

41[ h i, K L, 019 P + 'h ij, - K L, €00 (5)

P[hj, KL, 00] : P'lhj, -KL, O0], (6)

where we have omitted, for the sake of simplicity in the formulas, all primed
arguments for P. It follows that, whereas (5) is a statement of T invariance
of the quantum state of simply-connected wormholes, (6) is a statement of T
noninvariance for the quantum state of nonsimply-connected wormholes. Thus, if
we first replace the real scalar field by a complex one 1b, and then introduce a triad
of covectors e' on the three-surfaces and a fermion field V), statements of CT and
CTP invariance for the wave function and the corresponding statements for CT
and CTP noninvariance for the density matrix are obtained, i.e. for P one has

P lh ij, K L , 1)ol j P *[h i, , - K ,, ,;J ( 7 ,

P[ik,KL,¢0] 7 P[-J•k-KL,V)0], (8)

(and the corresponding equalities for %P) where V)' = C7k,, and • is the triad on
the S's up to a factor.

This result ultimately implies that causal locality as expressed in terms of
the baby universe operators A, is violated for nonsimply- connected wormholes,
i.e. IA,(x),Aj(y) /A 0, at least for some particular spacelike separations. The
commutator will be always zero nevertheless for simply-connected wormholes.

Requiring then causal locality for operator H in the asymptotic region 6, it fol-
lows that the scalar particle interaction operators H, in (3) should always commute
for spacelike separations for wormhole wave functions, but do not for wormhole
density matrices, i.e.

[Hi(x),H,(y)I 740, (9)

at least for some (x - y) 2 < 0. Assuming then CP invariance for quantum fields
at low energy, it may be concluded that, whereas simply-connected wormholes
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must induce an evolution for these quantum fields which is unitary, deterministic,
time-symmetric and local, nonsimply-connected wormholes make that evolution
nonunitary, time-asymmetric and nonlocal, inducing thus a loss of quantum co-
herence for the quantum fields. Now, bearing in mind the observability properties
of Ti and p, we see that the evolution of the state vector of any quantum-mechanical

system in flat space is dual in exactly the same way as that which is induced by
wormholes. Hence, we can see why quantum fluctuations of spacetime topology
can make a suitable candidate for the missing physical origin of the arrow of time
required by quantum measurement. It is worth noticing that, since the probability
of occurrence of wormholes is proportional to e-s-, where S, denotes the action
corresponding to the wormhole cross section with minimal radius, the nonlocal-
ity induced by multiply-connected wormholes can even hold over the macroscopic
distances implied by e.g. any EPR experiment.
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and the scalar prodlucts (fj.fj) are real. W~e call such f, '*formally real". In fact.
with the choice E, = f dx~.r > c~, < .rl, where I.r > is the Dirac ket for the spectral
representation of the seif-adjoint position operator. < xljf ) = () xjf') =< xjf,)(-1 .
and hience( one has < . f ) =< .r fý)e,. with < xlIf, ) real. We jilefltjf% the choice
of iL in cacli copy of 7-ij in the tensor product H11 S 7 11 S and write k for Ek o
the left ats well ais the right (the fthen appear as real valuzed). We mnay then represent
rthe tenisor p~roduct as

f I f2f .. 5fy = ( f'D
2 .  fj , :.c~ (4)

the problem of constructing a tensor product for quaternion Hilbert niioliles t herufore

reduces to that of constructing thle tensor prodiuct for quaternioli algeblra~s. The linear
span D of the elements cl S s:c, C forms a large algebra imilltiplicat ion is defined
by p~roducts in the correspondiing place). To embed elements of thle form (4i ia righit D
module) into quaternionic Hilbert space, it suffices to define a scalar product with val'ues
in H. Fermi-Dirac and Bose-Einstein statistics are reflected in thle symnmetrizat ion of the
formally real elements: the scalar product of elements in D must be totally symnimetric.
mult ilinear and nion-negative.

Let uts define a map of dED into the complex d -( d),ER[c] by extractimig onily the
complex part (1. F ) for some (f IrnH of each factor, and carrying out ordinary ý oniplex
multiplication. This operatioti puts into correspondence the element e ifl any posit ion
in the tensor product. We define thle left ideal A, generated by the elenients{ j h}
where c~ . 1 . 1. with (r in the i~'h positioni (A, 0 tl if -V Ii
The quotient D/A, D, is a left module. For deD.d), = 0 if dc~. ) d* 1 > 0, and
is zero if andl onlyv if (J(.4_ With these properties, we can definet un Rfcl vuiieuci scaiar
product in D_. Definie 1L) = IL) + A,~; every d6D, has the form 1 + .4, d. I. 1,)_ -lien.

( d, 1D, 1(11 - D,)Z, I = (did 2 11), = (di¾Ih 0(1) 5)

With (4). this definitiomi defimues the embeddinut of the tensor prodluct of quaternion
Hilbert mroduile,, into a conmplex Hilbert space ((5) is complex linevar). This construction
is equivalenit to the complex tensor prod(uict proposed by Horwitz andu Biedentharn ý3] 11.
The gemieralization to the full quaterruion case is tinade by defiuiiiiut A = i,4.. s lie
appropriate idleal, and D/.4 = DH) H. The natural projection of d into the reals ( see (2))
for i = 0), A, 2 (C C, contains at part ini A: ~ii fact. at miiappiiiEt

into the reals which satisfies till (of our is qummrcments is given b,

(dlz D(ff) - 1N 1) 'I V AC6

ff,Sv Ju.I

from which one, can prove the iterative formula [3] (()q)r,z = cq)

K ~ ~ ýý~q q2y q,.l,.i/ . .. -. (Xi )P, + . q .2-q -'/ -- q;x r -

+2Rqvi ~:1 .. q~-.i u~. 7)
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The scalar product in D(H), defined by

(d, • 1D(I), d2" 1 D(II))f = c(d.*(1 '• ,)d2),,,,

provides an embedding of the space (4) into a quaternion Hilbert module (vectors in
the Fock space contain d ;3 1 in the algebraic factor to preserve symmetry under (8)).
One can then construct annihilation-creation operators for BE uid FD statistics which.
however, satisfy the algebraic relations

a'+l(f)ot(o) N +2.,(g)a,*(g) -

N + 3 ov(oyf'Ifg 1

N

= , N +3- Nt - Ift(g ,.... g9 9g-I-+I ... g.Ng(f, gj)). (9)
3=1

where the heavy dot indicates (normalized) distributive multiplication, indicating a
deformation of the usual annihilation-creation algebra (the same method applied to the
complex structure (5) does not contain the extra factor). This type of deformation
occurs, for example, in the well-known quantum group SUC (2). We also note that the
scalar product for N = 1 does not coincide with (fg):

1
(1P'(f), 11(g)) = -[(f,g)+ 2Re(f. 9 )1. (10ý

3

In fact. multiplying 11 (g) by the annihilation operator a(f), one obtains

1
a(f),P(g) = IPo -[(f, g) + 2Re(f. g)]. (11)

The one-particle state is the non-trivial tensor product of one particle with the vacuum:
the one particle sector therefore does not coincide with the one-particle theory which is
not embedded in a Fock space.

One of us (L.P.H.) wishes to thank S.L. Adler and C. Piror, foi helpful and stimu-
lating discussions.
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Abstrfact. We study file form of anl operator whinch (oniiiec t local arnd irredu cibler real-
izations (which are not necessarily rep resent at ions) of Lie groteps, which have a general
seizidirect product structure. We apply this developuierit to a simtpic 'ouit non trivial case:
the unidiroensional (3alilei group

1. INTRODUCTION

Since the work of Hoogland [11 it is well known the inmportant rob, hait local real-
izat~ons (inr.) of a group have itt describing the kinentatical sN'tnmnetries of a physical
systemn in Qttantuntt Mechanics. Along this paper we shiah l-,se the terti --realization"
instead of "representation up to a factor", as sonmetimnes appears in the literature and~
will be defined precisely bellow. Tite mathematical development of this theory can be
founid in 12) where, it was introduced the idea of the represent ationi group in ordler to
classify and comlpute IA. Iby means of local representations (l.rp. ) in the easies;t jv)'ssibl(
way. In getteral, a l.rl. is not irreducible and we wvill study here a pat* eular ease of
the problem of decotmposing a I~rI. of a Lie group in termis of its uitiiarv irreducible

(sub)realizatiotts uirl).Each irredfucible sLubrealization cani be selected by mnaking use,
of invariant equations anti may be associated to ani elementary sy.stent. A'ni investiga-
tiont of this question in the lenguage of fibre bundles for a, certain kitnd of groups ca;n
be found, for inistance itt [31. Here we shall work withitn a space of wave fultti. ious and

we shall restrict ouirselves to groups which have a general serttidirect product st ructure'
s:o Ithat otur restul ts comes intito well known formtulas when siome of its c uttlii met it sore

aIbeliatt.

2. LOCAL VERSUS IRREDUTCIBLE GROU P REALIZATIONS

Let G = N H a contnected Lie group of symmtet ries whose structiare is hat of a
sentt direct produtc t, where X is au in tvarianttsu ibgroitp TI'lte griou p X (an lhe t hou gilt

of as a hromtogetneouts space undter thIe act io n of G antd frotm no w oil it v. ill hi, i ir 'ttitied

phIysically withI a suititattifolrd o f th It pa~ice timei. We lo I S11,1 s dýi g'liv -Iy t lit' viihl
sp~acf- of wavefunttetioits of it cotmp'otentis .' 0 :X C". Titet aI locail rea ii/ * i ol ý,1 of
G in RH is a set of local operator is of X. U ( Y)A G. . w~hicihl aire deolritlivdb

(U(g)i,',)(g~r) =A(qj.r)r0(a),Vjt' E A~g E G, (2.1)

antd stucht thlott
Mlg)U4(g') -(g V(Y'U~r',Vqg' E G, 12.21

where A : G x X GL) C") is ; ttott sittgidat- Borel miatrix valrtil futtctioni arnd
G x G t, '( 1) T is a Bore1 factor system of G, i.e., c' bieliotg to ai clas's of
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H2 (G, U(1)). When the factor system w in (2.2) is always equal to one it is said that
U is a local representation of G. In physics one is usually interested in realizations
rather than in representations, and this means one more complication. However, local
realizations can be studied in terms of local representations by means of a representation
group. It can be shown [2] that, given G, there exists a (non-unique) group ?, minim-1l
in some sense, called representation group of G, which consists in a central extension of
G by an abelian group A, i.e., the sequence 1 -- A --+ U --- G --* 1 is exact, and which
has the property that any I.rl. of G can be lifted to a local representation (l.rp.) of G.
More precisely, if U is a 1.rl. of G, there exists a L.rp. 17 of G (where the action of ? on
X is via the canonical epimorphism p : - G, by "gx =- p(F)x, E -G,x E X), and a
Borel section r : G -• G, such that

a) U(A) C T
b) U(g) = U(r(g)),Vg E G.

Condition a) is refered to as saying that U is an A-split L.rp. of U. When G = XDH,
as it is our present case, it can be checked that G = (AX) 0 H, where the invariant
subgroup (AX) is a central extension of X by A. It can also be proved that all the
l.rp. of ? can be found by induction in the following way. Let D an A-split matrix
representation of A ® H and a : X --+ Z a normalized Borel section, then a L.rp. U- of
G is obtained by induction from D and has the form:

(U O ( O)4)(ýx) = D (a(yx) -1 a(x)) O(x). (2.3)

Now we turn to characterize the unitary irreducible representations (u.i.rp.) of G,
which can be used to study the u.i.rl. of G in the same way as it happened with local
realizations. The u.i.rp. of U can be computed by means of a well known theorem of
Mackey [4]. Roughly speaking the method can be applied to the present situation as
follows. Let ) be a u.i.rp. of (AX), and h E H, then h[x] is a new representation
defined by h[X](U) = x(h-'Zh),V5 E (AX). If (AX)* designes the set of classes of
u.i.rp. of (AX), the foregoing action of H on (AX)* divides that set into orbits. We
construct the closed subgroup GU = (AX) G H, , made up of the elements D E U such
that [] -, and W(h), h E H., will denote the operator that realizes the equivalence

h[xQ!() = W(h)-'X(J)W(h), VJ E (AX). (2.4)

Fixed a u.i.rp. L of H , a unitary realization (X, L) of Z7 has the form:

(x, L)(a, h) = X(a)W(h) ® L(h), V(', h) E (AX) D H,.

When the second cohomology group is trivial, i.e., H 2 (H, U(1)) = 0, and if there exists
a Borel set that intersects in a single point each orbit of (AX)*, Mackey's theorem
states that any u.i.rp. of G can be obtained, up to equivalence, by induction from the
representations (x, L) of U.. Explicitly, if s : p C GG/x "_ Z, being p an orbit under
G, is a normalized Borel section, a u.i.rp., U(xL,, have the form

"(V,) L) (s().,.(C)), c),C E ,Cc E p. (2.5)
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3. CHARACTERIZATION OF AN INTERTWINNING OPERATOR
We shall express the operator which realizes the equivalence between a subrepresen-

tation of UD and the u.i.rp. U(xL) by means of a functional in the form

X= K(x, c),(c)dy(c), (3.1)

where p is an orbit of (AX)* under G, y(c) the invariant measure (in general it can be
cuasiinvariant) of the homogeneous space G under G, and K(.x, c) an operator which
acts on the space that supports the representation (X, L) of G, . In these circunstances,
after a straightforward computation we find

K(x, c) = D (s(c)) K(ý)s(c)[()I (a(x))- , (3.2)

where ý is the class of the identity in G/G7, and the operator K(e) verifies

D(y)K(e) = K(6)W(-y) & L(-),V1 E A 0 HX. (3.3)

So, K(e) is an intertwinning operator between the representations D and W 0 L when
they are restricted to A 0 HX , in particular they must coincide in the abelian subgroup
A. The form of the operator (3.1) given by (3.2) and (3.3) allow us to classify the kind
of equations that a wavefunction of a lrl. must obbey if it is to be associated to an
elementary system. First, due to the fact that the integral (3.1) is extended to an orbit,
it must satisfy an equation that we call of orbital type. When D(-y) and L(-Y) in (3.3)
are matrices, condition (3.3) gives rise to at. equation of a matricial character and even
if they are unidimensional we get an equation which we call of equivalence. If (AX) is
"a trivial extension of X by A and if X is abelian then the nucleus (3.2) becomes that of
"a Fourier transform and this happens to be the case for the threedimensional (in space)
Poincar6 and Galilei groups. However, in general it may be not so simple as can be seen
in the following example.

4. THE UNIDIMENSIONAL GALILEI GROUP

The elements of U have the form [5,6] (r 7,0,b,a,v) = (77,O,g) =_ D, with (tj,0) E A,
and a, b, v the parameters of the space-time translations and inertial transformations,
respectively. The composition law is

(ilh , b, a, v)(27', 0', b', a', v') = (7+7'+wi(g, g'), O+O' +w2(g, g'), b+b', a+a'+b'v, t+v'),

with w,(g,g') = !vb'" + ab', w2(g,g') = ½v2 b' + va'. In this case, (AX) = ((ij,6, b, a))
and H =_ ((v)). Physically, the extension corresponding to the parameter 0, [K, P] = 19,
is associated to the mass of the system, while that corresponding to ti, [P, HI = I,,, has
to do with the possibility of a non null background constant field which is consistent
with the Galilei (and Poincar6) group only in one space dimension. The u.i.rp. of (AX)
take the form

(x(7,O~b~a)i) (p) = exp{i(m-+ ft7 + pa)}k(p- fb),m,f E R* (4.1)



272

and the representation W 0 L of H, = H = ((v)) is given by

W 0 L(v) = exp{fQv + ikv}, k E R*,

where Q = ip 2 /(2f) + mOQ. As for the local representations of Z, they are induced by
the matrix representation D of A ® H = ((q,O, v)) which is of the form D(q. 0, ,v) =

i(f'u+m6). In this special case, since Hx coincides with H, the orbit p consists just in one
single point ý, so the only components of the nucleus (3.2) to be found are k (or(x))-l
and K(ý). Let x = (t,x) and a(x) = (0, 0, t, x, 0), then

(- (Xr)) = exp{ftop - ipx + ½ ifxt}, (4.2)

while it is easy to check that K(e) is, up to a constant factor, a projection operator of
the form

K(6) = F(p)*¢(p)dp,

F(p) verifiying (Q + ik)F(p) = 0; explicitly F(,,) = exp{-ip3/(6mf ) - ikp/rn}. Finally
we have for the operator (3.1):

t, x) = J F(p)* exp{ftOt, - ipx + 1ifxt~i`p)dp. (4.3)

It can be checked thIat this operator is unitary with respect to the inner products defined
in the spaces suppc-ting these representations. We must remark here that this operator
is useful in order to clarify the physical meaning of tie parameters 7n, f and k which
lable each u.i.rp. of G and to stablish the invariant equations [6].
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A general approach to monodromy skein relations for any pair .of irre-
ducible representations of any' semi-simple Lie group in the framework of
topological Yang-Mills theory is proposed. The explicit form of the mon-
udromy relations ac ;.:z!! a- the .\plicit fc-o"*c redUction form
are given.

Skein relations are an important tool in studying low-dimensional topology of knots
and links, giving a possibility of computing polynomial invariants in a recursive way.
The recently discovered physical approach to skein relations utilizes some models of
topological Yang-Mills theory, namely Chern-Simons theory [1) and the, so-called. BF
theory 12]. It seems that any pair of irreducible representations of any semi-simple
Lie group gives rise to a skein relation. In the first paper on this subject [1] the three-
dimensional Chern-Simons approach was effectively reduced to two dimensions, and next
the apparatus of conformal field theory was employed to the case of the fundamental
representation of SU(N) group. The case of fundamental representations of other Lie
groups has been considered in [3). A genuinely three-dimensional approach appeared in
[4). and a non-perturbative version of it in the framework of Chern-Simons theory in [51.
and also in [6) ir. the framework of BF theory (with the possibility of a generalization to
some higher-dimensional links), but only for the fundamental representation of SU(N).
A four-dimensional Yang-Mills formulation of link invariants has been suggested in [71,
whereas a generalization to other representations (in conjunction with the concept of
quantum groups) is worked out in [8).

In this work we propose a general and elementary approach to skein relations for
any pair of irreducible representations of any semi-simple Lie group G in the framework
of topological Yang-Mills theory with the same gauge group G [9). Strictly speaking,
since the analytical and geometrical side of the approach has already been developed
we will confine ourselves only to the algebraical asperts (which are independent of the
specific geometrical description), and our present work should be considered as a group-
theoretical complement of [5-7], where only the case of the fundamental representation
of SU(N) group has been analysed. It appears that the key calculational object in these
approaches is the monodromy matrix .1l of two Wilson lines (possibly, in the higher-
dimensional case, generalized Wilson observables [6,7)), rather than the braid matrix.
It means that the prominent role is played by the. so-called, coloured (or pure) braid
group rather than by the (full) braid group.

* Humboldt fellow.
t Permanent address.
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Let t" be generators of the irreducible representations R,(G) of the semi-simple
d&-dimensional Lie group G. a = 1,2 ... d. a = 1.2. Physically. the group G is the
gauge group of some topological Yang-Mills theory. whereas the representations R,(G)
appear in the (generalized) Wilson observables IWR.. From topological field theory
follows the monodromy matrix [5-7]

dG
M 2AT, T = t7 t', (1.2)

a1=1

where the coupling constant A = , and the level k E Z+. The expression (2) can be
rewritten in the form

' G 
1,) dG t)T = Y (t ý2 12 +11 t2  

- (t tl 12 + 11 2tt). (3)
a=1 a=1

The first term in (3) contains the generator of G in the (in general. reducible) product
representation R(G) = RI(G) C R 2(G)

1°=t 12 + 11:2 t. (4)

For irreducible representations the second term considerably simplifies, namely

dG
tata = C". (5)

a=1[

where C, is the second order Casimir operator. Hence

T d 1tata C. C = C, + C,. (6)
e=l

The Clebsch-Gordan expansion

D
R, (G) R2 (G) =(@) Rý G) (7)

0=1

gives rise to the following generalization of (5):

dG D

Ytato = Z C'o . (8)
a=1 0=l

where P. are orthogonal projectors onto irreducible components Rc,(G) of R(G).
ED
0=P = 1, "PaP, = 6o3 P,. According to (6) and (8) the monodromy matrix

(which geometrically can correspond to the full-twist of two Wilson lines) is expressed
by the spectral decomposition

D
M = '-\C E eCAP.. (9)
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Analogously, the zero and the positive integer powers of -1 (which can correspond to
the zero-twist and the n-twist respectively) are given by the following spectral formulas

D
m°= 1. . =-\' eZcý PQ" (10)

A general monodromy skein relation is expressed by the polynomial in Al of the degree
" (N > 2)

N

F A4,, M - 1 o. ( 1

n=O

Using (10) we can put (11) in the form

D N

ZY P. Y AnG-Cn ACn-n 0.O, (12)
0=1 n-0

which is equivalent to the system of equations

N
Anq" =0, 1.2-.. D, q. =_-exp A(C.-C)-qC•-. (13,14)

n=O

Due to possible multiplicities in the Cle )sch-Gordan expansion (7). and possible acci-
dental degenerations (in general) not all q. are different. Thus we can confine ourselves
to the subset

{qp I q,:q,, for p v }C_{q 0 }. p.v=l.2 ..... d<D. (15!

to eliminate identical equations in the system (13). We should also assume N = d
because for X = d - I the solubility of the system (13) would be guaranteed by the
vanishing Vandermonde determinant

I' =- detq' j (q, - qý) = 0. (16)
<_p<v<d

which is impossible by virtue of our earlier assumption (15). The explicit solution of
the system (13) is of the form

d-n
()d-n - qp,. for0<n<d.

.4, = K< 2<<,_._<d ,=1 (17)

1 (normalization), for n = d.

A link L is defined as a finite collection of disjoint simple curves in the three-
dimensional manifold AV3 . The links entering a skein relation can differ, in a suitable
way, inside some ball B' containing only four-valent graphs (B' C Wl3 ). They are
denoted by L 2t,, where 2n is the number of half-twists (in general, also an odd number
of half-twists is allowed). For simplicity, L. denotes not only a link itself but also (in
algebraical relations) a Laurent polynomial associated to L. or, in physical language.
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the expectation value (IVR, (La)) of related Wilson Abscrv-ables. Since the monodromy
matrix -M1 corresponds to the operation of the twist one can obtain the (monodromy)
skein relation d

Z A,,L 2n = 0. (18)
n=0

saturating the indices of -I's in (11) with the terms that correspond to the part of tile
links L 2 . outside the ball B3

.

It is often possible and even desirable (intuitively, it is obvious that the less range
of the indices of L. the more calculational power of the skein relation) to find the
corresponding braid relation

d

Z BL, 0. (19=)
n=0

where the number of half-twists is no longer necessary even. The explicit form of the
coefficients B. follows from the consistency relations

d d d

Y ýM Y BnLm+n = Y A.L 2 n, (20)
m=0 nrO n=O

which is geometrically equivalent to the reduction of the monodromy skein relation (18)
by means of the repeated use of (19) with shifted n's: 3's are some auxiliary coefficients.
It should be emphasized that the existence itself of the relation (19) is by no means
guaranteed, and depends on the case under consideration. For example. in the case of
different representations RB(G) and R2(G) the reduction is excluded. The solution of
the equation(s) (20) is of the form

( d-n

Z -IQ.,. for0<_n<d,
B,= 1 <I <P2< <.Old,_.<d #=I (21)

1 (normalization), for n = d.

QP1 = +jj7. 3, = (-)-nB.

The braid skein relation (19) is. in a sense, a square root of the monodromy skein
relation (18).

It is also possible to derive some other reduction formulas. For example. in the case
of non-oriented links one can perform an additional reduction obtaining the relation

d-i

Z CL, + C',L, = 0. (22)
n=0

Making use of (22) twice we get the following consistency relation

d- + d-1 d

n=O -n=O TI=O
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where -• is all auxiliary coefficient. The links L, and L~ 1 are identical to the links Ln
except of the inside of the ball B:' where Lxl possesses one half-twist in its lower part.
Solving (23) we obtain d solutions of the relation (22) numbered by pi

Cn = 0 < n < d. = Q-1. 1.2 ..... d, (24)
1=0

where B, and Q's are given in (21). More explicitly. •-•e solutions have the form

( ~d- i -
1- (2P,- for 0 <n <d -1.

-G 1<i<P"<<d-n-t d Ol (25)

1 1 (normalization), for n = d - 1.

where the symbol Z1(" denotes that p, 54 p for i = 1,2..... d - n - 1. Unfortunately.
the coefficient C, cannot be determined by the consistency ielation (23) (an additional.
e. g. rotational symmetry of the graph has to be invoked), instead we obtain a relation

L.1= -- 'L. (26)

Since. in general. -, 1 the third Reidemeister move is not preserved and the relation
(22) describes a link invariant of regular isotopy rather than of ambient isotopy.

In the context of quantum group.;. it is worth to note that the monodromy matrix
(1.2.9) is proportional to the generalized R-matrix [S] of the quasi-triangular quasi-Hopf
algebra. Thus topological field theory can be used to generate solutions of Rf-matrix for
any pair of irreducible representations of any semi-simple Lie group.
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IROUP EXTENSIONS AND UNIFICATION THEORIES

CHRISTOPHER COTTER AND IGOR SZCZYRBA

Department of Mathematics, University of Northern Colorado. Greeley 80639. U.S.A.

ABSTRACT. The structure of a group extension 1 - N - G - D 1 and its
representations are analyzed from the point of view of unification theories. In particular.
a realization of a G representation in a space of functions on the quotient group D
G/AN is given explicitly.

1. Introduction

An unification of two symmetry theories based on groups Go and G1 consists usually in
finding a larger group G that contains Go and G 1 as subgroups. The simplest possibility
is a group G containing the direct product Go x. G 1 . Such an embedding was utilized
in Wigner's unification of spin and isospin [1]. where:

Go = SU(2)i 0.. ,. C SU(4) D SU(2)M5 ,ý = Gi.

In this case. the link between states of the two unified theories is given by transforma-
tions that are not directly related to Go or Ga.

The mathematical structure of a semidirect product G = Go >o G, or. generally, of
a group extension automatically includes an unification link between the symmetries. A
group G is an extension of Go by means of G, iff the following short sequence is exact:

1 - -Go • G1 - 1.

It implies, in particular, that Go is isomorphic to a normal subgroup N' C G. that
G, ý- D = G/N. and that there exists a mapping u: G1 - Aut Go which provides a
link between both groups. This link might be interpreted in the following way: the group

G, knows how to act on observables related to the symmetry Go (although. in general.
it might not know how to act on the corresponding states). If v' is a homomorphism
then G is called a central extension and if. moreover. G, can be pulled back into G as
a conipleniiyiiLu sub)gloUp to J 0 then G is o ;e, Ailire-t prodiicf

Our goal is to present and analyze some results supporting the idea of using group
extensions for unification purposes. For instance, many physical relations implied by
a symmetry based on a semisimple Lie algebra su(ni) are, in fact. a consequence of an
action of a Weyl group Gi = W(R) on observables that is constructed by using a rep-
resentation of an extension 1 -+ T 'ý G --- W(R) -- 1. where T is a maximal torus. A
combination of this extension with an eAteznsioi: of tbh group II'i R) to the group Af R)
(of all automorphisms of the corresponding root system R) leads to an unification capa-
ble of describing conjugation of general charges (e.g. particle-antiparticle conjugation).

cf. Section 2.
In Section 3, we present a strictly mathematical result whose derivation was moti-

vated by the fact that (e.g. from the point of view of physical relations discussed above)

quotient groups are the most essential. Namely. we explicitly show how representations
of an arbitrary group extension G can be realized in a subspace of the space of vector
valued functions on the quotient group D -G I/N.
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2. Group extensions and physical relations

Let g he a complex setinisimiple Lie algebra whose compact formn feg.. swn) d1(escrilbes
a given physical symmetry. The group Irnt p (of all inner autoniorphiijins is a Lie group
corresponding to g and could be considered as (a comiplexificationi of) a vmrinietry group].

In a previous paper [2). it was showni that in order to explain the mathematical
origin of physical relations such a- mnass or miagnetic inonnent urn forniulas, we musit
choose first a Cartan subalgebra h) C g that descrjlbes the basic physical observable,, of
the theory. One might say that lilt g unifies a synlnliet ry rela ted to t'he freed in of choice
of the Cartan subalgebra (Choice of a reference sytvsten?j with a synaletry re-late-d to a
fixed Cartan algebra. The latter symmiietry is described by those elenments in lint g whmc-h
preserve the Cartan algebra h). i.e., elements from the group Int(p. h ý This group i.s the
following extension by mneans of the Weyl group It (Ri:

1-eadt h In- ~ j .I(i-

Onl the other hand, in ['3] and [41, it w~as showni that conjugation of general charges
(for instance under part icle-antiparticle svrninetry) canl lie inchukinud inl the group de-
scription of the theory by considering extensions ,if lnt( p. h i and WflR ) by me'an, of the
group

Out g Ant p/Jut gpý .l( R)/l IVR) Di?).

where D( R) is the group of all automiorphismls of of the corresp ondinig, D nikin diagrami.
In other words, we have to consider two short exact sequences:

1 -Int(g,Ij Ant(p. h) -Out p -~ 1 an' 1 ,I IF()R -- A(R -? DR 1

Both these extensions are semidirect prtoducts. see [31.
All the considered extensions can be combined into the follo-wing commutative

diagram:

I -e oft Iit1 R

I , e' -At.,4 AR

1- 1-~ Outpg - D(R) - -I

An 'equivalent' diagram can be created if we replace (the mathematically canonical
group) Int g by any connected covering G of Int g. (This fact was checked f'or classical
simple Lie algebras and we believe this to be true for all sennisinipie algebras.) More

ft ~precisely, let Gh C G denote the corresponding coveritigof Int( p. 4~) and let T := expo,(4l)be the 'maximal torus corresponding to the Cartan algebra Iý. Then we have:
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1 .T Gh U? -

T Gt1 , D (R , A, DR. I

Now,'X let P:- be a reprtesenltationt of c;x D IJ? i at;iiig ill ;t % lit ct .)i p Iw
taiii Pj:-' 1) -t i it itig a rep~re~tiita t ion of G; x 1% R? . j 1Thi 14 -1it t iou f ilix-ji-i;l,1t ! l -
tlia r ar, vllnractrvlisri' for- stare.. fr-orri I , ha-i#% )Int twil;n ,I wl ri it 'i-N li:,,1;-

a ll. the 'eof the *h Alrjiziirira extul-i~li.. ille t11(-T '-'IiL li- fiT tti;i'
t iit, liap, of T* coinidiejr wit the prejrlia' iv f I .2 1i I? -1 n .AR It ;I~lil ,c - ! 1.

define a canonical representatjiol( s) of IV> R 1o( il A ? il i i 0 -pn1  Pia Ph' Eno -I
consnstinxg of ohservable'. that coulllinte %%with rpi-ert11lir llT- of, 1);tI i I lt. f:-;! h.

Ill the Case, of thlt X-erticil' extenisioti. tie-t ýtri-lt- (4- it pt (-Wnra;ir;l of ti
exrf-istions ibecollie, Inu0re e...ntnal. inl jiatiiiular. the f;iwt thn -cin-nt - 4 T!. 'j'iti-LjjT
groupt~ D( R? cani act huetweeti distinct linvarianlt of~j -T, c .'f. ý3 in'! 4,

3. Realization of represenitat ions

IV" -hall ideritify' 6', with rie raiormal rdhigt'mit A 6. ;liz; GI~ Will.* ]ti.~ lcrl"(11
U=GV. i.e.. we liall co, ic,jl t lit followxxin lip ,i ix' -, ,

Tilet-qrf Gearn lbe hidnitifiel %withi t he .ý f* N I Di -i-llcl Niý x\-x uit Titi, -nbigriiwi A ci\ i'ih rji

vi tin{o ii y N ý. For- amii d £- D. th l niit i i l lIIg , to. 1 l '. 1.2 -1 defline-
all autitixnirphil,.i ili Alit NY. We -hall lIcnit. lhii lit n' 'L-n iv il. in t- %aiili-
onl it N hN c&i,

7  
f. V'. Th. griiiuip ipcrrttioii iinlli t - -ýt A DL i. ,ix tn ii 1,

%%here-f tine, fll-trii tl 7ii -- . N-1  - .a i-4 - lhe 0 ill )ixyitic Ii'itt''1

To if -s,.cribie te li ealizatiiin of G repree.nitiatioiir it, furnction iirlip'-.'tic Ii) D i iNtivih'
fir-nt a N\ reliie-.erltatiirl Pt ;titjin ill ai i'iiiinp)l- xtitiit piiic V Tlic iiitiEliiitililV,
inertia groiup if rL is gi~ven by:

G R {g = (K Y C- G N

This deniuition imrpL~es thnat for the it'pre-e-l-ntitiiin 1 tileref vxi-t- a pitijeetive rib-i-en-i
tation ( Q., V) of tl(inertei-a group~ GR soInv that:

q q ~ 9 -R(o 17



281

whI ere p 1 Z2(-; R C ) is a two cory (-It, sarit sfvi I g

W~e can niormjalize Q as follows: QI , R n1(1 /I((.1 )=1
Let uts consider addit ioniallyapic it. ;evprv'vlltiit 'iol T ' t4 The plotvi'lit grolij

D :=GR /. acting iii a vector space -11. Thein' rtcjusitatioi! T c-anl be lifted No ;1

project ive rej )rv',t lit atia of tilie grouip GC iR i a' atitira 1 way :

Iq: T)& , .[ GR /N. i., -71%= ld.

Due to ouir niormializatioin of the two-cocych' p. we can assuna' that tlhe lifted (iroecutive

representation T also hlas p a, its tw.o-C(IyclI'.

Now, a G representation can be realliZedl ill thle pace L'' of futictions oi() D with
values in L :=£(-V. V) in tile following way. For ainy o (t. d) 6'I - N :-D. b 'E- D.

and F( I L '). thle formul a:

definles a G represenltationl. Ou the othier hatal. for auxl% (i. DR 7D. the( fornmiuia:

("F~Ih) := R - Ffli)T

uleffia's a DR~ represelltatiou1 tiliat ('oninlitite- xvjtli G; l.lr>eia ilt irndticed aimnve.

Tlints the stubspace U ýL" oif ftitictioin> thati al.' ii.aiant withl r'oct t thii" DR
action carries at G rep(resenitatioui P. If we a-timic that D'DfR is fitlitc. the ohwn

refii ienient of thle ('litfovii' s licorci 1-i ] c~ a n' be pivII:

THFOHFLM.

1. The rer.ttol(.L cozncidtv awth thr viductd reprtua ta/maý bid(; Q: '7
2. Evt'rqirreductble findte dirorntizoitai C reprtM titatiIoti?4 t (qun-alt tit to( a rrprc.ýItntahTiut

(P. U).

H-re 7' deciot"e thev represent atio a n t '(itagrt '(ielit to T . F(r prooii ( fs a ud ,omc a'itlIier

r('siilt s concerning. thle st ru ctuore oif rep1 resen'ltat ionhi f It gr htip ( ('te('111(0. sec 7S1
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SEPARATION

OF PURE GAUGE AND DYNAMIC DEGREES

OF FREEDOM IN CHROMODYNAMICS

Egidijus Norvai.-as
Institute of Theoretical Physics and 4stronomy

Go.tauto 12. V'ilniuts 232600. Lithuania

Abstract
The SU(3) gauge field theory or chromodynamics is the most popular non-

Abelian gauge invariant theory. As a consequnce of gauge invariance the su-
perfluous degrees of freedom not describing the field dynamics appear in the
theory. These pure gauge degrees of freedom are necessary while studying topo-
logical properties of solutions. Moreover, correct quantization must take into
account any gauge transformations. It is the purpose of our work to apply the
representation theory of the SU(3) group to the SU(3) gauge field theory.

Let ub introduce the SU(/3) group generators as the components of irreducible
tensor of rank (1, 1). They satisfy the commutation relations:

J,.t,), J in,,,.,)] = [' 'm' V".j".rn" p.;: ~(1

The first factor in the RHS is the Clebsch-Gordan coefficient of the S,'(3) group and
corresponds to the structure constant of the SU(3) algebra.

The SU(3) Yang-Mills field can be defined on the SU(3) algebra for the arbitrary
irrep (A, p):

A,(x) = AY"',)(x) ("p P 0)0 (2)

We have chosen the SU(3) group parametrization very close to Holland's used in [0].
The SU(3) group representation matrices are used in the form:

D(.'\,) 00'.
JIm; Y'.i = -- m T2T3T'.)

where

T2 = CV'4•JOvl.O°)-43(i° 1. 1 ,+J(° I - )Vjo0. 1.0 (4)

T3 = Ct2Pj(0'00O)C-27S(I- i1+j1 fI (5)

T, is the Operator (4) with primed variables. The eight angles are defined as
follows:

0 < . a' < 27r, 0 < 3. 3' < 7r, 0 < ". -y' < .7r.

0<p_<3r, 0_< r (6)
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Let us note that there remain some ambiguities of n.1 and o'. when 1,3' or ,I = 0, 7r.
The situation is similar as in the SU(2) case. The parametrization (3) allows the
SU(3) group representation matrix element to be expressed through the SU(2) group
Wigner D-functions:

D•,) ,(a,. 3, '•. p, ,o,3,-),' )=
Z D;_u_,(-,,3, -y)D'_yy_ (O, ,%O) x (7)

x D ,_¢,; mAe ', "')e -yp [(2j + 1)(2u + 1)2(2/ + 1)] )2

S!(Yo+ y Y " (Y o - y) u ( - " (Yo - Y ") j' '

where y, = 31(A + 2g) and the two last factors in the RHS are SU(2) 6j-symbols. All
factors in the RHS are well defined and known as the SU(2) quantities. A very similar
equation was lerived by projection technique in 101. It is known that parameters of
the gauge transformations depend on the point of space. For brevity. let us not show
the functional dependence parameters on K. fhe SU(3) matrices (7) induced the
gauge trasformations of the Yang-Mills field:

Ayjm) D|" 1) ,. + o
A'm - ,.D,•$ m,(a,, ( )3..,p.o'3',y')Af/Jm') +

+ {o, 3 , -,,p , ',3 " }i' ) . (8)
where the last items of the RHS depend on functions a(K), . 3

(K), -,(t,).... and its
derivatives. For example:

3 ..

{o3, ... }0'00) = -2ip -i(1 - cos ,)(0'+cos3'). (9)

The additive compone:it of the SU(2) gauge transformations of Yang-Mills field was
obtained in [0]. The field strength tensor is defined as usual and its components are
transformed under gauge transformations as components of the tensor of rank (1. 1):

Fty m) = D ".tm '(c "' ... )F(y'.l'.m')., .(10)

The Lagrangian of pure Yang-Mills chromodynatnics for the arbitrary irrep (A, P) is
described by

L___[\p' 2 F(•J'm) F"", (11)LyM -LL4 u(yJM)F(

where

[1A,(A + 1)(p + 1)(A + p1 + 2)(A,2 + U2 + Ali + 3,\ + 3p).
2-9. 169y

We can consider the Yang-Mills field as a Hamiltonian system. The the generalized
coordinates are A(YJm) and the generalized momenta are Ek(u.,.m) = Fk-ot.m. After

k a mn lm um • (
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renormalization with the factor [A, p] the constraints of the Hamiltonian system may
be written as follows:

F(y~jm,,) = &kEk(y,>m) +

S.. ,, ;k4 Eý-k~"!. (12)
yJ.j'.m' y,,m 5. .rn J

The Poisson brackets of the constraints are:
{ r(5.,•,,,)(.X),F(.,,( )

= -[ . ~ , ,,' F(y'"m"""(.F) 63(y- )" (13)
YJ,m y'J" Y'.m ' MI I" Im .

The gauge transformations transform them as the contravariant components of the
irreducible tensor of rank (11).

Equations (8),(10),(14) present evident dependence of the quantities of the theory
on the eight functions 0(K), 3(K), j(t).... i.e. on gauge degrees of freedom. It is
necessary for the topological analysis as well as for the definition of continual inte-
gration [0]. The correct formulation of the theory is possible only when there exists
the global exact gauge. The problem of the exact global gauge is not solved for
non-Abelian theories. The Coulomb and Lorenz gauges 0,A, = 0 are local and ambi-
guities (by Gribov) can be formulated as solutions o(s'). 3 (s). -,(') .... of the system
of differential equations.

[ (1,") (1.1) (1"). f {- 1'1, . •(•" " " I(¢/"

+D(J ,,,M1,,(-', -g. ..){.. " =0. (15)

System (1.5) is convenient to consider the symmetry of gauge.
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Fate of an Invariant Operator
in the Enveloping Algebra of SO(d-1,1)

Vineer Bhansali
Lyman Labs. of Physics, Harvard University

Cambridge, MA 02138, USA~f

Abstract

Applying Wigner's method of induced representations to the Lorentz group
in higher even dimensions, the eigenvalue of a generalized "helicity operator* is
computed on physicaJ states representing massless particles. An antisymmetric
invariant in the enveloping algebra of the higher dimensional Lorentz group
is shown to factorize into this generalized 'helicity operator" and an operator
that yields the boost eigenvalue. A physical application of these results is
the derivation of the higher dimensional analog of helicity suppression rules of
four-dimensional S matrix theory.

1 Introduction

In the algebra of the four-dimensional Poincare group. there are two well-known
invariant operators: PP'P, and 1W"WI', (p = 0... 3). where

1e(1

is the Pauli-Lubanski pseudo-vector. J'13 is a generator of the Lorentz group and P,
generates translations. For a state in the Hilbert space corresponding to a particle
with mass m and spin s the eigenvalue of P 2 is in2 and the eigenvalue of I'. 2 is
proportional to mr2s(s + 1). Note that W'P, = 0 in general. In the massless limit,
this relationship remains true, and in addition W2 = P2 = 0 which implies that
as operators W" and P" are proportional.' The constant of proportionality is the
helicity of the state. To see this more explicitly, consider a massless particle moving
in the 3 direction with a momentum kt', p = 0,1,2,3. In its "rest-frame", k" =

'bitnet: bhansali•qhuhepl
tSupported in part by NSF Contract No. PHY-87-14654
'Minkowski metri c gm, = diag(-1, 1. 1, 1).
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(k,0,0,k). Using the definition of W. we obtain 11o = (J 2

- J12 Acting on a state in the Hilbert space J12 gives its helicity, as it is the sole
diagonalizable (Cartan) generator of the (restricted)' little group (which, for massless
states in four dimensions is SO(2) -,. J(1)), and the little group classifies the helicity
states of the particle. So J12 is the helicity operator. 3

The outline of the paper is as follows: In section 2 we construct a vector oper-
ator in higher (even) dimensions analogous to the Pauli-Lubanski operator in four
dimensions (we shall call it the generalized Pauli-Lubanski operator). For massless
particle states this operator is shown to be proportional to the momentum operator.
and since the constant of proportionality is reminiscent of the helicity, we call an
analogous quotient the 'helicity operator'. It belongs to the enveloping algebra of the
(restricted) little group and commutes with the raising and lowering operators: so
it has the same eigenvalue on every vector of an irreducible representation obtained
by acting with the lowering operators on a highest weight vector. It suffices thus to
compute its eigenvalue on highest weight vectors. For sake of clarity we choose to
demonstrate our general ideas by explicit examples. e.g. we compute the eigenvalue of
the helicity operator in a non-trivial case (for six-dimensional massless particle states)
using the Cartan-Weyl approach (see e.g. [0]). In section 3. we show explicitly in
two non-trivial cases that some of the terms in the expansion of a similar operator
in the enveloping algebra of the full Lorentz group can always be written in terms
of Euclidean 'translations' . The eigenvalue of the remaining terms is known from
the general results of section 2 from a similar computation in two lower dimensions.
Finally we show that if the translations are required to vanish on physical states.
the general antisymmetric invariant factorizes into the 'helicity operator' and a pure
boost piece. Due to space limitations we refer the reader to [0] for detailed proofs
and discussion of physical applications.

2 'Helicity operator' in higher dimensions

Analogous to the four dimensional Pauli-Lubanski pseudo-vector, we will construct
in this section an antisymmetric operator in the enveloping algebra of the generalized
Poincar6 group of higher even dimensions. The Lorentz group commutation relations
in d dimensions are

[JAB jCoD = i(gADjBC + gBCjAD - gACjBD - gBDJaC) (2)

with A,B =0 .... (d- 1).
2The little group is actually the E(2) like group. But we set Euclidean translations to zero on

the physical Hilbert space to ensure finite dimensional representations, reducing it to SO(2) [0] [01.3 A familiar example will make this more concrete; note that for spinors j"2 a .12 and since the
product of gamma-matrices is nothing but the Pauli matrix, we get the usual result that J'2 =

But this is the projection of the spin in the direction of the momentum. i.e. the helicity.
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Consider a massless particle moving in the d- I direction with a d-mniomentum kA.
Choose as 'standard momentum frame' the frame in which the momentum d-vector of
the particle is ka = (k, 0 .... 0, k). The group of transformations ('little' group) that
leaves this d-momentum invariant is the Euclidean group E(d- 2). which consists of
rotations and translations in hyperplanes not formed out of the 0 or d - 1 axes. The
d - 2 "translation" generators4 are given by

La - J,0 + J,(d-,). (3)

We can find the commutation relations of the generators J, and L, using eq. 3 and
eq. 2:

[L,,L,] = 0 (4)
f[,. Lk] = iikL, - 6,kL,) (5)

[V0, Jk4] = i(bi•J 3, - permutations). (6)

As usual [0], require the Euclidean translations, which form an Abelian subgroup. to
vanish on physical Hilbert space states (A is used as a generic index for the eigenvalues
of all the commuting generators):

LJiA\) = 0 (7)

in order to ensure finite dimensional representations. This may also be thought of as
a 'gauge-condition' [0] and it forces one to use only gauge-independent Lorentz group
representations. The little group thus reduces from E(d - 2) to SO(d - 2).

Now consider the following operator (generalized 'Pauli-Lubanski' operator)

-' = ),- < x •u,'~o s * •l 3' '' .'32''0 '" ' (8)
(_-1)'-'-2,n!

in the enveloping algebra of the generalized Poincartý group in d = 2n + 2 dimensions.
Since all space components of the d-momentum except the d - I component are zero
for our particle, we obtain the 'helicity' operator s

k_ l ) 2 n n ! X ( O j ý1 01 2 ,3 2 . .. .. . .3 n d - I ) J n 3 . . ... ( 9 )

Note that in the limit that the masses go to zero. not only are the operators IV"
and P" orthogonal, but also null: p 2 = 7112 is indeed zero by definition when m = 0.

4 Note each translation indexed by i is a combination of a boost in the i direction and a rotation
in the i, (d- 1) plane.

5A note on normalization: The factor of'2" appears because of degeneracy in the expansion from
permutation of indices within generators. The minus sign due to antisynimetry of a generator is
cancelled by a minus sign from the o symbol. Since the generators appearing in each term commute.
one gets a factor of n!. There are C(n,2) ways of choosing indices, which accounts for the
remaining factor.
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Now WuWK has two c-tensors with indices contracted and a sequence of J's and a
pair of Ps. It can be shown by tedious but straightfoward index manipulation that
the only surviving terms have both P's contracted, i.e. W 2 -x P2 . The other terms
cancel because of signs from the c-tensor. But since P 2 = 7121 in the massless limit.
W2 --- 0 as required. So W is proportional to P and one is tempted to call, in analogy
with four dimensions, the eigenvalue of eq. 9 on highest weight states the 'helicity" of
that state.

We will now compute this eigenvalue explicitly on highest weight states. 6 Recall
that highest weight states are given by specifying the weight vector in terms of the
eigenvalues of the simultaneously diagonalizable (Cartan) generators. For d dimen-
sional spacetime. the Lorentz group is SO(2n + 1.1) with d =- 2n + 2, so we specify
the highest weight vector as A =_ A(,, - 2. . where m, are the eigenvalues of the
Cartan generators.

Explicit evaluation of th( eigcnvalut of six-dinfnsional fhdicity operator or thf
SO(4) invariant: Specify the little group SO(4) - D2 highest weight vectors by
A = A(m,,, 2 ) with m) and m 2 respectively the eigenvalues of the Cartan generators
J 12 and J 34 . We want the eigenvalue of O nJ A. Expansion of eq. 9 with
n = 2 gives

IWO 3 J,•d,4 -N J12J34 - -113J 2 4 + .114 J 23. (10)

The raising and lowering operators defined by [H,. E2] = o,E. (where Hi are the
Cartan generators) are

E+=-(+.+,) = 1[(J13 + iJ 23 ) - (J 2 4 - iJ 14 )] (11)

E .= [(J-3 - ij 23 ) - (J24 + iJ14 )j

E+3-=(-1,+1) =--- [(Ji3- Ui 2 3 ) + (J 24 + iJ 1 4 )]
E-,3=(+I-]) = j[(J1 3 + iJ 23 ) + (J 24 - iJ14)]

where the subscripts denote the root vectors given by their coordinates in root space.
E+ =- E. and E+,3 = E3 will be taken to be the positive simple roots (first nonzero
entry from right is positive.). In terms of the raising and lowering operators, the
generators can be re-expressed as

J13 = !(+E,• + E,3 + E-3 + E-.) (12)
(12

J24 = ½(-E, + E3 + E_,3 - E-,,)
J14 =(-E. - .3 + E_,j + E-)

J23 = '(-Eo + F,, - E- 3 + E-.).

Substitution in eq. 10 and straightforward algebra gives

J12J34 - J13J 24 + J14,123 = J12J34 + 1/2[{Eo, E-,,} - {Ej, E-31] (13)

'It may be proved [0] that the conditions of eq. 3 ensure that the states are indeed highest weight
states.



289

where the braces indicate anticommutators. But by definition, on highest weight
states,

EoA = E0A = 0 (14)
so we can replacc the anticommutators by commutaturs, when operating on highest
weight states:

{E., E-.} A =Eo.E-] [, (15)
and similarly for E±,. The action of the commutatoi on a highest weight vector is
simply the scalar product between the root vector and the weights, i.e.

[E., E_-]A(i... ) = (J, 2 + J 34 ),\(...i,) = (,n1  + fi),,(.. ) (16)

and
[En, E_3]A(...,) = (-J 12 + J34)A(,.....) = (-in + n2 )A( .... ,. (17)

Also, by definition

J12J34 A( ... 2) = ?n121 2 -\(M...2) (18)
so substituting the result of the last five equations into eq. 13 . we get finally for the
six dimensional helicity operator:

[J 1 2 J 3 4 - J 13 J 24 + J1 4 J23]A(mim 2 ) = mi(M 2 + 1)A(m.... (19)

Eigenvalue of helicity operator in general vre n dimensions: A similar computation
for SO(2n) gives the following beautiful general result (see [0] or [0] for proof):

The eigenvalue of the helicity operator eq. 9 for d = 2n + 2 on highest weight
states is

m1 (in 2 + 1)(m 3 + 2)... (in," + n - 1), (20)

3 Factorization

We will now prove that if we require the generalized translations L, in arbitrary
dimensions to vanish on physical states, then the full invariant

=, - 1( 2 X. ,3j 2,32...jo.;. (21)
(-1) 2 2"n!

for SO(2n - 1, 1) factorizes into a product of the generalized "helicity' operator and
the 'boost' operator . The idea is to try and express the combination of non-Cartan
generators in the expansion of eq. 21 in terms of the translations L,. which themselves
are required to vanish. Let us first demonstrate this strategy in four dimensions, for
the SO(3, 1) invariant:

Assume L1 = J10 + J13 and L2 = J 20 + J23 vanish on highest weight states given
by Am,,, 2). Expanding r.h.s. of eq. 21

Cso(3,I) -= J 23 JO - J13J 20 + J12 J30 (22)
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where we have used the subscript 0 on the non-compact generators. The first two

terms in eq. 22 can be rearranged in terms of the translations by using the commu-
tation relations of eq. 2 :

1/2[-(J20 - J 23 )(JIo + J 13 ) + (J1o - J13 )(1120 + J23)]

1/2[-(J 2o - J 23 )L1 + (J1o - J13 )L2]. (23)

but since the translations are required to vanish on the physical states, the only
remaining part of the SO(3, 1) invariant (see eq. 22 ) gives

J12J30 A :) iml7 ...2 . (24)

The origin of the i is the Weyl trick 7 to relate the compact and non-compact gener-
ators.

We obtain the advertised result that the helicity eigenvalue (ml) and boost eigen-
value (iM2) factor. This is an example of the *factorization' that we mentioned earlier.

Here, it is almost too trivial. We shall explicitly do a more non-trivial example:
In six dimensions, the Lorentz group is 50(5. 1) and the little group for massless

states is ,O(4). We may work with the Euclideanized SO(6) and use the Weyl trick
to relate Jjo and Ji 6 . Then the expansion of the invariant is (see eq. 21

CSo(s.lt) (J 12J34 - J 13 J 24 + J 14 J23 )J50  (25)

+(-J 24J 335 + J23J4.5 + J.34J2.5)Jlo

±(-J34JI.- + J 13 JJ4 ., + J14J3,)IJ20

÷(4-JI2'45 - J141J25 + J1SJ24)J30

+(-Jl2J3.a + J13J25 + J115,23)J40

and we want to determine its eigenvalue on highest weight states specified by %
The first term in C 0o(5.l1) has the common "boost" generator J.50 with the definition

J.XoA(.m.,m 2 .mi) = i?1 3 A(,,,1 .-.... ) (26)

and the part inside the brackets we know to give

(J 1 2J 34 - J13J 24 + Jl4 J23)A(m-I,.,...) = MI(m 2 + 1().\ ..... ) 27)

from the discussion for SO(4) in section 2. We still have to deal with the remaining
terms. Since every D, - SO(2n) has rank n and dimension o(?n- 1). for SO(6) there

7The Weyl trick achieves the following algebraic 'Wick rotation': Given two real forms, one
compact, e.g. SO(4) and one non-compact e.g. SO(3, 1). with the same Universal Covering Group.
if the algebra and the representations of the compact real form are known, then those of the non-
compact real form can be found by replacing the compact generators with i times the corresponding
non-compact generators.
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are 15 - 3 12 raising and lowering operators, and 3 linearly independent raising
operators (= rank). Also the little group (here SO(4)) involves four translations

L= Jjo + Jij (28)
L2-J 20 + J2S

L3 J30 + J3.S

L4 J 40 + J45,

which will vanish on A. As in the four-dimensional case, we now wish to be able to
simplify the invariant by expressing them in terms of the L, i = 1 .... 4. So we want
to write

Cnon-Crt. =_ (-J 2 4 J 3 .5 + J23J45 + J34J2.5J1o (29)

+(-J 34J15 + J13 J45 + J 14J 35 )J 20

+(+Jl2J45 - J14J25 + J 1 5 1J24 )J3 o

+(-Jl 2 J 3 5 + J:•3 J 25 + Jl5J2s)J40

= aL, + bL2 + cL3 + d414, (30)

where a, bc, d are undetermined quadratic forms of the generators and can be deter-
mined by a recursive procedure:

a = +J 34 (J 25 - J20) - J24(1.35 - J30) + .123('45 - J4o) (31)
b = -J 3 4 (J 15 + J10) + J 14 (J 35 - J 30 ) - J13(J 4.5 - .140) (32)
c = +J 24 (J1 5 + JJo) - J14(J025 + 120) + J12.P 4 5 - J40) (33)
d = -J 23 (0h5 + J10 ) + J13(J 25 + J20) - J12P(35 + J30) (34)

So that using eq. 7
C'non-Cart•n,\M .......... = 0. (35)

Hence

Cý;o(.5 1)Atmi,.m2,,3t ) i (m• + 1 )n3.\(,, ....... (36)
Note that in the present calculation, we used our knowledge of the eigenvalue of the
four dimensional operator to determine the eigenvalue of the six-dimensional operator.
The terms not tied to J.o could be manipulated to give zero eigenvalue because the
translations are required to vanish. This persists in each higher dimension. In d
dimensions the invariant is an operator whose expansion is a sum of terms multilinear
in the generators and degree equal to d/2. There are some terms in this expansion
whose eigenvalue is known from our general theorem for the eigenvalue of the helicity
operator in d - 2 dimensions and the remaining terms can be put into a form with
translation generators at the end. Since translations are required to vanish on highest
weight states, these other terms have zero eigenvalue and we are left with only the
part whose eigenvalue we know by referring to a similar computation in two lower
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dimensions. In the six-dimensional example, im3 is the boost eigenvalue, and mI(rn2 +
1) is the helicity eigenvalue (it comes from the part in the iavariant composed of only
the little group, SO(4) generators). But the eigenvalue of the full group invariant has
been shown to be irnl(m 2 + 1)m 3 , so the boost and hdicity eigenvalues factorize.In
general (see [0] for details), for the special class of representations satisfying eq. 3 the
boost eigenvalue depends only on the last index of the representation weight vector:
by examination of the invariant in eq. 21 we can see that in d dimensions the surviving
term has a common J(d-io) factored out of what is the helicity operator (which is
formed out of SO(d - 2) generators only).

As an application of the factorization property, it can be shown that to determine
the behavior of matrix elements of massless particles coupled to currents in the limit of
vanishing energy, the minimum set of information required is the representation of the
fields and their tensor products, and in particular. the boost eigenvalues. Discussion
of this issue and the special simplification occurring in four dimensions is left to other
works [0] [0].

I would like to thank Prof. H. Georgi for critical discussion without which this
paper could not have been written. Thanks are also due to Prof. F.E. Schroeck for
arranging travel support for attendance at the symposium.
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UNITARY STRUCTURES FOR SPANNORS
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1. Spannors

We recall the definition of the spannor representation, Sd, of SU(2, 2), the universal
covering group of SU(2, 2) I1[. Sd is the tensor product of the scalar representation
of SU(2,2)" of weight d, l'/, with the spin representation of SU(2,2)-, which we
denote by E:

sd -- vd ® E. (1.1)

For the physically important case, d = 2, the representation space may essentially be
identified with £ 2 (Mo) ® Z", where M0 is Minkowski space, and the representation
V2 of SU(2, 2)- is just that multiplier representation with real multiplier and which
preserves the V2 norm on MO. We shall henceforth consider only this case.

2. K Finite Basis and Weight Diagram for Spannors

It suffices, in what follows, to consider just the front half spannors, which can be
defined as the section space of all sections of the spannor bundle, whose lower four
components vanish in the tensor product parallelization [l1. Convenient basis
fields, which are defined in the standard curved parallelization (l1, are the so-
called K-finite basis fields [21:

le;khlmn > (2.1)

where all k,l,m are integers and e and h take the values +-1 and -1; in addition,
n-k-l = A mod 2; k > 0, 1_> 0, -1- I < m < lifh = -1; and k > 1,1> 0,
-l- <m < if h = -1. (A = d+ 1). The le; khlmn > "diagonalize" the quantum
numbers k,h,1,m and n (c.f. [21).

Define the K types

b(n,k + 1,h) {le l;khlmn >

with n,h,k+Ifixed;+ for e= +1 and - for e -1}. (2.2)

Also define the spaces

E,= ( b(n,k +l,h)' and E-, = b(n,k + l,h)-. (2.3)
n,k+,h ,k+l,h
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FIGURE 1. WEIGHT DIAGRAM FOR FRONT-HALF SPANNORS. Each circle or
cross represents two K types, namely b(n, k+e, h) and b(n, k+E, h). Circles denote
h= + I fields and crosses denote h= -I fields. Points to the right of and along the dashed
double half-line in the first quadrant represent V [V' ]. Points above and along the dashed
half-lines represent V[V'I. Points to the left of and along the dashed double half-line in
the second quadrant represent V [V ]. Points along the solid half-lines represent G [G I
and GJ[G" J. They have been slightly displaced in order to make clear their disjointness
from V-[V-'] and V[v'I.

The weight diagram for the front half spannors, which is shown in Figure 1, describes
these spaces. (See section 3 for definitions of V-, V and V+ etc.)

3. Irreducible Composition Factors and their Unitarity

Now recall the notation for induced representations introduced in '1!

In•d 0p(,([n, ml; d)). (3.1)

p denotes an irreducible representation of P-, the universal cover of the extended

Poincar6 group, that acts trivally on the translations. (G and P denote the Lie alge-
bras of SU(2,2) and P, respectively.) n, m' labels the representation of SL(2, 2),

and scaling acts with weight d !1'. Further we introduce the Dirac operator on Af,
the double cover of the conformal compactification of MA [21:

3
7C Xo ÷ 71X1 ±-t ̂12X 2 - "Y3 -X3 - 37415, (3.2)

2
where the -y matrices are defined in [21, and

Xo - L- 0 , X, - L1 - L231 X2 = L2 - L31. X3 = L34- L 12.

Explicit expressions for the vector fields, L,,b. are given in [3j.
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Theorem 1

The 10 irreducible composition factors of the front half spannors are (s =

V+= b(n,k + 1,h)+, (3.3a)
h=-2* k+/=,-hL _k+j+ý
2 , (+i)- -+h

2 2

V = Y- Y b(n, k+ 1,h)-, (3.3b)
h=-2S kt!=,_- 'ý=-(k I)

V- 5 b(n, k 1- lh)+, (3.3c)
h=-28 k+j,_h- n+(k+I)+tth=0, 1,-2.

G 5 b(n,k +- 1, -1)+, (3.3d)

G= - b(n,k - l,+1)+, (3.3e)

and V+', V', V-', G" and G-', which are V+. V, V- G- and G- with b(n, k + 1, h)+
replaced by b(n,k + 1,h)-. G acts as Indo(p([2, 1; •)) on V+,V and V-; 0 acts

via the quotient action of Indo(p([2, 1; )) on G+ T+/{V + V+} and G-
T- /{V- + V}, where T and T- are the essential extensions of V+ V+ and V- + V
given by eqns. (14.12) and (14.13) in Theorem 14.2 of [41. G acts as Indo(p(l1, 23; '))
on G+' and G-'; and G acts via the quotient action of Indl(p([1, 21; )) on V+'
X+/G+',V' = X{G+' -r G-'} and V-' = X-/G-', where X+,X and X- are
essential extensions of G+', G+' + G-' and G-', respectively.

The proof of this theorem follows from results in section 14.1 of j4] and from 111.
The spaces X+, X and X- have definitions, which are very similar to the definitions
of the spaces given in eqns. (14.7), (14.8) and (14.9) of [41, but we do not have space
here to write them down.

Theorem 2

Let the actions of G on the irreducible composition factors of the front half spannors
be as in Theorem 1.
Then, V+' and V-' are infinitesmally unitary with scalar products

I ) ± T 1Dd4u (3.4a)(0 04-f

for V,,€ E V+' or V' (+ for V"', - for V-'": G+',G',G+ and G- are infinitesmally
unitary with scalar products

*1
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(€= L s 'r4dQZss; (3.4b)

V+ and V- are infinitesmally unitary with scalar products

(D¢0 23c):L (¢,0)•(3.4c)

for DVC, CR E V+ or V- (+ for V+, - for V-). Neither V nor V' are infinitesmally
unitary. (Vr means transposed complex conjugate of 0b, and dD2s3 and d4 u are

defined in [2].)
Most of the proof of this theorem follows from section 14.2 of [4] and also from

results in [2]. A similar result for real spannors appears in [5]. We have also deter-
mined the Poincar6 content of these representations, but we do not have space to
report our results here.
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1. Weyl realizations 1 of the Heisenberg group are built up in
terms of two unitary operators U and V such that UN = 1 and VN =

1, satisfying the basic relation

V U = ei(27/N)V, (1)
which entails

VnU m = ei(27/N) m nUm Vn. (2)

There is one realization for each integer N. The monomials in (2)
constitute a complete basis for quantum operators 2 . A more
convenient complete basis is the set {Smn} of operators

Smn = ei( /N) m n Um Vn. (3)

A general operator A can be then put into the form

A - -rn,nAmnSmn . (4)

2. The Smn'S are unitary, S'`mn - Stlmn = S-m,-n; Soo is the identity;

Also tr[Smn] = Srmo•noN, tr[StmnSrs] = 8mr6nsN; trA = Aoo; trAtA =

(1/N)YmrnIAmnI2 and Amn = tr[StmnA]. The basis is orthogonal by

the trace inner product, (A, B) = tr [BtA].

3. The Smn'S have some more remarkable properties:

a) They reduce to the Pauli matrices for N = 2, and, for N _ 2, they

are generalizations of Pauli matrices providing the finest grading
of the linear complex Lie algebra gl(N,C) 3 . {Smn} is so a preferred
basis in what concerns additive quantum numbers.
b) They lead to a classification of the quantum degrees of
freedom in terms of prime decompositions of integer numbers.
When N is a prime number, the pair (U, V) describes one N-valued
degree of freedom. Otherwise N is a product of prime numbers and

§ On sabatical leave from Institulo de Fisica Teorica, State University of Sao
Paulo (UNESP), with a fellowship of FAPESP, Sao Paulo, Brazil.
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the basis {Sn) factorizes correspondingly into a product of
independent sub-basis, one for each degree of freedom.
c) The Smn'S realize the Heisenberg group as a projective
representation of ZN ® ZN. They satisfy

Srs Smn = eia2(mnn rs)s (n+s) (5)

with a2 (mn, rs) = [ms-nr]. The basis commutators are

[Srs, Smn] = 2i sin[ax2 (mn,rs)]S(m+r) (n+s) • (6)

d) {Smn} is a Fourier operator basis. Our objective here is
precisely to point out this property and comment on some
consequences. Besides making the Smn'S specially convenient for
the consideration of the semi-classical limit, this fact turns (4)
automatically into a discrete version of the Weyl prescription.

4. All numbers m, n, etc, are defined mod(N) and all angles are
mod(2n). The lattice torus formed by the double-integer labels
(m,n) constitutes the quantum phase space. The continuum limit
comes from taking to infinite both the torus radii while N --

and the area of each lattice plaquette (which is -V) tends to zero.

It is a phase space because the phase a2(mnrs) above provides a

symplectic structure 4 : it is a 2-cocycle, has properties analogous

to the classical symplectic form n and tends to Q in the classical
limit. It is at work even in the discrete case, but the simplest
example is the usual position-momentum (q, p) case, which

comes out if we put Smo = Urn = ei4_2Y-/N mq, S = = eik2-n/ np.
In the continuum limit the values of m2n/N m and 42nIN n tend to

constants a, b, so that the eingenvalues V2.IN k of q and p tend

to numbers q, p. So, Smo - Sao = eiaq, Son -4 Sob = eibP and

Srnn --- Sab = ei(aq+bp) (7)

As higher order terms vanish in the Weyl-Wigner transformation,

only the Poisson bracket remain and c 2 (a0,0b) = - (h12){aq, bp). In

the more general case we obtain the Glauber formula

ScdSab=e(i/2)[ad - cb] S(a+c)(b+d).

5. Again in the (q,p) case, the Wigner function5 Aw(q, p) and the
Weyl operator are the usual and the operator Fourier transform
the Wigner density A(a, b),
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Aw(q, p) = F [A] = J Jdadb ei(aq+ibP)A(a, b); (8)

A(q, p) = 9 [A]= f Jdadb Sab A(a, b). (9)

So, A = P [F1'[Aw]] and {Smn} appears as the natural basis for
Weyl-Wigner transformations. Expansions like (4) are discrete
versions of the WeyI 6 prescription (9) and the coeficients play
the role of Wigner densities.

6. We are giving examples for the (q,p) case but the formalism
holds in principle for any degree of freedom. The product and the
commutator of two operators are, from (5) and (6),

AB = L j,k[Y-m,nAmrn Bj.mk-nei'2(jk'mn)]Sjk (10)

[A, B] = -p~qY-m,nAmnBp.mq.n 2isin[(C2(pq,mn)]Spq. (11)

7. Basis {Smn} is consequently a (discrete finite at first, or
continuum infinite in the limit) operatorial Fourier basis. To
illustrate how easy it is to find some results in this formalism,
let us recall the twisted product 7 in the special case of phase
space R 4 , with x = (a,b) and y - (c,d). To the usual convolution
(f-g)(x) = Jf(y)g(x-y)dy will correspond the expression

1YmnAmnBp-m ,q-n (12)N

The twisted convolution of index rl is defined by

(f.,g)(x) = fei(I/2)(xxy) f(y)g(x-y)dy, (13)

where (xxy) = ad - cd, so that the coefficient in (10),

(AB)jk = l Xm~nAmn Bj.m,k-ne'a2(jk'mnn), (14)

is just a twisted convolution of index TI --- the area of an

elementary plaquette on the lattice torus. The usual product of
functions is f.g = F-I[F[f]-F[g]]. The twisted product is defined as

f o g = F-l[F[f] -, F[g]]. (15)

We immediately see from (11) that AB - [F-I[Aw]-TF- 1 [Bw]].
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It follows that (AB)w = ' I[AB] = [FI[Aw]",,FI[Bw]] and

(AB)w = F[F 1[Aw] -,FI[Bw]] = AW o Bw, (16)
a twisted product in which the phase a 2 gives the twisting. As

a 2 * 0, "classical" dynamical quantities in correspondence with
quantum quantities multiply each other no more by the simple
product but with the noncommutative twisted product. In the
process of quantization, it is not the dynamical quantities which
change but their algebra8 . In the Weyl expression (11) for the
commutator we recognize the Moyal bracket. It is to be
confronted to the Wigner transform ([A, B])w of the commutator
of two operators A and B in terms of their transforms Aw(q,p)
and Bw(q,p) in the continuum limit,

([A, B])w(q,p) = 2isin [2 (aAqaBp - aApalBq)] Aw(qp) Bw(q'p) (17)

We see that a2 is a shortwriting of all the intricate action of the
"Poisson" operator in the sine argument.

8. The formalism has a great formal simplicity and holds for any
degree of freedom, discrete or (in the limit) continuum. Degrees
of freedom assuming a finite number of values fall necessarily in
the discrete case. It has been easier to uncover the role of the
fundamental cocycle, which in the continuum case replaces the
action of the Poisson double-derivative operator. It has been
applied to membranes and quantum groups9 . Analysis of Yang-
Baxter equations, both quantum and classical, are under way.
Many other questions are susceptible of improvement with this
formalism: semi-classical problems, aspects of classical
mechanics of quantum origin, measurement problems, uncertainty
principle for general variables, the study of other
correspondences, 2nd quantization, quantum relativity.
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1. Sets of generators for the center of ('S,,

The representation theory of the symmetric group (S.) is considerably simplified
by considering th• corresponding group algebra (CS._). As is well known, the class-
sums of S, form a linear basis for the center of CS,. Any member of the center can
be expressed as a polynomial in an appropriate set of generators, which need not
necessarily be members of the center. The only requirement we make is that the gen-
erators be mutually commutative. Several independent sets of operators were found
to generate the center of CS., each set having certain specific advantages. Kramer
[1] showed that the set of n single-cycle class-sums { [(k)], : k = 1. 2,- . n } gener-
ates the center. In particular, any other class-sum can be expressed as a polynomial
in Kramer's set of generators. in a manner which he did not explicate. Another
set of n generators was proposed by Farahat and Higman [2]. Their kth generator.
which we denote by Fk, is the sum of all the classes consisting of k cycles. ThusF. = [(I1)n],, F,_, = [( 2)]n,
F.- 2 = [(3)], + [(2)2].. F._ 3 = [(4)], + [(3)(2)]. + [(2)3] ...... F, = [(n)]., where
cycles of unit length are usually suppressed. Two sets of generators which do not
themselves belong to the center of the algebra, although they do belong to the algebra.
were proposed by Jucys [3] and by Chen [4], respectively. Jucys' set consists of { rk =

k-= (i,k) ; k = 2, 3, .-- , n}. His k'th element is the sum of the transpositions
between the index k and all the preceding indices. Explicitly, 7r2  (1.2). 7r3  (1.3)+
(2,3), etc. This set has to be augmented by ir, = 1. Chen's set of generators consists
of the transposition class-sums in the group-subgroup chain S1 C ,q2 C . C ,..
i.e., 1, [(2)]2 = 7,2, [(2)13 = 7'2 + rW3. -, [(2)], = E 1=2 7. One immediate and
important consequence of the form of C(hen's set of generators is that the center of
CS,, can be generated by adding the class of transpositions of S,. [(2)],. to the center
of CS,_1.

* Permanent address: Department of Chemistry, Technion - Israel Institute of Technology.
Haifa 32000, Israel. email: chr09kt'4technion.
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This was recently extended to the statement that the center of CS, can be generated
by adding the set of class-sums [(2)],. [(3)],,, .- , [(k)], to the center of CS,.._ [5].
Note that this statement interpolates between (hen's result, with which it coincides
for k = 1, and Kramer's result, with which it coincides for A = n. This result was
recently found to be useful in the context of cluster physics [6].

These various sets of generators are mutually interconnected more or less straight-
forwardly. Thus, the Farahat-Higman operators are symmetric polynomials in Jucys'
operators: F._, = - 7r F,. 2 = - r" r ; F. 3 = 7 _

; .F1 = 7r2 irs.. . ~r.. The connection between Kramers generators and those

of Farahat and Higman can be obtained by systematic application of the expressions
for the products of class-sums in CS, [7 - 9]. One obtains [(2)], = . _,
[(3)]. F,_1 - 2F.-2 - n(n - 1)/2 ;
[(4)]. F,ý_ 1 + 3F,- 3 - 3F,-2F,-I - (2n - 3)F,_1 etc. The class-sum products
also provide explicit expressions for arbitrary class-sums in terms of either set of
generators.

2. The Dirac identity: some properties of spin-operators

For a pair of identical particles with an elementary spin equal to 1 the Dirac
identity [10] expresses the effect of a transposition (i.j) of the particle indices on
the two particle spin functions in terms of the spin operator ti, = 9i - ;J. Explicitly.
(i,j) = 2t3, + 1. The expression for a transposition of two identical particles with an
arbitrary elementary spin was presented by Schr6dinger [11]. Since the transpositions
generate the whole group algebra it is obvious that the Dirac-Schr6dinger identities
can be used to derive expressions for the operation of class-sums of the symmetric
group on spin functions of an arbitrary number of identical particles. This program
was outlined in [12], where further references are listed. This talk presents recent
progress towards achieving this goal. To carry out the required computations, for
particles with an elementary spin a = , we need the following quadratic identities:

= 1 - u ' 
t
i3 (tik + tjk) = I(tik + tk) t.tk + takt,, = . A

somewhat interesting immediate application is the identity t, tki(tik + t,i + tj + tI) =
1 (tik + tii + tjk + tI) . We emphsize that these identities are satisfied by spin -
particles only.

Similarly, for spin 1 particles we find the cubic identities

--- ij + t 3 + 2

t.2j(tik + tjk) = tij(tik + t~k)t,3 = (t,k + tk)t, = 
t k + tjk

tijtiktil + tdtakti) = tijtkI + tkth,

tj(t 1 k + tj') + (ik + tj2)t+ = (tik + tfk)2 - (1i + tjk) + 41,1 - tj(t,k + tik)

The systematic derivation of the corresponding identities for higher spin values will
be considered elsewhere.
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3. Symmetric polynomials in sets of spin-operators

The properties of the fundamental symmetric polynomials in a set of commuting
variables are well known and of central importance in the representation theory of the
symmetric group. Here, we consider the set of n(n - 1)/2 non-commuting variables
{tij ; i < j = 1, 2, ..- , n}, for the case o = 1. We define the following set of
fundamental symmetric polynomials in these variables UI (n) = -,<J ti,

112 (n) = {~j~k,11' tijtki IU'(n) Z? j 232 i<i}Sj~ ti2J2 t1PJP'

The prime means that the various pairs of indices are ordered and are chosen in such a
way that each one of the indices is distinct. Note that in the present context we only
have [1] fundamental symmetric polynomials. For a set of n(n - 1)/2 commuting
variables we would need that many fundamental symmetric polynomials. The ad-
vantage of the fundamental symmetric polynomials over the symmetric power-sums
{Ok = En,< tk. , k = 1, 2,..} introduced in ref. [12] is that the former are found to
be very directly linked to the Higman-Farahat generators, as we show in the follow-
ing section. Note that the equivalence between the symmetric power-sums and the
fundamental symmetric polynomials was only established for commuting variables,
although it holds in our o = 1 case.

Using the identities presented in the previous section we find that

1ý2= 3n(n - 1) + 3- V + 21T2
32 2

5 n -5
U1 !r 2 = -2(n - 2)(n - 3)('T + 2 (U2 + 3U3

3-2
7n -7IU1 "3 = r(n - 4)(n - 5)V2 + 3- 1s' + 4U14

IfUU (n+1, - 2p + 2)(n - 2p + 1)U-1 + P -(2p + 1)) + (p + 1) +i

Using these equations consecutively we can express UP as a p'th degree polynomial in
Ul. Similar results, for a > 1, will be presented elsewhere.

4. The center of CS,, in terms of the symmetric polynomials in the spin
operators

For a system of n identical particles with elementary spin a we obtain the
Farahat-Higman generators of the center of CS, in the form

n n(n - 1)

i=2

,: 7i u n(n-1)(n9-2)(3n-1) + (n- 2)(n +I) I(n) +41;2(n)

i<j
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n n 2 (n - 1) 2(n - 2)(n - 3)
E 7ri~r• 7rk 384+

i<j<k

+ (n - 2)(n - 3)(n 2 
- Sn + 2 8 )U() + (.2 8 1 -- )!. 2 (n) + 8U 3 (n)16

•."" 7r27r3 ... 7r, - _ ( i - 1 !l ( )
i=0 -1) -I)!'

Using the results of the previous section we can express each one of the Farahat-
Higman operators as a polynomial in U1(n), which is essentially the resultant spin
operator, i.e., S2 = 3n + 2U1 (n). In order to express the class-sums themselves in
terms of UI(n) we have to use the relations between the Kramer and the Farahat-
Higman operators, discussed in section 1. This is simply a manifestation of the well
known fact that for a system of identical particles with an elementary spin a =-1
the class of transpositions is sufficient to determine the irreducible representations
uniquely. When Young diagrams with at most k rows are possible, one needs the first
k - I single-cycle class-sums to specify the irreducible representations uniquely [5].
Thus, for a system of particles with a = 1 one needs the two class-sums [(2)], and
[(3)1,. These class-sums can be expressed in terms of the symmetric power sums 01
and 02. obtaining [(2)], = 02 + 01 - n(n - 1)/2 and

f402 + 40' - 4(n' - n + 4)02 + n(n - 1)(n 2
- +6).

It was shown in [12] that [01, 02] = 0.
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1. Introduction

It is a well known fact that the Poincar6 group, P'+(3,1), the kinematical group of
Minkowski spacetime, can be obtained by means of a contraction from the anti-de Sitter
(AdS) group, S0o(3, 2), the kinematical group of anti-de Sitter spacetime. The contrac-
tion parameter is the constant positive curvature K of the anti-de Sitter spacetime. This
contraction procedure is thus nothing but a zero curvature limit. According to this fact,
one would like to approximate PT+(3, 1)-invariant theories by SOo(3.2)-invariant ones,
hoping that such approximations give rise to regularized relativistic theories. Indeed,
the nonzero curvature equips the AdS theories with a lengthlike parameter, which is
actually the source of the sought regularizations.

Up to now, this very stimulating idea has not been fully exploited, though it has
received a large amount of attention for its potential implications in the context of
quantum field theories. The main drawback of the known approaches arises from the
emphasis made on the spacetime or the momentum space realizations of those theories.
Indeed, it is a known fact that such realizations, in both Poincar6 and AdS cases.
lack of a natural notion of localization. Moreover the modulus of the wave functions
corresponding to the one particle quantum states of a Poincar6, as well as an AdS, free
massive theory can not be interpreted, in those realizations, as a probability distribution.
The regularizing role of K is thus not effective for such realizations.

In this short contribution we propose the phase space realization as the regularizing
alternative (for more details ses [11, [2] and [3]). In fact, for the case of a free massive
spinning particle in AdS spacetime, the phase space is a Kiihler SOO(3, 2) homogeneous
space, whose (geometric) quantization gives rise to a discrete series representation of
SOo(3, 2). The latter is known to be a square integrable representation, so its Hilbert
space contains a particular family of quantum states: the coherent states. A natural
notion of localization is attached to these states. They are optimaly localized states in
phase space. Moreover the modulus of the wave functions of the quantum states in this
realization can be actually interpreted as a probability distribution.

Here we exhibit the explicit form of these coherent states and we show how their
physical interpretation arises. We also stress the disappearance of this notion of local-
ization in the flat space limit, confirming the effectiveness of the regularizing character
of K. We proceed as follows. In section 2 we describe the classical theory, in order to fix
both the notations and the physical interpretations. In section 3, the quantum theory

* Doctorant, Bourse Franco-Alg~rienne.

** Equipe de Recherche C.N.R.S ý 177.
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is obtained through the application of geometric quantization, then the explicit form
and the zero curvature limit of the optimaly localized states is given. For more details
we refer to papers [11, [2] and [3].

2. The classical theory

The phase space description of the classical theory of a spin s and mass m # 0 free
particle in AdS spacetime finds its best formulation within the scheme developped by
Souriau. The latter construction starts with the determination of an evolution space.
(E• 8 ,wE), which is a presymplectic manifold (ý-'E is a closed but degenerate 2-form).
with a projection on the AdS spacetime of constant curvature K, M•. The symmetries
of M. are helpful guides in doing so. In fact, MN is just the one sheeted hyperboloid in

50123
(R5 , Y7), whith diag 71 = -- +++),

Y 1- Y = r.,3Y, +( = _(y5) _ (yo)2+( + ) +y) = _ -2, (2.1)

a,O3 E {5,0,1,2, 3}. Clearly, 0(3,2) is the isometry group of (2.1), its connected com-
ponent to the identity, S0 0 (3. 2), is the so-called AdS group.

We choose for E•'8 the SOo(3,2)-principal homogeneous space, E',s- SOo(3.2),
realized through the following SOO(3.2)-invariant constraints in R 25 (five copies of
(R5,,)),.

Sy. Y = _-2, q,• q = -m2. u-u =1, v- '=1 and t•t=m 2 s Z. (2.2a)

y q = 0 = all the other scalar products (2.2b)

i2 ,
ealpa y ~q~uvtt and ysqO _ yOq 5 > 0. (2.2c)

The physical interpretation of the coordinates (y.q. ut t, t) is then as follows: in (2.2a)
y is the position on the hyperboloid (2.1), q is its conjugate momentum, t is what we
call the AdS-Pauli-Lubanski vector. The remaining five-vectors u and v are introduced
in order to have a covariant description of E"'- i.e. E•'' -- SOo(3,2). They shall
represent the spin part in the quantum theory. The two last constraints (2.2b-c) are
needed in order to fix an orientation.

The choice of ,'E is constrained by the requirement that the projection on -1I1
of each integral curve of the completely integrable distribution generated by ker.,E in
E.', results in a time-like geodesic of M., i.e. the dynamic of the theory is obtained
from kerwE. Such an wE is provided by,

w| = dy A dq + sdu A dc. (2.3)

"This choice is not unique but it fulfils the above dynamic generating requirement.
The phase space of the theory, ,w,,, is obtained by symplectic reduction of
(E.~,wE). It appears, for 2- 5 s, to be the S0o(3,2) symplectic homogeneous space
SO0(3,2)/SO(2) x SO(2). For symmetry reasons , i.e. obvious action of S00 (3,2) on

we use (Enm';,w) as the arena for the forthcoming constructions.
In order to carry out the zero curvature limit in a meaningful way. we introduce a

new set of coordinates on Er'*. This is the set of four-vectors (x,p, a, b, s). Interpreted
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in the same way as the five-vectors (yq, i,, ,,t), they are related to the latters through
the following equations,

y5= cosKX0, yo = - sin. K 0  and •'= £, (2.4a)

where -7r<Kx <7r, YER 3  andYl = V__-+(Y)
2 ;and

q.dy = g,.pldx', u-dy = guaOdx', t,-dy = g9,bPdxv and t-dy = g,,s1dx". (2.4b)

Here gpv is the metric of M,, for the global coordinates (xO, Y) and p. v E {0, 1, 2, 3}. The
zero curvature limit of g,,' is just the flat Minkowski metric. The constraints (2.2a-c)
translated in terms of the new coordinates become,

g•p~pL1 = -mi
2

, ga,al'a' = 1, g,&b'b" = 1 and g9,,s'sv = m 2
s

2
, (2.5a)

',1P s's= 0 = all the other scalar products of the subset (p, a, b, s), (2.5b)

,ef, Ap'a'bs6 = m 2s and p0 > 0. (2.5c)

The physical interpretation of the above constraints can now be confirmed by their zero
curvature limits.

3. The quantum theory and the optimal localization

The methods of geometric quantization allow one to quantize the classical theory de-
scribed above. In other words, using those methods one is able to construct the unitary
irreducible representation of S0 0 (3,2) associated to the coadjoint orbit of SOO(3,2)
for which the phase space E', is a covering. Exploiting the principal bundle structure
E-,'~= SO0(3,2) - S0o(3.2)/SO(2) x SO(2) E", the prequantum Hilbert space.
R"t, is realized as follows,

I ={ :' E:'8 
-* f/ 1V'I 2 dp= <oc Ys°im ?' and 112ý' = 15}"

K J
(3.1)

Here dp•W, is the invariant measure on Em"8 and 1' 0 and Y12 are the left invariant
vector fields generating kerwE. Since E-" 8 - SO0(3.2). there exists a natural action of
SOo(3,2) in L 2 (Em',dp ). This yields the left regular representation of SOo(3.2).
The latter restricts to a unitary (reducible) representation in R, i.e. the representation
of S0o(3,2) induced by the character e,(•r+sr') of _'O(2, . ...... ..O2). .L• .. holds
provided M and s are both integers.

There actually exists a positive invariant KIhlerian polarization of En' allowing
one to select in 7" an invariant subspace "H's. The restriction of the previous unitary
representation to the latter gives rise to a unitary irreducible representation of SOo(3. 2).
Concretely,

V,= {, E H , 0. ie {1,2,3} et B, 0}: (3.2)

where Zi = Y', + il',, i E {1, 2, 3} and 1`23 + I Y1. The l',3's are the left invariant
vector fields. The way one obtains the unitary irreducible representation carried by
"R-''° is known in the mathematic litterature as the holomorphic induction, it yields
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the disrete series representation of S0 0 (3.2) with highest weight (9"s). (A necessary
condition for the unitarity is m > s.)

The quantum states of the theory are representated by well defined wave functions
belonging to R" . The physical interpretation of their modulus as probability dis-
tributions on Em.- is also well defined. The particular states belonging to the orbit,
0,, C h ,s of the unitary representation of S.0(3,2) passing through the highest
weight state ;o possess many interesting properties. These states, which are nothing
but the generalized coherent states of SOo(3, 2). are in a natural way optimaly localized
in phase space. In fact, by construction they are labeled by points w E E". specifying
them through the equations,

< ^. I i.3 I ,, >= Le.(w). Va.3 - {5,0.1.2.3}: (3.3)

here the L,,3's are the classicad observables and the L 0is are their quantum counter-
parts. The determination through (3.3) of the ten Lo,3(w) specifies in fact uniquely
the leave of the distribution kerE passing through w. Thus by symplectic reduction a
unique point v E Em,' is specified by (3.3). The state ,, is then said to be localized
in fiv E E'. Moreover, since the coherent states minimize the incertainty relations
associated to the commutation relations of the La's, this notion of localization is said
to be optimal.

The optimaly localized states are given by the following formula.

= (-2)m(2)- f 5'fr_. )(C'- )- '. )(•'.z) . (3.4)

Here (z, ) w are the complex coordinates of ET" associated to the Kiihlerian polar-
ization, they are related to the coordinates given in (2.2) through the transformations
z = KY - im-1 q and ý = u - iv.

The zero curvature limit of these states is as follows.

lini j- 2 ýPIt'Zf = )n l
2 P0605- ff')GP".ZZ (3.5)

where ,= a,-ib,, p E {0, 1.2,3}. Clearly. these states are no longer optimaly local-
ized. They are completely delocalized in position (x.r, perfectly localized in momentum
(p) and still optimaly localized in spin ((). This zero curvature behaviour supports the
regularization argument stressed in the introduction. In fact one can consider the AdS
states in (3.4) as regularizations of the (generalized) Poincar6 states in (3.5).
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Contraction of the discrete series Fock-Bargmann

representation of SU(1,1)

V. HUSSIN'

Centre de Recherches Mathimatiqiies
llniversitý de Montr6al

Montrtal (Qutbec), Canada 113( 3.17

Abstract. It is well-known from the In'nii-i-Wigner contraction procedure that the Poincarmf

group P (1. I) in one time and one space dimension can be viewed as the contraction of the

group SIU(1, I). We present here a way to contract the discrete %eriei Fock-Bargmanr repre-

sentation of SU(I, I) to the Wigner positive-energy representation of P'+(I. 1).

'[his is a report on joint work with J.P. Gazeau [1]. In this work we study some aspects
of the contraction process SOn()1,2) - Poincarý P1( 1,1). We begin with the choice of a
suitable parametrisalion for the desitterian phase-space SOo(1, 2)/ SO(2) S'( 1. 1)/ 1(1)
realised as the open unit disk P. Then we consider the Fock-Bargrnano spaces of holomorphic
functions in D that carry the discrete series representations of SU( 1, 1) and show how this

representation contracts at the global level onto the Wigner representation P(m) of p" (1,1).
We insist here on the analytic aspect and give a "semiclassical" expansion of the general
elf nent of the Fock-Bargnann space in terms of the curvature parameter.

Let us recall that G = S11(, 1) is the group of 2 x 2 complex matrices g of the form

! g= ,• _ , ,-.3 E€ C

with unit determinant. It admits the well-known Cartan decomposition 12] G = P11, where
11 = U(1I) and P is the subset of hermitian matrices in G. Explicitly. g = p(z)h(O) with

p(z)= 6• h; Z_•l~ 6_ 1 _ 1-12) -1/2 ('2)

( 2

and

h() (,9 12  0/2 0=2 Argv, 0 << 4r. (3)

The bundle section z(D p(z) E P gives the open unit disk P = {z E C. Jz < 1} a

symmetric space realisation as the coset space G/11. SU(1, I) acts on P by left action on
the set of matrices p(z), i.e. g p(z) - p(z') defined by gp(z) = p(:')h'. Explicitly, the
action of g on z is homographic

z' g -z = (oz + ý3)()z + a)-'. (01)

Work supported in part by the Natural Sciences and Engineering Research Council of Canada and by the

funds FCAR du Quebec
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As it. is well-known [3, 41, V is a Ki.hlerian manifold and has the SU( 1, 1)-invariant K~ihlerian
2-form

w = 2i(1 - Iz12)-2dz A d2. (5)

G also admits the so-called "space-time" factorisation:

g =s(O, 0)t(o)

(e _O2  0 cosh I sinh " cosh isinh )
\ 0 e'-/ 2  sinh - cosh ± -i sinh cosh ' )

2 2c2 s 2

(0, ¢,) _ s is actually a system of global coordinates for Anti De Sitter space-time [4.
Let us now come to the new parametrisation of D. Any matrix representation (2) of a

point z in E) admits a space-time factorisation (6) so that it is easy to deduce the expression
of z as sinh ¢ + i cosh 4, sinh 

(Z = b,¢) = 1 + cosh ¢cosh 1 (7)

and to see that 0 satisfies the constraint

e _ cosh ¢, + cosh 0 + isinh ý'sinh . (8)

1 + cosh i cosh (

In order to give the above expressions a more familiar meaning let us adopt a parametrisation
of a "Minkowski-Lorentz" type, namely

q 0 = K-'O, q = pc-ti, ' = sinhO, = cosh¢, (9)

inc mc

where the "curvature" -I is inverse lengthlike. The vector (pop) belongs to the forward

mass hyperbola
= {(PoP) ER 2 I Po > O,p( - p' = m 2 }.

We deduce the coordinate transformation as the map z E V "-- (q,p) E R2 defined by

z(qp, -mcsinh Kcq + ip cosh lq (10)
mc + po cosh Iq

The relation (8) imposes a specific value for qO which satisfies

ei,,q0 po + mc cosh rq + ip sinh q (11)
mc + po cosh rq

The Kihlerian 2-form (5) is given in terms of(qp) by

w = iccosh Kqdq A±- = d(sinh q) A dp (12)
Po PO

We now introduce Fock-Bargmann structures on P. We denote FEo = Jf(z) : z E V}
the Fock-Bargrnann space [31 of functions holomorphic inside the unit circle, satisfying the
square-integrability condition (f, f) < co with respect to the scalar product

(l, f2) -E02"r 1/2 1, (z)f2(z)(! - IzI')2Eow (13)
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with w given by (5) and E0 > 1/2 is a fixed real number. The representation operator
TEo(g) of SU(I, 1) is defined by

(TEO(g)f)(z) = (p3Z + &)- 2 Eof(gI. z). (14)

TEO is unitary, irreducible and belongs to the discrete series for Eo > 1/2 [2].
Since our final aim is to understand better some aspects of the contraction process

SU(p, 1) - PI+(1, 1), as x goes to zero and Eo goes to the infinity, it is apparent that
the form (13) or equivalently the space y-Eo is not well-adapted to such a limit procedure.
Therefore we introduce a "weighted" Fock-Bargmann space

Y'wE° = {F(z, I) = (1 - z12)Eof(Z), f E -Eo} (15)

which is the Hilbert space of square-integrable non analytic functions inside the unit disk
with the scalar product

(F- F2 E, -1/21 IF(z, ( )F 2 (Z, i)W. (16)

The representation operator 7T,(g) on F-' is deduced from TE(g) defined by (14):

(TE())(,i OF Wg-Z, ,gf) (17)

The last step before the contraction procedure is to translate this abstract machinery
where no operational physical quantity appears into the familiar language where physical
dimensions are present. Besides the (three) fundamental constants K, m, and c already
injected into the formalism, the quantum context now introduces action-dimensional physical
quantitites at the order of A. The pure number E 0 , which is actually the minimal weight of
the representation T7E, is taken as E0 = Eo(n) =

It is well-known [5] that the representation TEO(g) or TE°(g) of SU(l, 1) • SOO(2, 1) X Z2
must contract to the Wigner positive-energy representation P(m) of P+1(1, 1) as K goes to
zero and E0 goes to infinity while keeping the product KEo equal to . Let us see how it
works explicitly on the space 'w.

In order to eliminate the singular terms in the expansion in / of F(z. 2), we must impose
some constraints on the form of F = (15) and more particularly of the original analytic
function f(z). Indeed we must factorise f(z) as

f(z,K) = N(K)(I + z2)--'o(")h(z, ), (18)

where the function h is now analytic in both z E V and x > 0. N(K) is a normalisation
factor possibly nonanalytic in K. In the following normalisation will not be imposed in order
to ignore this nonanalytic N(K). We accordingly restrict our considerations by working on
the subspace of J'E° which consists of functions of the form

F (z, i,,x) - I Eo- h(z). (19)

• -- ~~~~~ ~~~ -Z2Il II Ill
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where h(z) - h(z,O). If we now introduce 1I'(q,p) =_ lim,_0 F(z,2,ac), we have proved (1]
by expanding (19) in x that

'k'(q,p) = e 14. E4(p) (20)

where

-t() (21)
PO + mc

The 2-vectors p and q. are given by

p = (po, p), q (qo = po + mc(22)

and q - p = qopo - qp. We recognize in (22) the flat space-time limit of the section (8)
which defines, in the space of parameters (0,V,, ) for SU(I, 1), the Cartan phase space for
this group. The remarkable properties of the desitterian section (22) for Poincar6 are listed
elsewhere E.r1

Let us state the crucial result about the limit of square integrability condition (see [1] for
the proof):

PROPOSITION. Let h(z) be an holomorphic function in the unit disk D such that the
integral

daz d +Z22.Ih(z)i2 (23)

is finite. Then the function on R defined by (24) is square integrable on .9 with respect to
the Lorentz invariant dP.

pQ

The last thing to do is to show how the representation Tr0 (g) of SU(I, 1) on F = (19)
contracts. The first step is to write g G SU(1, 1) on the form

g = h(nao)b(Ka)l(0), (24)

where € is here given by € = tanh-L), k E V4. It is well-known from the lnnii-Wigner
contraction procedure [6) that, when r. - 0, the set (ao, a, k) turns out to be the set of
parameters characterising the Poincar6 group P+t (1, 1) = ((ao,a), Ak). The second step is
to express the dependence on r of (17) where F has the form (19). This will be done by

replacing z by (10) and a,)3 by their expression in terms of ao.a and 0 according to (24).
The last step is to expand (18) in K and to take the limit when Kc - 0.

Let, us give the final result expressed in terms of the phase-space variables. We introduce

the transformed variables (q', p') given by

,q (aoL~aP-) ko k mc

q =q-\ mC1- - ac, 'p, -P•--p° Po = kP0 - k P. (25)

We then get

(26)
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where ' has been already defined in (20) and

-2m2 c
2 qk (27a)

Co =o' •:0(,; k) =((p0 + mc)(ko + ,mc) - kp)

and
2ao(ko+po) - a(k + p) (27b)

--( 1(p;o ,k•) ,nc m2 c2 + kopo - kp

"The representation (26) gives the action of P+T(1, 1) on the function l(q,p). We can easily

deduce the corresponding action on $(p) from its relation (20) to *l(qp). It turns out to

be, as expected, the momentum version of the Wigner representation P(m), i.e.

(Un(ao, a, k)$)(p) = e i~ .$(p'). (28)
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CONTRACTIONS OF THE REPRESENTATIONS

OF THE

ORTHOGONAL ALGEBRAS

N.A. Grornov
Komi Scientific Ccntre,

Syktyvkar, 167610, USSR

Abstract
About forty years ago Wigner and Inonu [0] have introduced the contraction

of the group representations. This operation gives the representations of the
contracted group from the representations of the initial group. Contraction was
later used by many authors, in particular by Wigner and Kim [0] to describe the
photon little group, by Smirnov and Asherova [0] in the symplectic collective
model of the complex nucleus, by Celeghini. Tarlini and Vitiello [0] in the theory
of the spontaneus breakdown of symmetry. by Doebner and Melsheimer [0) to
describe the limiting process connecting the dynamical group of the interacting
system with the dynamical group of the corresponding free particle.

There is another approach in group theory. namely WVeyl unitary trick [0].
which gives the representations of the pseudo-orthogonal group starting from
the classical orthogonal group. Kuriyan, Mukunda and Sudarshan [01 have
developed this trick to the method of master analytic representation.

The purpose of this report is to present the unified description of the or-
thogonal Cayley-Klein algebras and their representations starting from well
known Gel'fand-Tsetlin representations [0] of the classiscal orthogonal alge-
bras. The orthogonal Cayley-Klein algebras are obtained from the classical
ones by Wigner-Inonu contractions and analytical continuations (or Wevl uni-
tary trick).

The unified description [0, 0, 0] is achieved by introducing parameters. which may
be equal to real unit or to imaginary unit or to Clifford dual units.

Under the map

V : R.+ --* R+ I(j)

k

?'o= XO, tV'XZ = Xk f1 j,, k = 1,2. n. (1)
M=1

where j = (Jj2..,j,), each of the parameters jt = 1.k.i. and ,k is the Clifford
dual unit with the algebraic properties Ik # 0. i• = 0. •a• = im

t
k - 0. k k m.

the euclidian space R,+, is transformed into the Caylev-Klein space (j) with the
quadratic form

n kC

( ) = X0 + F .. (2)
k=1 m=1
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The map 4' also induces the transformations of the generators X' of the orthogonal
algebra so(n + 1) into the generators X of the orthogonal Cayley-Klein algebras so(n +
1; j)

) ( ) r < s, (3)

where X'(-+) denote the Wigner-Inono [0] singular transformed generators and the
products JlJm play the role of zero tending parameters, when some parameters j,
are equal to the dual units. When some parameters j, are equal to imaginary unit,
the Eqs.(3) give the transformations, corresponding to the Weyl unitary trick or the
analytic continuations of the representations. Therefore, two different operations
in group theory are naturally unified by Eqs.(3) and the same nature both of the
operations, namely the continuation of the real group parameters into the complex
(Weyl trick) or dual (Wigner-lnonu contraction) number field is well displayed in this
manner.

The orthogonal Cayley-Klein algebra so(n + I: j) have the following commutation
relations:

F= j i r2 = r 2 . s1 < s2

= f 2 1 X~lr2(4)
rl j, r, < r2 , S1 = S2J 1T2 +1

X Xrs 2 , ri < r 2 = s 1 < 8 2

The structure of the transformations (3) is the same for all representations of
the orthogonal algebra. Only the Generators \*(--) are defined in a different way
for a different representation of the orthognal algebra. In the case of the Gel'fand-
Tsetlin representation [0] the singular transformed generators '(-+) are specified by
the transformations of the components of the patterns. The general nondegenerate
representation of so(n + 1: j) with the nonzero eigenvalues of all Casimir operators are
obtained [0], when the components of the Gel'fand-Tsetline patterns are transformed
as follows:

n-Fl--p

ra, = " f;,, J1- t, p < r (5)
[•.n+p--r

In particular for the algebra so(4; j), j = (ji.j2.j3) the transformation laws of the
generators and of the components of the patterns are defined in the following manner:

1(01 jlX,•l(--), X02 = jlj2\•2(---), N03 = JlJ2J3\•3(-),
X12 J2Xj 2 (-"), \13 = j2j3\13(--4), \23 = J33(-),

in1 3 ra23  M j 2j 3 3 , (6)

irn) M 123 = Ji 23 2.i
2 r" 2 3 *(

rol 2j rM;32  M J2 23 3 i ' j3 *,

U
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Then after some computations we obtain the explicit expressions of the generators
of the all 33 = 27 orthogonal Cayley-Klein algebras so(4;j). In particular for j' = i,
j2 = j3 = 1 we have the Lorentz algebra so(l,3), for ji = I, j2 = j3 = 1 we have the
Euclidian algebra E3, for ji = It, J2 = i, j3 = 1 we have the Poincare algebra P1,2 and
fJi il = !, j. = ý- jý = I we ha-'. the Calilean algpý,ra 93.

If different contractions or ananlytic continuations give isomorphic algebras, for
example e3 =- so(4; I1, 1, 1) • so(4; 1, 1.13) in the case of inhomogenous algebras or
so(l, 3) = so(4: i, 1, 1) • so(4; 1, 1, i) in the case of the pseudoorthogonal algebras,
then we obtain from the general explicit the representations of the contracted algebras
in a different basisies, in particular in discrete and continuos ones.

The Gel'fand-Tsetlin representations of the unitary Caylev-Klein algebras [0. 0)
and the Jordan-Schwinger representations of the orthogonal, unitary and symplectic
Cayley-Klein algebras [0, 0] are described in a unified manner with help of the dual
numbers. This approach is applicable also for quantum algebras [0, 0]. In the last
case the unified description is split in two different methods: one for the contractions
and another for the analytical continuations of the quantum algebras.
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OSCILLATORS GENERATING CLASSICAL LIE SUPERALGEBRAS
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By a noncanonical (nonrelativistic) quantum system we
understand a system for which the Heisenberg and the Hamiltonian
equations are identical. This is always the case if the canonical
commutation relations (CCR's) between the coordinates q and

the momentum operators pk hold [1],

[q i pk] =ih6jkI [q)jq k]I= [pi Ipk] =O, (i)

or, equivalently, if the operators

a*=(2h)-11(q2-ipk), ak=(2h) - 2 (qk+ipk) (2)

are Bose creation and annihilation coperators (CAO's):

[a a,a*]=6 I, [a',+ = a_ a ] 0 (3)
j k jk j k j k

In general however the class of operators for which the Heisenberg
and the Hamiltonian equations are identical is much larger. This
was demonstrated by Wigner in 1950 [2] on the example of an one-
dimensional harmonic oscillator. Wigner has found an infinite set
of solutions for q and p, all of them satisfying one and the same
operator identities [3]. In terms of the operators (2) these
identities read (throughout [x,y]=xy-yx, {x,y)=xy+yx):

[{aý,a },a =(c-C)a'n +(c-7i)a Cn7c=± or ±1. (4)

In Ref.3 it was shown that the operators {aE ,a]) and ac, •,7,•=±,
are the even and the odd generators of the classical Lie
superalgebra (LS) osp(i/2) (4]. Thus Wigner was the first who
constructed a class of representations of a Lie superalgebra,
namely of osp(i/2).

Coming back to the canonical operators (3) we observe that
they satisfy relations which generalize eqs.(4), namely

[ja ,a }, ,a'k]=6 (c--)a+6 (c-•)a , C,,=± or ±1. (5)
1 J k 1 I Ik I

The latter indicates [5] that any n pairs of Bose CAO's give a
representation of _he orthosymplectic Lie superalgebra ospi/2n)
=B(O,n) [4] with a- constituting a basis in the odd subspace of it.

k

We conclude that the canonical position and the momentum
operators in quantum mechanics and also the generalization found by
Wigner lead to representations of classical orthosymplectic Lie
superalgebras. In the present note we shall list all possible
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noncanonical three-dimensional quantum oscillators with position
and momentum operators generating classical Lie superalgebras. The
precise meaning of "all" is given below.

Consider in the frame of a nonrelativistic quantum mechanics
two point particles with masses m, and m2 and a Hamiltonian

, _ 1 2 1 2 mu 2"*rtot 2m Thj- p--(r -r (6)t I 2 , i Z 2 1

Introduce the centre of mass (CM) and the internal variables
m r+mr m2P1 -mtP 2

R=- m 2+m ,' P=P +p , r=- m 2+ +M-r2, - mm2  (7)

Independently of the properties of the operators R,P,r,p one has
H =H +H, H.-= -' - 2 (8)

tot .,, _T"_ 
2

-- 2r 8

where W and m are the total and the reduced masses, respectively.
For the equations of motion one has

Heisenberg equations: Hamiltonian equations:

P= [H ,P1, R=ý[H.,R], P=O, i= P, (9)

p=[H,p], [rp=-mr, r=-2-p. (10)

If the CCR's hold the Heisenberg equations are identical with the
Hamiltonian equations.

We wish to find all noncanonical solutions of the two-
particle system which obey the following conditions.

Postulate 0.1: The CM operators R and P commute with the
internal variables r,p.

Postulate 0.2: The CM operators R and P are canonical.
Thus it remains to consider the internal variables, which

actually describe a three-dimensional oscillator, and to find
interesting solutions with noncanonical r and p.

Postulate 1.1: The Heisenberg and the Hamiltonian equations
(10) of the internal oscillator are identical.

Postulate 1.2 (Rotation invariance): There exists a vector
operator M, the internal angular momentum, so that r and p are
vector operators (j,k,1=1,2,3):

[M ,M kj=ijk1M1, [M ,rk ]=ic Jklr , [M ,pk ]=ic p . (11)

Postulate 1.3: There exists a representation space (state
space) V of r, p, M, H, which is a Hilbert space, so that the
physical observables (r, p, H, M,..) are selfadjoint operators.

Postulate 1.4: The spectrum of H is bounded from below.
Taking into account the algebraical properties of the

L



320

canonical and the Wigner quantum systems we require in addition:

Postulate 2: The position and the momentum operators r and p
of the internal oscillator constitute a basis in the odd subspace
of a classical LS and generate it.

We proceed now to list all LS's, which admit solutions in the
frame of the above postulates.

1. The LS osp(l/ 6 ). Para-Bose oscillators

This case was discussed in Ref.3. The operators
a -m 1/12 (2 f)-/p

ak- 2h rk;i (2mh)1/2 , k=1,2,3 (12)

satisfy the eqs.(5). They are odd generators and generate the LS
osp(i/6) [6]. These operators are known in quantum field theory.
They were introduced by G.een [7] as a possible generalization of
the statistics of the integei-spin fields and are called para-Bose
operators. A class of representations obeying postulates 1.1-1.4 is
given with the representations corresponding to a certain order of
the statistics (for more details see Ref.8 and the references
therein). All such representations are infinite-dimensional. The
Hamiltonian has infinitely many different eigenvalues.

2. The LS sl(1/3). A-oscillators

This case was studied in detail in Ref.3. The CAO's read

a =- rti , k=1,2,3. (13)

They satisfy the relations (ij,k=l,2,3; C=±)
[(a*,aj ,a*]=6ka'-5S a*, [ta*,a1),a*]=6 a*-.a, a', fa÷a,aý}=O. ý14

1 kI t k~ k I Ii k 'l4i

In terms of a± one has
k

H- 1 hZ3  2aa h ~~~3 k 2 iiiu 3 +
-T 2h ,k=1 , { k=Ia 'a,)' = 2 = (a, ak',}

M =ihE C {a-,a+}. (15)
k k=1 kim I m

The representation space is finite-dimensional. The spectrum E£ of

H and r2 has no more than 4 eigenvalues. For the representations
considered in Ref.3, for instance, we have (p >3 is a fixed
integer, labeling the representation) Ek=wh( 3 p- 2 k)/ 2 , k=0,1,2,3.

The maximal distance between the particles is r =(3hp/2mw)
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3. Osp(3/2) oscillators

Let e , i,j=l,...,5 be the Weyl generators of the LS g](3/2)

with supercommutation relations

eij ,e k 1=6 jke (i-(-l) 1<i> lk>÷<1 e ) (16)

whe-ce 41ý-2>=<-1-0, <4>=<5>=l; deg(e )=(<i>+<j>)mod2. The CAO's

ii
a e1/ a- -(31/2(ee ee
a1-(3) (e 14-e52+e 24 -e) a=1 3 1e1+e 42 25 4e1)

2a+=i(3)-(e -e -e +e ), a%=i(3)- '(el +e -e -e.,
2 14 52 24 51 2 5 42 25

a*=(2/3) '(e -e e, a-=(2/3)12 (e +e ). (17)
-34 S3 3 35 43

constitute a basis in the odd subspace of the LS osp(3/2) and
generate it. For H and M one has

H= l-•hff [a*,a-}=wh(e - e )(18)

1 i= I I 1 44 55)

M=1(e-e+e -e i (e -e +e ') M =e,,-e (19)
;172 13 32+31 23 2 3(e 1e 2 3  113 2 3 2

The requirements of the postulate 1.3 lead to infinite-dimensional
representations. In the metaplectic representation of osp(3/2) [9)
for instance the internal angular momentum is 1/2 and the energy is
the same as for an one-dimensional canonical oscillator,

En =h(n+i/2), nEZf . (20)

To conclude with we formulate a proposition.

Proposition. The Lie superalgebras osp(i/6), sl(l/3) and
osp(3/2) are the only classical LS's to satisfy the postulates of a
noncanonrical 3-dimensional quantum oscillator.

The proof will be given elsewhere.
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KAC-MOODY-MALCEV ALGEBRAS AND SUPERALGEBRAS

Edward P. Osipov
Department of Theoretical Physics. Institute for Mathematics

630090 Novosibirsk 90, USSR

We define the Kac-Moody-Malcev and super-Kac-Moody-Malcev algebras as infinite-
dimensional Malcev and super-Malcev algebras, describe possible central extensions and
prove that the Kac-Moody-Malcev algebras, associated with the simple non-Lie Malcev
algebras, have trivial (i.e. zero) central extensions only and super-Kac-Moody-Malcev
algebras, associated with the simple non-Lie Malcev algebras, have nontrivial central ex-
tensions for Grassmann generators only. We describe the Sugawara construction elsewhere.

Analogously the Kac-Moody-Malcev type algebras on generic (compact) Riemann
surfaces, associated with simple non-Lie Malcev algebras, have trivial central extensions for
the algebras and nontrivial for the Grassmann generators of the super-Kac-*Noody-Malcev-
Krichever-Novikov algebras. The detailed description for the case of generic Riemann
surfaces will be given elsewhere. Here we consider the case of complex plane only.

Let Ml be a Z2 -graded algebra, that is Al = Al-0 Mý All We define the intrinsic Z2
-grading ax of the element x E M , ox = 0 if x E M0 and ax I if x E .1, . The bilinear
(super)bracket [., .] is defined on Al1 . We suppose that

[Ai, M, ] C -Wi +j, ij =0,1 and .1 2  o.10, (1)

and

[r, y] = -(-1)a'8'[ ]
for elements with definite gradation. We define

J(x, y, z) = (- 1) 8a: [X, [yz]] + (- 1)aY [y, [z. x]] + (-')a"" [z' [X. y]]

for elements with definite gradation.
An algebra is called the super-Malcev algebra if the identities

[J(.r ,y Z), X] =J(r, Y. [XZ]) (2)

are satisfied for elements with definite gradation.
In particular, the Kac-Moody-Malcev algebra, associated with a Malcev algebra g . is

defined by the set of generators (TO,, 1 < a < dimg, m E Z) and brackets

[Ta T.1] ac~

[T~,TT] = a,.cT.+., (3)

where fa6c are the structure constants of the algebra g
The super-Kac-Moody-Malcev algebra, associated with a Malcev algebra g and (one)

Grassmann generator, is given by the set of generators (Ta,, 0b. 1 < a, b < dim g, m, n E Z)
and brackets

[TTa T.J f Z cT, [Tb.8'J _ fabcocn Mm~n,

C C (4)

19a , 06 = 0.
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Here OTf = 0 and 40a = 1 for all a and m.
It is easy to see that (3) and (4) are generated the Malcev algebra and super-Malcev

algebra, correspondingly.
Let us consider now a more general algebra, which is a central extension of the algebra

(4) and which is generated by the set of generators ( 1, T,'. 06 1 < a. b < dirng. rn. n C
X) and commutation relations

[T.'.Tn"]=- fnbcTc,cn 1T.a-OI =Y ZfabCc+c

c c(5)

* Here o1 = OTm = 0. 90a =1 for all a, m.
We shall verify (2) for elements of algebra (5) with definite gradation.
Let now
1) X,,y, E Mo. The foregoing implies that (2) is satisfied.
2) Two elements belong to M1o0 and the third elements belongs to MI.
2a) x E MO. The fact that .1! 0 is a Malcev algebra implies (2) for this case also.
2b) x E Mi. It is sufficient to consider the case x = , x(a.m)nO,,. y = Týb. Ti.

We have
r.(, y. :-),.r = [([X. [y. --f + [y. [:,-X11 + [:. [(X. y1), X]

"•- (fbcdfada' + fcadfbda' + fabdfcda')x(a.rn)X(a'. Mm)+ý,+.+,.
a a' d m m'

J(r. y, [xr. :]) - [[Y[x. ,-]]1 + [Y. [[.r. :1. X]] + [[•., Z]. [,Y11]]

= Z (_facdfbda' +facdf,'bd)X.y.a.Ma)XIm,)im.+,n,+n+p.

a,al'd,m.m'

It is clear that

Z f 'a, )x(a',Y')-zm+ý,+,+p = 0
a.a',dm,m' ,q

and
[J(x, y, z)..r] - J(X. y, [.r. :]).

3) Two elements belong to \ 1 and the third element belongs to M 0 .
3a) x E M 0 , y.z E M 1 . It is sufficient to consider x = Ear,,x(a. m)T,. y = 06.

z = 0'. Then

fJ(x' y, z), X] = [([X', [(Y :- + [y. [, .r]4 - [:. IX, y1). .r] = 0

J(a. . a', =:) = [y, [[' :., a'4 - (IX, -*' f.. Ya.

= (facdfda'b - facdf"'bd)X(a. n)xa'(a#,??')" m+r,+n+p 0,

i.e. (2) is fulfilled.
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3b) y E M0 , x, z E MA. It is sufficient to consider x ,0 ,A , y T,6, z Op. We
have

J(X .ry) -[Xi, [' 1 + (Z.[X, y11 E- Zfb~ca +fab )x~a.rn~e+ý±p = 0
a .m

and J(x, y, [x. z]) 0. because [x.z} = const.
3c) z E M0 , x, Y E Ml, It is sufficient to consider x = •r, x(a. m )0 0,, z = Tc.

Analogously to the previous case

J(X,y,-) = .ry. ][]] [ ] -X -~flco _ fb)x(a, m)Em+n+p 0
a'~m

and J(x.ry,[x,z]) = 0. so (2) is fulfilled.
4) Three elements belong to .111 . In this case the superbracket of any two elements

belongs to JR and so J(x, y, z) = 0, J(x, y. [x, :z) = 0, and again (2) is fulfilled.

Thus, (4) and (5) are super-Malcev algebras ar.d the algebra with commutation rela-
tions (5) is a central extension of the algebra (4).

Let us consider now general central extensions (the central extensions of Ka-l-Moody
and super-Kac-Moody algebras, cf., for instance, in [1)).

Commutation relations for central extensions of Kac-Moodyv-Malcev algebra (3) have
form

[T m. T+ ZfcT+, +d.k, [T,, , Ok=0. (6)

It is easy to see 'hat a central exten.sion (6) is nontrivial in the class of binary Lie
algebras. In the class of Malcev algebras the central extensions of Kac-Moody-Malcev

algebra, associated with simple non-Lie NIalcev algebra. are trivial, that is. d'A;bn = 0.

Indeed, as in [2, we obtain d-6, = bb,., con.,t . Then putting in (7) in f21 I
1. m =0, n 0. p = -1. a= 1, b 2 c =4. d = 7. we obtain cont = 0.

Let us consider now central extensions Vl of super-Kac- Moody-Malcev algebras Al

given by commutation relations (4). We suppose that .l, C Al,. i = 0. 1. Commutation
relations in the case of central extensions of super-Kac-Moody-Malcev algebras have the

form
[T..T. =] , '-obcT•+ +d .,,k. [Tr .+bV = r _Z ,+k + A -..

C C

ra 6 [ =)

[T,.*. [k) .. [ = [A-) [b, k[ 0.

[Tg.1= = [.. = [T,,. ._ = Ia , 6 0.

The central extensions ln the class of binary super-Lie algebras are given by any d",',
A. m,_a. e- must be antisymmetric (symmetric)).re~n -M'.. (H re d.n" ý. ms

The central extensions in the class of super-Malcev algebras, associated with simtphe

non-Lie Malcev algebra, have the form (in the case of one Grassmann generator) d"
a .a,b =ba.,m
mn ~n +n
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To prove this assertion we remark that (1) and (7) imply that Ok = 96 = 0,,9K = 1
(and then, if, for instance, [Ta. k) = 0 then [k, T,'] = 0 also and so on). Further we consider
elements with zero gradation. The same consideration as for (6) gives da,6 = 0. Further

let x . 'x(a,m)Ta, y = F 6y(b,n)Tz, = z(cp)O&,. Then coordinates of vectors
x, y, z generate the identities, which coinside with identities (2) for Malcev algebra with
commutation relation (10), where instead of dabn stand A.,,. But in this case analogously
to the previous one Aa6 = 0.

Now, we takex=T, y = , z = . Then we have [J(x,y,z),x] 0 due to the
fact that J(x,y, z) = con st 6, and

J-"( f a rd f da t _b . e + fecd f a .oe d; e ) .

J(X, Y. (X, Z]) = J.. •.,2rn+p +,.+p_+.)b
de

So it must be Z facd daeeke facdfa be d.e , = 0
•J cn,2m.Fp -- ýJrM+p~.-

d,e

Let o,;3,-) be such that fOO" # 0. Take a = a, b = a, c = 3. Then (8) and propertiesof structure constants give that E_: 3 -,

,+ of = 0. This fact implies that all ,, = 0 for a 5 6.

Let now a = o, b = 3. c = 13 in (8). Then we obtain e ,+ el = ,, Nowwe utp -man otai e db = .~ h

we put p =- and obtain = + Taking into account that ,, E the
foregoing gives that ,a 6.bem+ for all 1 < a, b < dimg = 7 and m. n E Z.

Thus, the general central extensions of algebra (4) is given by commutation relations
(7) with dab = A" = 0 and •!. = bbbzm+n.

m'nm,n mrnn +"
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The local behaviour of supersymmetric quantum mechanics potentials
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abstract.- In supersymmetric quantum mechanics, the differential equations corresponding to ex-

actly solvable potentials may be treated by algebraic methods. By use of a system ofgeodesic polar

coordinates on a Riemannian manifold, and the subsequent transformation of the Laplace Beltram)

eigenvalue problem to a Schrodinger equation with a potential in two ways. it is demonstrated that

the local behaviour of the exactly solvable potentials corresponds to isotropic harmonic oscillator

and Poschl- Teller potential problems

Symmetry considerations have proven to be very effective in solving differential
equations of mathematical physics. To these methods count the separation of vari-
ables, the similarity solutions, the dynamical symmetry. etc. In dynamical symmetry
the differential equations are related to invariant differential operators of some Lie al-
gebra. In this manner the calculation of physically relevant quantities such as energies.

masses, transition probabilities, or scattering matrices can be achieved by algebraic
manipulation'. The range of potentials that can be treated this way corresponds to
the factorizable potentials2 or the exactly solvable potentials, as considered in super-

symmetric quantum mechanics 3 . This powerful technique has however the following

disadvantage: in physics the system and not the symmetry is generally specified. and
there is no general theory to determine which symmetry. if any. is of relevance. We pro-
vide here a result which is intended to remove this difficulty regarding the application of
the algebraic technique to systems whose description can be reduced to the study of an
ordinary differential equation. Specifically. we demonstrate that those physical systems
which can be treated by algebraic techniques behave locally like an isotropic oscillator

or a P6schl-Teller potential problem.
In this paper the right choice of coordinates is relevant. We work with tile generalization

of the polar coordinates: the geodesic polar coordinates. To define them. let Al be a
Riemannian manifold and x be some point of Al. Then exists a ileighbourhood N of X
in Al on which every point can be parametrized by th, ',ength r of the shortest geodesic
reaching the point, and by the direction of that geodesic. i.e. by the coordinates of tlle

intersection between the tanlgent to the geodesic and the unit sphere on the tangential

space Al,. The mapping xr •- (r..... 0) is called a system of geodesic polar coordi-

nates.

For M of dinlension two, the metric takes in these coordinates the following formi,

ds' - dr2 - h 2(rO)d,92 . (1
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For small values of r we have h(r,O) = r- 'Kr 3 tR(r.6), where lim,.O(R(r,0)/r3
)0

and K is the Gaufian curvature of M at the point x. We are interested in the local
behaviour of the systems, hence we restrict our study to scaling functions depending on
r only. The Laplace Beltraini operator AM takes then the form

1A h(r 0 1 8AM = -h( •
h(r)2i ; h+ r)8i 2

From this equation it follows that the eigenfunctions FA,\,(r,O) of AM are given by

AA, FA~m(r,O) = Fmr,),

where Fx,m(r.0) = A,>r)ci"'°. with v,-(r) obeying the following differential equation:

[ 1 0 0 rn2 1 ~
h (r) a r O rn2

h r) (r Or ar h2(r)(2

Equation (2) is of the Sturm-Liouville type and can be transformed into the form of a
Schr6dinger equation with a potential in two ways:

Case (a): After multiplying equation (2) by h 2(r) and using the new variable
f= £ h-dr we obtain the equation

dg2 -ý Ah 2(ý)j tA(~ __24,\ (3)

which corresponds to a one-dimensional Schr6dinger equation in the variable ý with
eigenvalue -rn 2 and potential function )Wh2 (ý).

Case (b): The normalization condition corresponding to the metric h(r),
f IV'(r) 2 h(r)dr = 1, suggests the introduction of the function ' (r), defined by

T'(r) = 4--(r)h1 /2 (r). Then equation (2) yields

[d2 h"(r) (h'(r) )2 ]2 1
ddr+ 2h(r) - ih 2-Tr) ' + '*(r) = -.PPO(r) (4)

which corresponds to a one-dimensional Schr6dinger equation in the variable r with
eigenvalue -A and a potential function depending on h(r),hW(r) and h"(r).

After this more general treatment, in order to apply the powerful tools of group
theory, we take for the manifold M a globally symmetric space X- G/K of dimension
two: i.e. such that G is a connected semisimple Lie group and K is a maximal subgroup.
Then. it is well known that the Casinmir of the group can be related to a Schrodinger
equation with some potential connected with the curvature of the space. Essentially two
applications can be distinguished: that of a potential group4 and that of a symmetry
group'. In the first case the representation of tile group determines the energy and the
representation of the subgroup determnines the potential strength. In the second case
the roles are interchanged. Transformation (a) relates the group G with the symmetry
group of a physical system. Transformation (b) with the potential group. These two
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transformations therefore cover both applications. The following table presents some
examples.

Examples

SO(3)/SO(2)

h(r) r- sin(r). 0 , r < 7r, -oo < 4 < c_
- A A __2.tA

h(r) = sinh(r), -_ 3 C ., -> c. • Oc

Trans. (a) - + =d ý2 n - ý/ lr

T•n•. (b) +--, + -

*** E(2)/SO(2)**

r. 02 r m- _/4. nrX _ Oc•n
Trans. (a) ; d7= ,' -

Table
Systems possessing dynamical symmetry. Transformation (a) describes a sym-

metry group problem. Transformation (b) describes a potential group problem.

As the table shows, there is a variety of systems which can be studied by algebraic
methods. However. in spite of this great range of systems, the local behaviour of all of
them is characterized by only two potentials: the harmonic oscillator and the P6schl-
Teller potential. To prove this result, consider for sufficiently small values of r the
scaling function h of any manifold of dimension two. This function has according to
equation (1) the form

13
h(r) - r - r3.

6

Case (a) : Using the above defined scaling function, transformation (a) gives

d, 2 cl - j ) = 0. (5l

with (K'/6) -2. By making the replacements { p -. , and (A, 4 -4i -2 1 ).
this equation takes the form of the Schrtdinger equation corresponding to a P6schl
Teller potential. namely

d2 cosh()

Case (b) : From equation (4), with h(r) r - (K/6)r'. we have

d2 2t1 14 (r1 1K r2 -K (n2 - 1)A II•(r) 0. (7)

= m mamnm mm WI m nn 'n~amn~ '• mn u • ......... • ...... m • =3
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When m = 0, the coefficient of r2 is negative, and there are no bound states (cf. the
P6schl-Teller potential, where E 0 = 0 if m = 0). When in =1, the equation becomes

d2 3/4]

We note that this equation also arises for general 72 in the special case K - 0 i.e.
when dealing with flat spaces. When vil 1. the equation reduces to the Schr6dinger
equation for the isotropic oscillator :

{ d2  flu;_1"4- F(rn)r - Eý7] "(r)- 0
dr,2 r2

where F(rm) -- im' 1 !K112 is the force constant and the term -n2 1 4 corresponds
to 1(1 - 1) such that I = ro - 1/2. where n? can be positive or negative.

We conclude by rioting that the P6schl-Teller and the isotropic harmonic oscillator
potentials appear to occupy a central position within the set of exactly solvable poten-
tials. They have not only been exhaustively treated, but they also describe the local
behaviour of all such potentials in so far as the corresponding physical system possesse-
a symmetry group or a potential group. Thus. this result can be used to determine the
existence of a dynamical symmetry for a particular physical system. through a study
of the local behaviour of the relevant potentials. They also provide a natural starting
point for any perturbational expansion, if appropriate.
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senschaftliche Stiftung for its kind support.
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It is well known how the Noether theorem binds invariance (symmetry) principles

and conse, ,Lion idW. ii Lagrangian formalism. For a point g from a manifold G, con-

sider a pair (s,t) of the field transformations u -- sgU , u -. tgu. The (prolonged)

action (S,T) of G on the Lagrangian L(u) is defined by

(S L)(u) := L(s ulu , (T L)(u) := L(t l U). (1)
9 g g g

Lagrangian L(u) is said to be G-invariant if

LUs U) = L(tgu) = L(u) for all g of G. (2)

Let e be a fixed point in G, and let x denote a vector from the tangent space Te (G)

of G at e. Denote infinitesimal operators of (S,T) at e as Sx, Tx (x E Te(G)). In-

finitesimally, G-invariance conditions (2) read

SxL(u) = TxL(u) = 0 for all x of Te(G). (3)

Rearranging the terms according to the canonical prescription, these conditions can

be rewritten as Noether's identities, where the Euler-Lagrange expressions and diver-

gence terms for the Noether currents are explicitly separated. Conservation laws for

the Noether charges follow from the Noether identities under the assumptions that

field equations hold and G-currents vanish on the spatial integration boundary via

the Gauss theorem.

Infinitesimal G-invariance conditions (3) can be considered as a constraining

set of partial differential equations for G-invariant Lagrangian L(u). To close (3),

we must first extend it with the commutator equations
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[S x,S y]L(u = [T x,T yL(u) = [Sx,T y] L(u) 0 for all x,y of Te(G), (4)

and then proceed with extension. In this way, we may obtain additional (new) conser-

vation laws from the commutator Noether identities. Certainly, one will have much

trouble to find the latter if no algebraic assumptions are not assumed for G and

(s,t), to say nothing of the topological complications. To clarify the algebraic

aspect, suppose for a moment that g takes its values from a Lie group G with the

identity element e, and (s,t) obeys the common group geocentric identities

SgSh = Sgh . tgth = thg I Sgth = thSg for all g,h of G. (5)

We call such (s,t) associative. It is well known that infinitesimal associative

G-transformations obey the following Lie algebra commutation relations (CR):

[SxSyI - S[xy] = [Tx,Ty] + T~x,yj = [Sx,Ty] = 0 for all x,y of Te(G), (6)

where [x,y] E Te(G) is the product of x and y in the tangent Lie algebra of G. As

a result, we can say that at least for associative (s,t) the additional conservation

laws never appear from the commutator Ncether identities (4).

Now consider a more general case of the Moufang symmetry.

Suppose that g takes its values from the analytic Moufang loop G [1-3]. The

latter is an analytic quasigroup with the identity element e E G in which the Moufang
identity (ag)(ha) = a(gh)a 

(7)

holds. The (anti-commutative) tangent algebra of G can be defined similarly [3,41 to

the tannent (Lie) algebra of the Lie group. Geometrically, the tangent algebra of G

coincides with the tangent space Te(G) of G at e, but it need not be no more a Lie

algebra, i.e. there may be a triple x,y,z in T e(G) that the Jacobi identity fails:

J(x,y,z) := [x,[y,z[] I [y,[z,xj] I [7,[X,yj] ý 0.

InstEad, for all x,y,z of Te(G), we have a more general Mal'tsev identity [3]

(J(x,y,z),x] = J(x,y,[x,zl) , (8)

and anti-commutative algebras with this identity are called the Mal'tsev algebras [5].

Once more discarding the group geocentric prejudices, suppose that the following

identities hold for all g,h of G:

SgtgSh = Sghtg Sgtgth = thgS g (9)

Nevertheless, se = te = E (identity transformation) are assumed to survive. The pair

(s,t) with such properties is called [6-9] the birepresentation of G.

It can be easily verified that (S,T) turns out to be a birepresentation of G as

well. Infinitesimally, the non-associativity of (S,T) reveals itself as minimal but
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an open extension (generalization) of the Lie algebra (6):

[S ,sy] - S[x,y] = [Tx,Ty] + T[x = - 2[S ,Ty] for all xy of T e(G). (10)

We call this algebra the Moufang-Mal'tsev algebra and outline a way of closing of the

latter, which in fact means its embedding into a Lie algebra [10-13].

Start by rewriting the Moufang-Mal'tsev algebra as follows:

[SxSy] 2 F(x;y) + 1/3 S[x,y] + 2/3 T[xy], (11)

[SxTy] - F(x;y) + 1/3 S[x'yj - 1/3 Tx,y], (12)

[TxTy] 2 F(x;y) - 2/3 S[x,y] - 1/3 T[x y]. (13)

Here, (11) or (12) or (13) can be assumed as the defining expression for the Yamaguti

operator F(x;y). These operators are not linearly independent, since

F(x;y) + F(y;x) = 0 , (14)

F(fx,y];z) + F([y,zl;x) + F([z,x];y) ( 0 (15)

for all x,y,z of T e(G). Constraints (14) trivially descend from the anti-sy'mmetry of

the commutator bracketing, but the proof of (15) is not so trivial. It turns out that

6[F(x~y),S = S[x,y,z] I 6[F(x;y),T z 1 T[x,y,z] (16)

for all x,y,z of Te((G), where the Yamaguti triple product 1x,y,z] in Te(G) is defined

as
[x,y,z] := [x,[y,z]] - [y,[x,z]] + {[x,y],z] (17)

CR (16) are natural to call the reductivity conditions. The Yamaguti operators obey

the Lie algebra

6[F(x;.),F(z;w)] = F([x,y,z];w) + F(z;[x,y,w]) . (18)

Computations which in fact prove CR (10-18) were carried out in [10,11]. Eenotirg

r := dim(G), the dimension of the Lie algebra (11-18) does not exceed 2r + r(r-1)/2,

meanwhile the dimension of its subalgebra (18) does not exceed r(r-l)/2. Jacobi ijent-

ities for the Lie algebra (11-18) are guaranteed [103 by the defining identities of

the Lie [14] and general Lie [15,16] triple systems associated with the tagent

Mal'tsev algebra T e(G) of G.

We can now summarize our discussion of the Moufang symmetry with theobservation

that equations (3) can be closed by

F(x;y) LMu 0 , x,y are in T e(G). (19)

By rewriting the latter as Noether's identities, we may obtain desired additional con-

servation laws generated by the Moufang symmetries. Our method uses up the fact that

infinitesimal Moufang transformations generate the Lie algebra (11-18).In this sense,
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we can say that the collection of conservation laws obtainable from (3) and (19) is

closed (complete) as well. Non-associativity hides itself in (19). Remind that one

needs a closed (complete) collection of conserved charges to construct a basis in

the linear space of physical states after the quantization. What concerns the topo-

logical aspect, then it must be stressed that every finite-dimensional real Mal 'tsev

algebra is proved [17-191 to be the tangent algebra of some analytic Moufang loop.

Finally, remark that tnh Lie algebra (1i-18) is well acceptable from the point

of view of alternative algebras and octonions [20-231. Also, it is quite trivial to

foresee the Noether charge density algebra generated by Moufang transformations.
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Abstract. The path integral for certain systems is shown to be soluble if their
dynamical group structure is known. In particular we consider the radial path inte-

gral for a harmonic oscillator having SU(1, 1) as dynamical group.

1 Introduction

Sixty years ago in his book [1] Eugen Wigner demonstrated the power of group
theoretical methods in quantum mechanics. Without solving the Schr~diinger equa-
tion many important quantum mechanical results can be obtained purely from
symmetry considerations. Ever, group theory may provide exact solutions of the
S-hr6dinger equation for certain systems. Most of the exactly soluble problems
have been classified by the factorization method of Schr6dinger, Infeld and Hull [2].
The factorization method is indeed related with Lie theory [3]. There are only two
elementary systems to which all others can be reduced by changing variables and
transforming the wavefunction in the Schr6dinger equation. The two systems ate the
radial harmonic oscillator having solutions of confluent hypergeometric type and the
P6schl-Teller oscillator possessing solutions of hypergeometric type. The underlying
group structures of the exactly soluble problems are associated with symmetries of
dynamical origin rather than geometrical ones.

The aim of the present report is to demonstrate that group theory is also very
useful in the path integral approach to quantum mechanics [4]. The application
of group theory to path integrals with geometrical symmetries has already been
reported in the last Wigner Symposium [51. Here we wish to discuss the path integral
realization of dynamical symmetries. As an example we shall consider the radial
path integral of a harmonic oscillator in Rd. First, we shall explicitly demonstrate
that this system has the SU(1, I) dynamical group. Then we shall present its path
integral representation. For the realization of dynamical symmetries SU(2) and
SU(1, 1) of the P~schl-Teller systems we refer to refs. [6-8]. In particular, for the
local time rescaling technique. which is equivalent, to the change of variable and
transformation of wavefunction in the Schr6dinger approach, see refs. [8,9J.

*Supported by Deutsche Forschungsgetneinschaft.



,'7 335

2 The dynamical group SU(1, 1) of the harmonic oscillator in Rd

The Lie algebra of SU(1, 1) may explicitly be given by the commutators

[J1,J2] = -iJ 3 , [J2 ,J 31 = iJ 1 , [J3, J1  iJ 2. (1)

The quadratic Casimir operator is J 2 = _j2 _j2+J,2. In a given unitary irreducible
representation (UIR) it is proportional to the unit operator, i.e. J 2 = J(J + 1)1,
where the "angular momentum" quantum number J may be used for labelling all
UIR's. There are two continuous and two discrete series of UIR [10]. Spectra of the
compact operator J3 for the continuous series are unbounded. Whereas, the spectra
of J 3 for the discrete series denoted by D- and D' are bounded from above and
below, respectively. It is the series D' which is realized by the harmonic oscillator.
On the standard discrete basis we have for D" [10]:

J 2lJ, ") = J(J + 1)Ij,m) with - 1 < J, (2)

J3 1J,m) = mIJ, m) with m = J 4-1,J + 2,... (3)

It is also possible to choose a continuous basis where a noncompact operator is
diagonalized [11]. The one we are interested in is K := J, + J3 and has the positive
real line as the spectrum for D+:

KIJ,7r) = i9J,i) with r1 E +. (4)

For the matrix element for a finite transformation in the continuous basis we find
[11] in analogy to Wigner's d-function [1]

(Y'r/je-` jJ'/') = •s exp {i(r + 77') cot } V12J+I v ] (5)
isin i sinp

where 1,(z) is the modified Bessel function, 0 < kp < 7r and Thr ' E R+.l
In the following we consider a creation and an annihilation operator for each

degree of freedom in IRd, that is [a,,aJ, =, (ij = 1,... ,d). A realization of the
algbra of SU(l, 1) is given by

J, := F(al +±ai) J2 -- r(a! 2 -a2) , J3: E aca, + . (6)
4i1 4 i=d 2I ( 2)

The Hamiltonian for the harmonic oscillator in 1Rd is H = 2hwJ 3 which is bounded
below (i.e. D+). We observe that the total angular momentum associated with
SO(d) in IRd is related to the Casimir operator (2) by L2 = 4J 2 - d(d - 4)/4 and
has eigenvalues l(l + d - 2), 1 E IN0 . Therefore, a fixed angular momentum subspace
corresponds to the representation D' with J := 1/2 + d/4 - 1. The spectrum (3)
of J3 leads to the energy eigenvalues E. := hw(2n + I + d/2), n E IN0 . Finally, we
note that the time evolution operator exp{-(i/h)Hn} = exp{-2iwrJ 3} is a group
element and that SU(1, 1) is indeed the dynamical group of the system.
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3 Path integral realization of the dynamical group SU(l, 1)

According to Feyninan [4) the propagator, i.e. the matrix element of the time
evolution operator, may be given by a path integral,

x "=x(t)]exp{f i (Ž-' - M 2 2 ) dt}

x'=x(O)

which reads on the sliced time basis [E rIN, x, x(je)]

(x' 1 e-(i/h)HrIx') = lim (M )Nd/2

N--J Ie'{ [ M(Xj _Xj~)'2 M-w6XI+X
4 x,.

j=l h E =1

(7)
Due to its spherical symmetry we immediately can perform the angular path inte-
gration [7]:

"" F(/)H (d/2). .. .
(xK-I/ (7H' 7x') -- ,_- , ': }) - 1"M (•y x /1") • ,.x/, (8)

Ix 1=0 M '7r/4

where YVi(e) are the hyperspherical harmonics in 1Rd and M' stands for a (d - 2)-
tuple counting the degeneracy of the angular momentum 1. The radial propagator
is given by the remaining path integral [r, := [x3j]

(d-2)/2 N N-I

r", r r"r-'-- )/ 4lira m Il R(r,,r -I) J- rIdr1 (9)r r~r / N =

where

R(r3 , rep) (, + 2_r) (i 2 li+Md-2)/2 ( i) . 10)

It is the dynamical group S! U(I, 1) which now enables us to complete the path
integration. First, we set 7 , := Mwr'/2h which gives for the exponential in (10)

exp{ .-} = exp {i (y, + q,-,)(1/w"e - ,)E/2)}. (11)

Note also that r~dr, = (h/Mwý)dzh. Secondly, we define sinl := , z which leads to

I - ,ýE/2 - cot ;: ! O(Z'). (12)

Inserting this in (11) [note that terms of 0(.-3) may be ignored in path integration]
we find

h R(rr) exp i(, + 7, 1) cotP } ( n2 2 , (13)M "; i sinpo II(-)2 sin,,: "
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Now we observe that this is identical with the matrix element (5) if we set for the
representat~on label d 1/2 + d/4 - 1. Therefore, the radial path integral reads

M / 1 \(d-2)/2 N N-!/Q~rr';) = (1----)d-2)2 l ra /-J,%rj~e-2i•°JJ, rlj~ d 77, (14)
-i(" )= h- \r/Ir' N-00 j=1 ?7 =1)

and is easily performed using the completeness relation j d j, 1J, 1) (J, 7I,1 1 for

the continuous basis (4), Finally, the radial propagator is given by

K'i(r", r'; T) = h (r1r)/ ( 1 ( e 1j, (

where r := Alwr 2/2h and

I := lira [Np] = lir [Narcsin(or/N)] = I T. (16)
N-oo N-oo

The present path integral treatment is an alternative to the earliu approach [12].
Besides its simplicity the present group theoretical approach has the advantage to
realize the dynamical group SU(1, 1) explicitly [see eq. (15)]. It can also be applied
to the radial path integral for the I/r-problem in IRd and the generalized Morse
potential in IR, both of which have the dynamical group Si(l, 1 ) [8].
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In this contribution, a novel globalized generalization of the concepts of coherent
states to arbitrary Kiihler manifolds will be described [1]. The formalism to be
developed generalizes previous work by Berezin. Rawnsley and others [1, 2, 3. 41
and. in particular, allows for a more convenient and unified discussion of the classical
limit.

On the elementary phase space P = 113", coherent states can be defined in the

following way:
First. one regards IR" as a complex space 4". e.g. by taking .-k = 7(qk + ip,).

The Bargmann Hilbert space consists of antiholomorphic functions

",,: T _, ,C

of finite norm w.r.t. the scalar product

,,t) = _1 d ,, .) _(1t()
7 (1

Coherent states ec are given by the functions

and obey the defining relation

Operators .1 are definable as normal ordered products of tle creation and annihila
tion operatols

The simibol

°Talk given by H.Romer
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(-(.4)()-(;5)

of an operator A is the starting point for discussions of the classical limit.
These concepts have to be generalized to arbitrary KNhler manifolds (M..C, I)

where .11 is a manifold with symplectic form ,; and complex structure I.
Berezin [2] gave a first definition of coherent states on Klihler manifolds in terms

of local complex coordinates.
For an intrinsic definition one needs the following structural data:

1. a Kahler manifold (M,w.I) of real dimension 2n

2. a holomorphic line bundle L over .l with hermitean metric h

3. The connection V on L with the properties of

(a) compatibility with h: Xh(-',. V2) = h(V.\'-'. -'2) + h(C'1 . VXC-'2)

(b) holomorphy: Vx L = 0 if t' is a holoniorphic section of L and N an
antiholomorphic direction

(c) quantization condition for the curvature F7 of V:

f '1 = I 1" .

Bergmann's Hilbert space is then given by the h-antiholomorphic sections ,, of
L. which by definition fulfil

Vxýs = 0 for every holotuorphic direction X

and are requested to have finite norm

J.h. < Dc (6)

It is also useful to consider the m"t tensorial powers L" of L. The quantization
condition

Fv = ill" (7)

shows that the classical limit h , 0 corresponds to m -- X..
Rawnsley [3] gave a global definition of coherent states in terms of sections on

L'. which is most easily understood by using the identification of sections of I
with eqtivariant functions on L, = L \ 11 (,11 is identified with the zero section of
L) in the following way':
There is a natural '" action A . ,\:o oh L.
A function t' : 1 ' with

• )= :oN'(A) (8)
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gives rise to a section •, of L' via

ý'(To(A)) = 7r.(A, L'(A0) (9)

where T0 is the projection L --+ M and -rm the projection

L 0 x r --- Lm

We perform a further step in direction shown by Rawnsley by dropping the equiv-
ariance condition and directly quantizing the total space Lo.

First, we notice that L0 can be endowed with a K~hler structure ,:L by using the
natural complex structure of L0 and defining

";L = iO log hL (10)

where hL : Lo - (P is the function

A i-4 exp(h(A,,A)) . (11)

For the quantization of L0 one considers the trivial line bundle L = C × over L0 .
Taking hL as hermitean fibre metric on L it is easy to find the compatible connection
V with quantization condition Ft, = iWL. The Hilbert space 'HE consists of all hL-
antiholomorphic sections tVL with finite norm

fJ+/ l h('L,'L) (12)

It turns out that all the sections tum of the bundles Lm can be identified with
sections ti' fulfilling a certain equivariance condition and that there are embeddings

?iL OT *

such that

L = 27r(m + n)!("m,'m'),66m, (13)

Thus, all the bundles L' are unified in a single global object: Moreover, it is
possible to define coherent states on L0 as certain sections cN of L which fulfil the
defining property

The symbol of an operator A on "L commuting with the U(1)-action on L0 has the
form

AJ-2a,(A,.)(r(A\))
aa()- ((x." AE.\)) - , " Z )., IA 2m,,, )(() ,Z~~(

(n+m)!(

(15)
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where A = -m Am (each operator Am acting iin 7-m), a(Am) is the Berezin-Rawnsley
symbol of Am, JAI' = h(A, A) and Rawnsley's function C(S)(r(A)) (equalling some-

times the dimension of H-I) is nonnegative. Thus, our symbol is just a weighted
average of the Berezin-Rawnsley symbols a(Am) with weights 0 < wv < I and

wm = 1. If JAI tends to zero the mean value

(in) = E I'M n?

tends to infinity. For example, taking L0 = T"+ \ {0} over .l = (p' (which
corresponds to the harmonic oscillator) we obtain a Poisson distribution

JAI`

with mean value (m) = * Hence, in our approach, Planck's constant h does not
appear as a parameter but rather as a coordinate along the fibre direction of Lo. It
is a continuous parameter unlike 1 and it even acts on L0 . The classical limit canM

be discussed by taking

limo,(A)(Ah) = a~i(A) (16)h-0O

which may considerably simplify and unify such considerations. Moreover. star
products are definable in a unified way such that h is a real coordinate on L0 rather
than a formal parameter.
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1 Quantization according to Berezin

Let M be a symplectic manifold. It is required:

(a) to construct a family of associative algebras Ah C Cx(I) depending upon a
parameter h (called the Planck constant), a product is denoted by the star *.
these algebras must satisfy a correspondence principle (CP):

lim f, * f2 = f f2 the pointwise product
h-0

limjh-1 (fi * f 2 - f 2 * f) = {fi. f 2 } the Poisson bracket
h-0O

S= v'-]- or = 1. and some less important conditions, we drop them here:

(b) to construct representations f .-+ f of these algebras by operators in Hilbert
spaces.

For M = C" this construction gives the well known Wick quantization.

F.A. Berezin himself has constructed the quantization for classical Hermitian
symmetric spaces [2, 2. 2, 2].

Example 1. M is the unit disk z5 < 1 in C (the Lobachevsky plane). It is the
Hermitian symmetric space SU(1, 1)/U(1). Operators mentioned in (b)
act in a Fock space of analytic functions on M. A supercompletv system
(see sect.2) consists of functions Lj.(z) = L(zi) = (1 -sI*)-'/. For Details.
see [2].

We would like to construct the Berezin quantization on symplectic semisimple
symmetric spaces. It is sufficient to consider indecomposable ones. Such spaces are
of two classcs (for details, see [2]): Hermitian (they are Riemannian. j = V/-'--) and
para-Hermitian (they are non-Riemannian, j = 1). So we must study para-Hermitian
symmetric spaces. Before going to the general case we consider in sect.3 a cruical
example.
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2 Covariant symbols of operators

This notion is a basis for the construction of algebras Ah. Let H be a Hilbert space
and {x} a set equipped with a measure dr. A system of vectors c in H is said to be
supercomplete if

f = f(f, .l)xdr (Vf E H).

For an operator A in H, the following function A(x. y) is called the covariant symbol
of A:

A(x,y) = (A ,'CA/(%.C) (1)

Inversely, the operator A is uniquely defined by its symbol. The unit operator has
the symbol 1. If C = AB then

C(X, Y) = J A(x. z)B(z, y)(c, e.)(c_ t)(ld.

So we get an algebra of symbols: C = A * B.

3 Example 2: the hyperboloid of one sheet [6]
The hyperboloid Ml : -x' + .x' + x' = I in R3 is the para-Hermitian symmetric space
G/H where G S0 0 (1.2), H = S0 0 (1. 1). It is of Cayley type, see sect.4. Let us
take coordinates t,s on Af as follows:

t'= + 2 %, I+X" X , /2 =-- , ,X3 -= •

I1 - ts I - ts

Then an invariant measure and the Laplace-Beltrami operator are

dn(t,s) = 2(1 - tF)-2d46 and A = (I - ts)2 t e)ý

respectively. Operators A act in a space of functions f(t). A supercomplete system
consists of functions

L,(t) = L(, s) I 1 -t 1h.

It is the kernel of an intertwining operator for elementary representations of G. So
there is a reproducing property:

f(t) c(h) J f(p)L(t, s)L(p, )-cn(p .,) (2)

where c(h) = cot(7r/2h)(1 - h)/47rh. A covariant symbol of an operator A is defined
by

A(t,s) = (AL,)U)/L 8 (t) (3)
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It may be written like (1) using a scalar product for the complementary series. The
action of A is expressed by its symbol as foliws:

(Af)(t) = c(h) J A(t, s)L(t.s)L(p, .s)-lf(p)(hn(p. .s) (4)

The product * is

(. * B) (t,= J A(t, -4)B(i, s)1(t. s. i..)dn(i, ,•) (5)

where

Now introduce other variables o,3:

t = cot( - _). s = tan(- - -
4 2 4 2

Then Al is embedded in a torus S x S where S is the unit circle, and symbols
become functions on this torus. Let VV+ (resp. It�) be thhe subspace of C' (S x S)
generated by exp(ina + im/i). nm > 0 (resp. < 0). These spaces IV+ and IV- are
algebras w.r.t *, CP is held on them. The latter statement follows from an asymptotic
decomposition I = id+ hnA + o(h). where I is the operator wit h the kernel I(t. ,. t. ,).

The group G has 3 series of unitary irreducible representations: continous and 2
discrete ones. Correspondingly L2(M) is decomposed into the sum of 3 subspaces:
L2 (M) = ,. + V+ + V-. Consider an operator Q (an integral over generating lines
intersecting at a point x):

(Wf(X) = I I {.f(.r + ,,'(.r)) - f(r + fm(.r))}a-'ck

where

u(x) = (1,sin ccos o), v(I') = (1.sin .4,cos .).

It turns out that Q separates the subspaces above: Q = 0, + 1. -1, resp.

4 On the quantization on para-Hermitian symmet-
ric spaces

Let G be a simple Lie group (with the finite center, for siniplicity V), (7 an involution
of G, and H an open subgroup in the a-fixed set. Then G/Il is called a semi.simple
symmetric space. Let K be a maximal compact subgroup of G invariant w.r.t. CT.

The Lie algebra g of G is decomposed into +1,-1 smibspaces w.r.t a : g = + q, so
h = LieH.
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The space G/H is called a para-Hermitian symmetric space if there exists an
operator U in q s.t.: P2 id, I commutes with Ad!!.

B(IX, Y) + B(x, IY)= 0, X.Y E q,

here B is the killing form. Such space is symplectic: ,'(X, Y) = B(IX, Y).
Let G/H be indecomposable. The h has an one-dimensional center RZO. The

tangent representation h •+ Adh Iq of H is reducible: q = q+ + q-. These subspaces
q_ are Abelian, and Lagrangian. We get two real polarizations on G/H.

The set P+ = Hexpq+ is a maximal parabolic subgroup of G. The quotient space
S = G/P+ is a compact symmetric space (= K/K n H). We have an embedding
G/H --4 S x S.

A space for operators A and a supercomplete system consists of functions on S.
For it E C let UA be an one-dimensional representation of p+ s.t. i, 1 on expq+

G;
and on the semisimple part of H and u,(expaZo) = expira. Put T" Ind p+ u,.
There exists po E R s.t. for an), p E C there exists an operator B, intertwining T,, and
TW. o r, p' -p- - p where 7 is the involution of G defining K'. Let L(. s) = L.(t. )
be the kernel of B,.. These functions L on q x S' form a supercomplete system. The
formulas (2)-(5) are preserved. The Planck constant is/s = -i/p.

Example 3. G = SL(n.R). H = GL(ii - LR).

Here S = 5 n-I-/± where Sq-I is the unit sphere in L(" 0,) = +' + ... +
ts'j`, t.s E S C-. (7P is held on the discrete series for G/H. see e.g. [2].

Among para-Hermitian symmetric spaces rather Cayley type ones are most of
interest. They are characterized by K having nondiscrete center. Then S' is the
Shilov boundary of some complex manifold D. Let H 2 (D x D) be a Hardy space
[2, 2, 2]. The CP is held on the subspace in L 2(G/H) consisting of boundary values
of functions in H 2 (D x D).

Example 4. G = SU(nn), H = SL L(n.C) * R-.

G/H is of Cayley type..S U(n). D is the classical domain of type I. L(u. 0) =

I det (u + 1,)I14', i, vE U(n).
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ABSTRACT.

We exhibit features common to some simple quantum-mechanical problems like the
N-dimensional oscillator, rotor or Kepler problem: they share i) maximal degeneracy ii)
dynamical groups iii) spectrum generating groups iv) closed geodesics and v) separation
in several systems of coordinates.

We point out the free motion nature in symmetric, rank-one spaces. a.s an explanation.
the oscillator being even simpler. Generalizat ions to ot her spaces of same kind are possible.
including free motion in complex proyective space CP"*.

1.- Consider three standard problems in theoretical mechanics given by the hamil-
tonians

1 N
H = 12>(pi + qN) N - dimoscillator (NV > 1) (1.1)

1N

H=• 21(8.) N -dimrotator (rotor)(N > 2) (1.2)

1 N 2
H 2 Ep- - N - dim Kepler (N > 1) (1.3)

where l, = xp 3 -xjpi. All the three cases are exactly soluble both in classical mechanics
and in quantum mechanics; they share also an interesting list of common features, which
we would like to understand and relate. They are:

1) The classical motion contains only closed orbits (we limit ourselves to E < 0 in
(1.3)):

oscillator: maximal circles z: --+ dr:,; z =- q, + ip,
rotator: maximal circles in S`I

Kepler: ellipses

2) The spectrum depends on a single quantum number
oscillator: E, = (n + N/2)fo, (n = 0,1 .... ) (1.4)

rotator: El = l(l + N - 2)/2, (1 = 0, 1 .... ) (1.5)
Kepler: E. = - (n = 1,2.... (1.6)

3) There is a maximal dynamical symmetry group
oscillator: U(N) = Sp(N)nO(2N)
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rotor: O(N)
Kepler: O(N + 1)

4) The ireps selected by the symmetry group are always irreducible fully symmetric
representations, i.e. they behave like [k] as Young tableaux (or its traceless part).

5) Therefore the degeneracy of the quantum levels is group-theoretical, i.e. it can
be calculated by representation theory alone:

oscillator: deg(n) =(N+,- 1) (1.7)

rotator: deg(l)= (21+-2)(I+N-3!.8)

Kepler: same as rotator (N + 1), see later

6) The hamiltonian separates in more than one system of coordinates: e.g.

oscillator: in cartesian and polar
Kepler: in polar and parabolic

7) The three problems admit compact or non-compact spectrum generating groups
(Barut 1964)[1]; forexample, the oscillator admits SU(N, 1). the rotor admits SOo(N. 1).

This means that a single irep of the non-compact group gives all the ireps of the
physical problem.

8) They all have supersymmet- .c extensions (partners). and in fact supersyrnmetry
leads t,, the conmplete algebraic solution for the spectrum.

2.- The following questions arise in connection with these peculiar features:
1) Are these problems related?
2) Are these features themselves related?
3) What is the (deep?) mathematical reason for all that?
4) Are there more problems like them. i.e. can we find other similar systems?
Before entering into details let us already present the key characteristic:
- we have essentially a problem of free motion (classical or quantized)
in a rank-one ,;virmetric space.
Let us 3,rst dispose of the Kepler case. As V. Bargmann showed back in 1935 for

N=3 [2], Alliluev(1957) [3] for the general quantum and Moser (1970) [41 for the classical
case, see also Bova [5]:

- The N-dim Kepler problem is equivalent to the motion of a free particle in the
surface of a N-sphere (bounded orbits only).

The equivalence is not completely trivial, however, and requires three steps: regu-
larization of the r 1 -singularity, stereographic projection and Fourier transformation to

momentum space.
Now free motion in S' has obvious O( N + 1) invariance, and it is exactly the rotator

problem in N + 1:

N - Kepler problem z (.N + 1)rotator (2.1)

and we shall not have to worry about Kepler aniymore even the unbounded orbits.
corresponding to the continuous spectrum. do correspond to free motion in hyperbolic

space [4]; we shall not consider this case.

3.- The oscillator case is different from the rotator and somewhat simpler:
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- The harmonic isotropic oscillator problem is equivalent to a particular rotation
(imaginary dilatation) in CN:

Ifz = {z 1 ..... z} E C", take
Hamiltonian H = (z'z), (3.1)

Vector field X =Im z ,- = P, -,r' 7 (3.2)
Z' p.

with dynamical flow rt z -.Z elz, i.e. motion along some great circles, so the flow
is the U(1) generator central in U(N) acting naturally in C": hence there is maximal
reduction in the Marsden-Weinstein sense [6]. and the closure of the orbit is a 1-Torus.
Therefore the quantum spectrum depends also only on a single quantum number. The
space of orbits is again purely geometric namely Cx1-: in fact

CN = phase space = R2 X (3.3)

S2N.-1 C CN, energy surface (3.4)
SIN-,/U([1) = orbit space = CP-"'-1  

(3.5)

4.- The rotator problem is just (free) motion in a sphere: now for free motion in
symmetric spaces we have simple results: in particular

- The classical motion are geodesics running at constant speed: in particular at zero
speed, i.e. the particle lies at rest at any point.

- The quantum problem is given by the spectrum of the laplacian.

- The duality geodesics " laplacian. both particular cases of harmonic maps. is seen
here as a duality between classical and quantum mechanics!

In group-theoretical terms we have that the quantum rotor problem with hanmiltonian

H = f.f (4.1)

is given by the spectrum of the quadratic Casimir operator for O(N + 1), dual to the

Cartan-Killing form: it acts in a suitable space S- = O(V + 1),'0(N).

In contrast, the oscillator hamiltonian H = , is given by the spectrum of the

linear Casimir operator for U(N); the rotator case corresponds to simple groups. with

no linear Casimir.
Now we can answer some of the questions posed before. namnelv
Q.: - why the classical orbits close, or equivalently .why the spectrum depends only

on one quantum number?
A: - because the classical orbits of the free inotion are geodesics. and geodesics close

precisely in compact rank-one symmetric spaces like

S = O(N + 1)/O(N). CPA = U(V + I)/U(l) "U(N) (4.2)

Q - For which other cases do we expect similar behaviour, like Energy = E(1n)?

A: - Try free motion in arbitrary s'ymmetric spaces 11 = GiH of rank one. The

following Table gives all the compact ones
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1)SN = SO(N + 1)/SO(N), spheres

2) RPN = SO(N + 1)/O(N), real projective spaces

3) CPN = SU(N + 1)/U(N), complex projective spaces
4) HPN = Sp(N + 1)/Sp(N) x Sp(1). quaternionic projective space

5) OP 2 = F4 /Spin(9), Cayley plane.

Table I. Compact Rank-one symmetric spaces

We remind the reader the definition of rank for a Riemannian manifold: it is the
dimension of the maximal totally geodesic flat submanifold (Helgason 1978 [71). For
a Lie group. this coincides with 's Cartan definition of rank (dim of maximal abeliai,
subgroup), hence only U(1) = S' and Sp(1) = SU(2) = S 3 are rank-one groups. As
a counterexample. free motion in the torus T 2 = S1 x S1 will have "'dense- geodesics
(with bidimensional closure): in fact, the spectrum depends on two quantum numbers.

5.- As another example of free motion, let us take case 3) of Table I: free motion in
CpN; the results are

- The geodesics close, with length 27r
- The energy spectrum is E. = n(n + N) for CP-\
To single out the representations, notice that SU(N + 1) is not effective on CPX.

because of its center. The effective group is

PU(N + 1) = ((N + I)/L(1) = SU(N+ 1)iZ,\-+ (5.1)

and therefore the relevant representations are the irreducible pieces of the symmetric
product of the adjoint representation of SU( N + 1).

It might be interesting to look at the remaining cases of symmetric rank-one spaces.
like HPN or the Cayley plane.

6.- Other type of symmetric spaces are important in quantum mechanics, namely
the split-rank homogeneous spaces:

M = G/H is split rank if rank M=rank G - rank H. (6.1
As examples we have 1) Lie groups themselves, G = (GL x GR)/GD. 2) all odd

spheres. 3) SU(2n)/Sp(n) and 4) E 6 /F 4 .
These spaces are important because, as shown by Dowker and Camporesi [S].
- The propagator G(x, x') for split-rank spaces can be con.puted exactly from the

heat kernel expansion.

7.- To complete our vork we make some incomplete remarks on the spectrum gener-
ating group aspect of the problem. We hope to adress the question of the supersymnmetry
connection in a future publication.

Both for O(N) and U(N), the relation

deg(N, n) = deg(.N - 1,o n) + deg(N., i - 1) (7.1)
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leads at once to
deg(N,n)= E deg(N - ln'). (7.2)

This goes a long way to understand the embedding of dynamical groups on compact
groups, as shown first by Sudarshan et a]. (1965)[9]: now why also non-compact envelop-
ing groups? A possible clue is the duality between G(N + 1), compact, vs. G(V, 1).
non-compact,

But much more should be learnt before we claim we understand the use of non-
compact groups as spectrum-generating groups; an interesting question. for example,
is: do they have any implication for the set of classical solutions?
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A new probabilistic quantization method and its semiclassical limit
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Our approach relies on a 1931-32 idea of E. Schr6dinger [1]1,inspired by thle fol-
lowing remark of A.S. Eddington on quantum dynamics: T.he whole interpretation 4
very obscure but it seems to depend on whether you axe considering the probabil't::

dtryuknow what has happened orthe probability for theproefpedc n.1
i.L' is obtained by introducing 2 systems of zi' waves travelling in opposite directioi -
in timne one of these must presumiably correspond to probable inference from what is
known (or is stated) to have been the condition at a later time." Such was Schirddingril's
mnotivation to state a p)roblem in the classical theory of Brownian motion.regarded !b,
him as a revealing analogy with wave mccharvics.This problem has been, igno)red b~y th

oretical phyvsicists until 19S3-S6,when it was solved,tliem interpreted as a newEiilda
(Iilant izat ion procedure (i.e dealing with the "imaginary time" Schrddinger equation~or

he~at equation) [2] .The soluition of Schrddinger's problem~however~lhas littlo to rio withl

MN~lac's familiar reinterpretation of Fevnman's path integral miethod ý"3.7'. Actuallv-ir
should be regarded as an alternative Euiclidean interpretation of this techniqu~pe ;41.

Let ui icon sidler the S clrddinger equat ion for a single particle in soice

Or' h2 N" ?

For a (positix'.') Hrunil~tonioi lithe initial state \deterHiioII, qiiantlini~n:~;:~

Tint, -x f~la the change of variable T( ,)r I.~ ' Srdr .Ili, 1N

possible to de~scribe quant 1111 dynamnics from the darta of a pair {p~x x.. il r ii

ain arbitrary' interval [s .rm.instead of 7In regular prob~abilit'y threory . a pR vL e
5tochastic proces,.s z, t i'; \arkov if the knowledge of it", past in11'1)r a i tO

tile time sP,.cari be forgotten: P:1 , is in, ai ret ffl rP: 1 , I- ii B:',. .,xhcr

PI.j is the probability of thle eve'nt H .. ulari.s 'knowvinic ... andl -!I,,nr

the rii;ial (forward)I transition prolbllbility, Kolnioi~oio a has 41ir wn r lin ;I"' dai; t ;1

initial pro bability.
1)1Z, I, I I1 (l.1, f) (' s d=

(Iltorurinie' rniiquf'lv the process;, :t . f A (in technical terrnis~l','rrintirr' riinir'lv r'r
probability in easn reý Bum t the M arkov pr' op'rt v, shouldd al "o, Iccorr IinntoSi ~ I o
t), foriniilarfd w.i.t the fliure iir' foririatiori frinln tin.' ?I > t. F, : P in . BY.F,'

P . [ a ii : > ii %vhvre the ;tar * denote., this ba'k'\'arl 'd 'ti The':irl;'

Iota~ of a tinial probability

P( (2i ISd ) ?I p( , i It
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is necessary to determine z, , t < u.Clearly, in order that the forward and backward
descriptions coincide,some unusual compatibility conditions are required. Schr6dinger's
Euclidean interpretation starts from the fact that the integral kernel of -(t-)H/,

denoted h(x, t - s, y) and supposed positive (this is an hypothesis on the potential V .

is the propagator of two heat equations

(1) -h• Hr*

(2) h-1 =Hr/
(9t

since a regular state V is propagated forward in time to give 7iý(y,t) and backward

in time to give rj,(y,t).The role of the quantum probability tg, is played by a prod-
uct of positive solutions of the two adjoint heat equations (2).The unspecified positive
boundary conditions of (2),denoted k, x, respectively, are chosen so that they are con-
sistent with the data of a pair of (never zero) initial and final probabiity densities
P,(y),P,(y) [1,21.The way to do it is due to Schr6dinger [1). An infinite collection of
(Markov,"Bernstein") diffusions z(t), s < t < u isin this way,a-ssociated with the given
Hamiltonian H [2]. The two moments of such diffus~ios are computable via their forward
and backward transition probabilities.For example,the limits of conditional expectations

lim E fz(t + AIt)- z(t )
6t -0 -t

(3)

lim E [(t)- -At)

(4) lin E [(L(t + _AI zIt_
2) :(t)] A MI,

make sense.Clearly.the two first ones are regularized time derivatives (the ('rats
The third one (Id. =3x3 identity matrix) is a constalt ("diffusion") matrix.This should
be compared with Feynman's powerful but heuristic analogy (31 betweetx Brow-ian
motion and quantum "paths" r - ,(r7).Using the "expectation" > wr.t the

"weight" eis-( 'j,where S is the action functional SY-(.)] = -{ "
he obtainsfor instance

(4) K("(r,+; ( - iild.

Because of the factor i on the r.h.s, however. Feynman's approach has no probabilistic
content (in spite of the unquestionable validity of Born statistical interprCtatiorn of the
wave function ,,).So. where do quantum probabilities come fronitlon'.' Eq.ý 4 i* inter-
preted by Feynmoan as the nondifferentiability of quantuni paths.a typically Brownian
property [31.Also notice that the contimmnu linit .3r - 0 is ,eaningless in real time'.
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In Feynman's framework, properties like (4*) follow from a general integration by parts
"firnula [31,for "arbitrary" functionals ,F of the quantum paths u:

(3) (6F[6wl(6wa)), = -i FSw(wX

where 6 denotes the directional derivative,and the same is true in our Euclidean context
[5].Our conclusions (although "only" Euclidean) hold in a much stronger sense,however,
because of their probabilistic content.For instance,taking advantage of the existence of
the continuum limit,one shows that the Bernstein diffusions solve regularized (i.e quan-
tized) versions of the (Euclidean) Euler-Lagrange equationswhose expectation corre-
sponds with quantum mechanical predictions. Any Bernstein diffusion depends on h
via its diffusion matrix and its drifts.So,any :(r) = z"(r) can be expanded as

(6) z11(r) = z°(r) + v/-hz"C(7) + hZ(
2
)(r) + ... , r E [t, u]

where z'(.) solves the classical (Euclidean) equations of motion To stop after the first

quantum correction z" is the "Semiclassical approximation" [6].Then.the resulting dif-
fusion is Gaussian,since z", (the "Bernstein Jacobi" process) is. Such Gaussian can be
represented by

(7) zsc(r) - Ey.tZc(7) + •o.(r)

n=1

where E,.t denotes the conditional expectation E[...i Wc(t) = yi. o, is an eigerifunction
of the correlation operator C, of z•

(8) (whose integral kernel is Kt(s, 7)= Ey,t[zsc(s) - Ey,: `(s)}zc', , ) - E, :-(7)]

and r, are independant Gaussian random variables of zero mean and variance A,,.the
eigenvalues of Ct.As expected, z" solves the variational equation of the quantized

Euler- Lagrange equation, here the one associated with the (Euclidean) semiclassical
Lagrangian

(,q, ) I'(z(r))+q[.

Actually, z" is entirely characterized by the data of a solution F of the classical Jacobi
equation

(10) i'(r) = V 2 V(zo(T))q(r) ,t < r < U

For instance,the correlation of this diffusion is

K(r, r) { F(r)F,(r) ,t < r < r < u
tF(r) F,*(r) ,t < 7 < r < u
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where F,(r) = F(r)7f[ F-'(r) dr is another solution of the Eq.(10). Such description

holds if it is known that, in a past time t,the particle was precisely at y ("Past condi-
tioning" through a narrow slit, for instance). In consequence, its dispersion (variance)
is zero at time 7 = t. The eigenvalue equation for Ct shows that C0-1 = Ji, where the
Jacobi operator Jt is defined by

(11) jt = + V2V(-,())) €•(T) = ,'.(T) t < r <An

with (,n(t) = 0 and F'(u)¢.(u) - F(u)[nt(u) = 0. It follows, in particular.that F and F;
are linearly independent solutions of the Jacobi equation (10),with unit Wronskian.If
it is known that the particle is in a sharp position at a future time t, the correlation
becomes { F'(v)F.(r) ,s < r < v < t

T Yt(r)F.(v) s < V < r < t

with a nonzero solution F. of Eq.(10) and Ft another,linearly indepndent one,built

in terms of F. If nothing sharp is known about the particle on [su] ,the Gaussian
Bernstein Jacobi is characterized by the classical pair (F, F. ).Its mean value m( r) and
covariance c(-), in one dinmension,are [61

fm(r)= w-'(F(r)b. + F.(r)c)
(12) c(r)= w-'F(r)F.(r)

where 6,6. axe constant and uw is the Wronskian of F and F.. Notice that the effect
of conditioning,in this frameworkgives some weight to Eddington's remark. One shows
that F and F. are time reversed of each other,so that Eq(12) displays the time sVm-
metry of the method [61.The expansion (7) is a rigorous version of Feynman's "Fourier
decomposition of quantum paths".Actuallyhe uses only a smooth (formal) cutoff ap-
proximation [3j

Z.(Tr) = E5 ,,z'(7r) + o,(7)
n~i

The limv.• is highly nontrivial in the traditional approaches [7-. Bernstein diffusions
are associated in a one-to-one way with regular solutions 4' of the Schr6dinger equa-
tion (1),so that the correspondance (after analytical continuation r -- -it of the time
parameter) between time ordered n-points functions

(0jO(rl)Q(r,2) .... OQ( r),;,1)2

where Q(r) is the position observable at time r , in the quantumn Hilbert space,and the
Schwinger functions

E[_.(tl)*~2) ..... *(0) .tl < t.2 < ... < tn

holds for any regular state tv, not only for the ground state. All the measures "comn-
ing from quantum mechanics" by other routes than ours are included in the present
family.Therefore,the research program founded on Schrddinger's idea p,:ovidesindeed.
an alternative Euclidean interpretation of Feynman's strategy,promising both from the
technical point of view and the interpretative one
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QUASICLASSICAL APP'40XIMATION

IN BARGMANN REPRESENTATION OF LIE GROUPS

I. M. Pavlichenkov

1. V. Kurchator Institute of Atomic Energy. Moscow. 121182, Russia

Recently Voros [1] and Kurchan and al. [21 have used thei Bargmai represetutatiuon for a quasic la.sical
quantization. I would like to review my works on this subject [3-71. which did mostly in the seventies

concerning the backbending phenotnenon and tlie phia.e transition in nucl,,i

1.Bargmann representation of the Sl'(2) group

The complex variable C plays an important rol, in the Bargiaiinii repr,,eitatioi of ill Li,. group- [,

It is determined by the stereographic projection of a •phere point with poiar angle, d and o on the plane

passing through the south pole:

ixl+=ill cot 1
2

Rotations in the three-dimnstisional space eorrespoild to a traiisfori ation

-A. --

where the uninodular matrix

(u .-3" *) (3j

is determined by the Euler angles.

The Barginann representation of the S,'(2) group uses as a basis honiog'ineotis polynomials f of the 2j

degree in two complex variables ýl and C2- The linear transfourmation T(u) on th, spact, of thes, polynomials

has the form

F(u)fl,ý2) = f~lu i - '2. ,I + o0). (2)

2. One-dimensional realization of the SU(2) group

Let us make the change of variables ' = C1/.11. r Q.• he Thot lie pol..vlinials f will bl iuall]igi|ouil.

determined by the fuic-tiotis

So. it is possible to construct the .S'( (2) group r.-preseiitatitoni in the ,a' of thiull p,.lynual, t5) fromi oiln.

comrplex variable [9]. 'The. result of operating with I (u) on :kR) is

T(n);(() = (."C + ,)'W,; (~I )(6)

+ )',
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Using the last equation and the parameterization of the u matrix by the Euler angles, we can find the angular
momentum operators

jh = jX+Il- )I- , j d jy= (-ij(+ ) .j( = )d+ . (7)

The expression for the scalar product in space of the functions (5) is

(~i2) fv)*) (2j + 1)d 2( (8)
1+1C 12)2j+2

The normalized eigenfunctions of the j, operator with the eigenvalue m has the form

= [(2j)!/(j + m)!(j - m)!])2 CJ+l+-. (9)

The probability of a given orientation of the vector j in the state (9) can be obtained from eqs- (8) and (9)

(2j + 1)! 1 ) 2j-211+1 _ 2+2m

du = (sin- (cos-1) dtdo. (10)
2ir(j + m)!(j - m)! ( 2 2

Thus. the state (9) is described by a wave packet with maximum probability at do = arccos[m/(j + 1/2))

and width At9 = (2j + 1)-1/2. In the classical limit it corresponds to a precession of the j vector around the

z axis.

The one-dimensional realization of the SU(2) group gives us another representation of the angular

momentum operators. [n this representation the orientation of the j vector is determined by the angles

. s and 0. On the contrary, the polar angles 0 and p define the orientation of a rotor in the well known

representation with spherical harmonics [10]. Relationship between thesei representations for j integer is

realized by the angular momentum coherent state function satisfying the equation

where the orientation of the unit vector n is determined by the angles 0 and ;. One can obtain

4 (0, ; 12) 2jif + "iP (0d 22. (12)

3. Quasiclassical approximation

The Bargmann representation of the SU(2) group has made it possible to separate the variables and

reduce the dynamical problem to the Schr6dinger equation in one complex variable. There are iiiany problems

in nuclear, atomic and molecular physics, which are described by the SU(2) invariant Hamiltonians. As a

rule these Hamiltonians have a large parameter equal to the angular momentum quantum number j. So. we

may use the quasiclassical approximation, which differs yet from the conventional \VKB method on the real
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axis. But this difference is not of principle because the Zwaan procedure [12] is used in both casee. Below

we will discuss some of physical problems.

1. One-particle motion in rotating nuclei [/]. In heavy nuclei, particles in high-j orbits play a crucial

role in states with large spin. These states are described as usually in the cranking model [13) in which effects

of the nuclear rotation on single-particle motion are considered by the mean Coriolis field. The Coriolis force

is proportional to the single-particle angular momentum j. So, the nucleons in the high-i orbits near the

Fermi surface interact the most strongly with the nuclear rotation. The nuclear spin-orbit interaction leads

to a unique-parity high-j orbit in each major shell. Therefore j is a approximately good quantum .-umber

for such orbits, since the admixture of states with other values of j is small.

For the isolated j-level, the Schr6dinger equation has the following form

[Ej + q(3j, -j) -,,j,4 I , = E' , (13)

where ei is the j-level energy in the spherical potential. q determines the splitting of the subshell levels

due to the quadrupole deformation and w is the rotational frequency. lo solve this equation, we use the

angular momentum operators (7), introduce the new function p(() = (Jv(<), and make the change of the

variable ( ý exp(2iz). The last operation represents the conformal mapping of the c plane onto the strip

0 < Rez < r. Eq. (13) reduces to the Ince equation [14]

,"() - ý sin(2z)j'(z) + (6 + 2j cos2ý),(:) = . (14)

where 2,= a/3q, c = 4[E- c + qj(j- - 1)1/3q. The substitution io(z) = u[z) exp[-4 cos(2z)/4) transforms

the last equation to the standard form

u"O:)+g(z)u(Z) =0, g(:) =c+(2j+ l)•eos2z-Qsin(2:)/4. (15)

which is used to obtain quasiclassical solution for j > 1.

Two iknearly independent solutions of eq. (15) in the quasiclassical approximation are

u1,2 (P) = [g(z)]-' 1
exp[±6p(Z)], Op(:) = if ,/gtdt. (16)

where the coordinates of the turning points P are obtained from the equation g( :p) = 0. The symmetry

of the wave function allows us to restrict ourselves to determining the solution in the strip 0 < Re: <_ r/2.

In this strip there exist no more than four turning points, which lie either on the real axis or on the line

z = r/2. The analytical continuation of the quasiclassical solutions (16) by the well known rules (see for

example the book by Heading [12]) allows us to find the quantization conditions.

;. Quasi-particle e-citations tn rotating nucle: [4]. The conception of an isolated subshell can use in the

more realistic model with pairing nucleon-nucleon interaction. This model was considered by the author for
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a description of the backbending phenomenon. In the Hartree-Fock-Bogoly ubov approximation for a high-j

subshell, the quasiparticle states are described by the equations for the amplitudes u and v

[61 - EF + q(3j,2 - j 2) - j.j.,Ju - At = Eu.
(17)

[6-i- -eF +q(
3 j' -j 2) + ýjelu+ A = -Eu.

where A is the pair field. cfj is the Fermi energy and E is the quasiparticle energy. The one-dimiensional

realization of the SU(2) group mtakes it possible to reduce eqs. (17) to a systemt of ordinary differential

equations in the complex variable z= x + iy. for j > 1. the quantization conditions for E can be obtained

from the quasiclassical solution of the eqs. (17) on the real axis if we use their symmetry The system (17)

on the real axis can be treated by the famous S~tuekelherg method [1-51.

3. Lipkiv. M~kiGlick model [7j. This mtodel represents a system ofX. interacting ferinijons, occupying

the two N-fold degenerate levels separated by the energy E [16]. Its inany-body Hamiltonian can be rewritten

in terms of the angular momentum operators

H = cj + vurj>- jY). 1

where V is the strength of a particle interaction. We can use the quasiclassical approximation as far as

j = N/2 >~ 1. The problem is simplified if only the eigenvalue spectrum of the system is to be determined.

Then it is sufficient to find the quasiclassical solution on the real axis. The energy levels are determined

from the quantization conditions, which can be obtaitned by continuimig even and odd quasiclassical solutions

along the positive part of the real axis. Parity conservation of the sciution under continuation is equivalent

to a boundary condition. Therefore, the problem is reduced to the stanmdard WKB niethiod.

4. Quantiztialon of anm asymmetric top [5], As ant example of a more comiplicated Lie group. we consider

the quantum problem ofan asymimetric top. The corresponding SU(2) . SU(2) group cotitaitns six operator,

of atigular mometntumn projections on the axes of mnoving and lal-rator% franiies and operator, Dl,,,. which

connect physical variables mit two frames. These operators have hommogeneoiis polynonials in four complex

variables as a basis in mthe Bargmann represent ationi. It caii lie shown [-)I that sarmables in the Sclurodiitger

equation are separated and the problem is reduced to the Ileuic equation '17]

d~t-+ I 2j -1 2i -l1] dt. 2 
+ j(

2
1~ - )t~ L9

dl~t2 t 2,)I 1) j(1 ")] (l 2t(t _ Ii(t _ cm 19

where (2 V/1 I+(2 - S)
2

1, it = ( V'I Y + 4)
4

. a = [2ýr - (2(` + I)iJ1V/-/2, =(,43 - ý42)/(42 - .41).

A, < -A2 < .43 are the rotational constants, and the eigetivalue -Is cotlummeteil withI the system energy E by

the equation

£ -A + .4')ji + 1) + - I (A, 115(21
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The Schrodinger equation for a top can be written in a more symmetrical form if we use a conformal mapping

of the plane ( onto the strip 0 < Rez < 21r. We obtain

(ý2 +sin2 Z)~ d' )sin(2:)L~ +[e + j(j-l1) cos 2z[; =0. (1

On the real axis, eq. (21) coincides with the Schrodinger equation of a top in action-angle variables [18. 19].
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1. Introduction. To motivate the kind of problem we are treating. consider the heat
kernel expansion well known to researchers in general relativity, gauge theorie-,, and

differential geometry. Let A = gPq(.r)Vpvq be the Laplace-Beltrami operator of a

Riemannian manifold (with Riemann curvature tensor R'bd(.r)): let I(t.x.y be the
integral kernel of the operator ft-N (which solves the initial value problem for rt,/Ot =
A0'). Then the diagonal (coincidence) value of K has an asymptotic expand-ion at
small t,

K(t..r..r) - (4-,, t)-d12 a, n(x)tn

n=O

(d = dimension). The first two coefficients are well known:

1 1 1_ Rp 1 + •q.
a, = I R, a2 = I-\R + IR2 - I RpqRpq + - pq ....

6 30 72 T180 180_

(Recall that the Ricci tensor is Rab • RPapb and the curvature s.alar is R = Rqq.) The
third term is also known [e.g.. 61: it is a linear combination of 17 terms, of which R'.

RPq.; rRp,,. RPq'8Rp,:•,, and A'R are typical. It is clear that woUilg to higher ortlers

is giving rise to a combinatorial explosion.
Ma: hematicians and physicists have proposed a va iety of algorithms for calculat ii

a. [e.g.. 1. 2. 4. 6-7. 12. 13. 15. 17). Advances in computer hardware and ,oftware art,

making high-order calculations increasingly practical. (MathTensor, the Mathemnatica
tensor analysis program by Parker aic' Christensen [14]. has been largely motivated by

precisely this problem.) However. all methods eventually run into the same difficulty:
combining a large number of similar terms into some comprehensible normal form.
The symmetries of the Riemann tensor make this problem nontrivial, For exanmple.

RPq*rRpq, is not linearly independent of RPq•Rpq,,,. but this fact is not immediately
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obvious from consideration of the index svnlmetries of each factor separately. A differeint
kind of example is provided by RP iRq nR' sr• --- the trace of the fourth power of the

Ricci tensor, regarded as a matrix. By a well known theorem of matrix theory, it i-
expressible as a polynomial in the lower-degree traces if d < 4.

Recognizing all such relationships. general and dimension-depenident, is a problem

in group representation theory. The groups involved are S, (the permnutationi, of a
tensor's indices), GL(d). and O(d). The methods required are known to phy1 icist.
using group theory in atomic and nuclear iphysics le.g.. 18}. The lore" is that ass-ociate-d

with Young diagrams: indeed, the Young diagram representing the symmetries of Rb,
is the one with 4 blocks arranged in a square.

2. The basis problemn for Riemnann polynomnials. Let uts make the problem nmore

precise with some formal definitions:
A Riemann monomial is an expression formed by tensor products and contraction,

from the tRiemann tensor R and its covariant derivatives. A Riernann poly'nomial is,

a linear combination of these. (Actually. because of the rule relating commutation of
covariant derivatives to R. we should work with coqet modulo term,,s of lower order and
higher degree. )

Let RIq be the vector space of Riemran polynomials of rank r, (numnl)er of free
tensor indices), degree q (number of factors R), and order , (number of derivatiwe, of
g = number of covariant derivatives plus twice q). Note that the heat kernel coefficieit
an belongs to (D" 0.. We can further subdivide according to how the covariant
derivatives are distributed among the factors: for example. Rf, = 0 * where
RPqrsRpr;qs belongs to the first of these sets and Rpq .Rpr:q to the second.

We can now state three increasingly ambitious versions of our problem.: For Rr 5 .

(1) Find its dimension - the number of elements in a basin.

(2) Construct such a basis - list its elements. We want to choose the hbt ba-is it
should be -'natural" or --simplest" or ....

(3) Provide a normal form algorithm -- i.e.. tell how to expre.s an arbitrary element
in terms of the basis.

In view of the nonuniqueness of the basis, one might add a fourth objective:

(4) Provide formulas or computer programs to convert from one basis to another.

3. Tools. The concepts employed include irreducible repre,4entatbon, outt r prodiit.
plethysm. branching rale.*, modification rsle, [3. S. 9 11. 16. 1S]. (Since there is no
space here for a course in group representation theory, we can only cite the jargon.) A
major tool is the computer program SCHUR written by WNybourne and his studentts ý19'.

4. Results so far [5]. On objective (1): SCHUR easily provides us with the number of
scalars through order 12. For example. in order 6 one gets the table
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class 2 3 4 5 6 total

•o, 1 1
1 2 1 4

120) 1 2 1 4

0] 11 1 2 1 4

"1°,3 1 2 3 1 1 8

Total 4 6 5 1 1 17

where the column heading is the minimal dimension in which the object is independent
of simpler ones. We find 92 scalars in order 8 (cf. [1]), 668 in order 10. and 6721 in
order 12. (Since order is related to dimension in applications of a,,, these last are
potentially relevant to Kaluza-Klein and string theories.)

On objective (2): We have lists of all the scalars through order 8 and all the higher
rank tensors through order 6. For example, the table for X'.2 reads

tensor representation dimension

RabRcd;. [51+214 1]+2[3 21+[3 121+[2211 30

R;aRbcde [32+[2+21] 10

RRabbc:, [3 21 5

RP abRped [4 11+2[32]+2[3 121+212211+[2 1'] 40

R~b,?pede [4 11+[3 21+[3 121+[2211 20

R'aRpbcd; [4 1]+2[3 2]+[3 121+[2211 25

RP bRqce# [4 11+[321+[3121+12211 20

RP,,9bRp,,,d; [51+[411+21321+[3121+[221+[21'] 30

The dimension stated is the number of independent index permutations, and the de-
composition of the corresponding S 5 and O(d) representation into irreducibles is given.

Objectives (3) and (4) are implicit in the foregoing results, but not yet realized in
practice. Their proper embodiment is in computer software, not a published document.

The methods shown here can be applied to problems involving other tensors in
addition to R.
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1. Introduction : What is a quantum frame ?

Frames are familiar objects, from the early perception of the world by children to
space-time reference frames used in learning classical physics. In the latter case. a
frame is siniply a basis it,, i = i ..... 4} of R . orthogonal or not. I he definitiun of
the frame in(ludes the law of transformation of the vectors ci under the appropriate
relativity group, such as the Galilei or the Poincar6 group. In quantum physics.
the same role is played by an orthonormal basis { ',} in a Hilbert space R. such
as the familiar L(R 3 ) over nonrelativistic configuration space or the L' space over
mass shell corresponding to the Wigner representation of the Poincar6 group. Every
such basis {..,,} may be -associated to some physical observable, represented by a
self-adjoint operator A with discrete spectrum 1(,1}:

a= = .

However. whereas every vector in H" may be expanded in the basis t,} not every
observable way have a diagonal representation

B= 6b,P,. (2)

only those that commute (strongly) with A. This limitation may be overcome if one
uses the generalized notion of frame introduced in a series of papers with S.T.Ali
[1-3]. Given a measure space {X. v} of physical significance, a frame is defined as
a triplet {7-, F. A}I. where R is a Hilbert space and F: X --+ 8(")+ a measurable
function with values in the positive rank n operators on 7-X. such that the integral

J F(.r) dv(x) = A(3)

converges weakly to a bounded positive operator .4 on X, with bounded inverse. In
such a frame, the state t e 7"t may he 'resolved" through the relation:

At,' = F(x)4 d(I(.r). (4)

and an observable B reads

B J b(.r)F(x)dv(.r), (5)
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where the function b(.) is the symbol of B. Conversely. the function b is deter-
mined from experiment (necessarily in a sampled fashion) and the operator B is
reconstructed through Eq.(5).

The usual process of 'quantization' is in fact a restricted version of this corre-
spondence : the space {X. v} has a classical, macroscopic meaning (for instance.
a continuous phase space) and Eq.(5) associates to the function b the operator B
quantized according to the chosen frame. Thus a frame is a quantization over X.
an(d our definition generalizes the usual quantization algorithm.

An interesting situation arises when the system has a symmetry group G (rela-
tivity group : Galilei. Poincari .... ) and the phase space X is taken as a coadjoint
orbit of G. According to Kirillov's theory. the latter corresponds to a unitary rep-
resentation U of G in a Hilbert space R [141. If U is square integrable over X (see
below), the theory developed in [1-3] yields an overcomplete family of coherent states
(C'S) based on X. which constitutes a frame as described above (possibly in a gen-
eralized sense. if .-A` is unbounded). Then the representation space 7-H is mapped
unitarilv onto a reproducing kernel Hilbert space, which for n = 1 is simply a closed
subspace of L 2(X. v). This is the essence of the method of CS quantization [5]: for
more details we refer to the contribution of Ali in these proceedings or to [6].

In the sequel we will review the theory of CS over homogeneous spaces developed
in [1-3] and construct several classes of concrete quantum frames for the most rele-
-ant relativity groups. the Galilei and the Poincar6 groups, both taken for simplicity

in one space and one time dimensions.

2. The standard construction of coherent states

Let G be a locally compact group. with left Haar measure dg. and U a strongly

continuous. irreducible. unitary representation of G into a Hilbert space X. Assume
U is square integrablf. i.e. there exists a vector r E R such that

C(?.o)= f] I(L'(g)qI°o) 2 dg < oc.Vo E (6)

(equivalently. U belongs to the discrete series). Choose a fixed vector r that satisfies
the admissibility condition (6) and normalize it by c(rq. ij) = 1. Then the orbit of
q/ under U, naiIeyG = {1 = U(g)q,.g E GI, is an overcomplete family of vectors.
called coherent states associated to the representation U. In addition, the family 6
determines a resolution of the identity

JG I?)g)(i/gI d=1.(7)

More precisely, the map 11', : o 4 (i,.Io) is an isometry from R onto a closed
subspace of L2 (G, dg), whicli is characterized by the reproducing kernel K(g.g') =
0','1 %').-

Let H, denote the subgroup of G that leaves il invariant up to
a phase : U(h)q = expio(b),l. Then the integrand in (6) does not depend oil

g, but only on the coset gH,. Let v be an invariant measure on the coset space
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X = (;/H,. Then Perelomov I7) has shown that the whole construction of CS may
be done undor the weaker admissibility condition

I (Lt (g),qIo)l2 dv,(.r) < x VO E R (x-_ gH,), (8)

the difference being that the CS (rays) i1, are now indexed by points x. E X. In
particular. the resolution of the identitv (7) reads now

J, I'7)('7l dv(.r) = 1. (9)

This formalim applies to a large number of interesting cases: Weyl-Heisenberg
group (canonical CS), 'aor + b" group (wavelets). compact groups. discrete series
representaticns of noncompact groups.

However the method fails for the Galilei or the P-incar6 group. and other groups
of similar structure. Consider for simplicity the 1 + I dimensional Poincar6 group
P+ (1. 1). First, the familiar Wigner representation I-, is not square integrable
(P(!. 1) has no discrete series !). Next. the quotient F = Pt +(1. 1)IT. where T is the
subgroup of trime translations. may be interpreted as phase space (it is the coadjoint
orbit corresponding to ui). with coordinates (q. p) and the unique invariant measure
dq dp. Since T is not the stability subgroup of any vector, Perelomov's method indeed
does not apply. However it is possible to find a sacion or : F -* PT (I.1) and a
vector r, such that:

J I(Uw(a(q.p))OI o)j2 dqdp < D. VO E R. (10)

For such an adnýissible vector ij. the family 6, = f71, = Utv(o(q. p))IJ. (q. p) E F}
has all the properties of a CS system. However. instead of the resolution of the
identity (9). me gets:

I'•.,)'l., dqdlp = A, !1

where .4 is a positive operator, bounded with bounded invwrse. and .4 5$ AI in gert-
eral. In other words, the set , = {fqi,/} is a frame. The physical interpretation o0
this construction is clear. The state iq is a quantum 'probe', the quantum equivalent
of the analyzing wavelet in signal analysis. The states {lq.p = Uw(a(q~p))r/} are
obtained by displacing the probe t; covariantly along the phase space F, and their
collection 6, is the frame in terms of which we analyze the system, as discussed in
Section 1. The interesting fact is that this pattern extends to the general case.

3. A general theory of coherent states

Let G. U. H be as before, H a closed subgroup of G. X = G/H with an invariant
measure v and 7 : X = G;tH - G a Borel section. Then we say that U is square
inkgrable rood (H. a) for the vector ij E R it the iitegral

id(x) (12)



371

converges weakly to a bounded positive invertible operator A, on X
In that case. the general theory developed in [1-3] yields the following elements

* an overcomplete family of CS based on X : = = U(a(x))?7, x E X}:

e a resolution

IVq(•))( d,(.r) Aa; 13)

* a linear map WlK : -- L2(X.dv). defined by (11-Ko)(x) = (rh(Lo> such
that the range 'HK of I1'K is complete with respect to the scalar product
(PII VK .4a- IVA'T) and WK- is unitary from R- onto -,K: in addition, 'HK has
a reproducing kernel, given by K,(.r. ) = (r7fIlA; IA- (q)) if
q,I,() E D(A• 1).

Furthermore, the relation (13) may be transformed into a genuine resolution of the
identity if one introduces the vectors 0 = T(x)q,,(). called quasi-cohtrent states.,
where T(x) are suitable bounded operators (essentially A- 1/2 acting "fiberwise').

Suppose now this setup describes a quantum system, with symmetry group G.
Then. if .4, has a bounded inverse, the set 6, defines a (continuous) quantum
frame and we have the same physical interpretation as in the Poincar6 case above.
Of coursp, the whole construction depends on the choice of a particular section a.
but this dependence is only apparent. Indeed. if two sections a. a' are admissible
in the sense of (12). then the corresponding CS systems 6 0 . 6, are in one to one
correspondeilce: all those CS systems are physically equivalent.

This general theory covers all the (Perelomov) cases described above, but also
that of the relativity groups (Euclidean. Galilei. Poincar6). that we shall describe in
Sections 5-6 below. It may also be generalized in several directions:

(i) The projector Iq)(il in (12) may be replaced by an operator of rank n.

(ii) The measure v may be only quasi-invariant under the action of G (this allows
to consider some infinite-dimensional groups) [6].

(iii) It may be necessary to replace the section a in (12) by the combined map Co.f.
where f : X -- X is a homeomorphism (reparametrization); this happens, for
instance [S], for massless representations of P'(1, 1)
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4. Reproducing triples, frames

Actually the construction of CS just outlined is a particular case of a much more
general setup, where no reference is made to group theory. Let (A, v) be a measure
space. R a Hilbert space, A a bounded positive invertible operator on 7X. F : X --

(7-)+ a measurable positive operator valued function. Then {7". F, A} is called a
rmprodicinig triple if the following relation holds, in the sense of a weak integral:

J F(x) dv(x) = A. (14)

Under these conditions, a full theory of CS based on X may be derived, along the
same lines as above (see [1-3]).

The most interesting case arises when F(.r) has constant finite rank n, and A`
is also bounded: then {7-L F,,A} is called a frame. as already mentioned in Section
1. Indeed the integrability condition (14) leads to the following inequalities:

rm(A) 11611' < n J (q'lo)l dv(,) _< M(A) 11!02. VO E R, (15)

where {,q} are the eigenvectors of F(x). and nz(A),_1(A) the infimum and the
supremum of the spectrum of 4, respectively. If X is a discrete space, with v
a counting measure, (15) means that {f ti = 1,.-... sx E X } is a frame in
the usual sense of nonorthogonal expansions [9]. Hence we call the general triple
{ 7-,F.A} above a continuous frame. Its width is the positive number w(A) =
[M1(A) - m(A)][M(A) + m(A)]-. If .4 l AI, i.e. u'(A) = 0, the frame is said to be
tight.

In the rest of this paper we shall construct such frames for the two main relativ-
ity groups in 1 + 1 dimensions: these are the rdatitistic quantum frames announced
in Section 1.

5. Galilean quantum frames

We apply the general method of Section 3 to the (extended) Galilei group:

6 G = {g = (w,b, a, v)}, where the parameters denote, respectively: phase, time
translation, space translation, Galilean boost:

* unitary irreducible representation U,, on ' = L 2(R, dk):

(UM,(g)m(,))(k) = exp i(,u + k-b - ka) 4,(k - my): (16)

* phase space: F = 6'10 x T with coordinates (q.p) and invariant measure
dqdp (P = phase transformations, T = time translations).
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Defining the Borel section a., : F -ý G as: a,(q.p) = (O.O.q. -). and the Galilean
CS q = J,,.(o(q.P))q. a straightforward calculation shows that:

jr I q.p) dq dp = 27r 11 q 2. (17)

i.e we get i tight frame for any q E "H'.
Given any other section a : F * G' of the form a(q,p) = 7o(q,p) (O.q.O(p),OO).

define the CS q.P = Um(a(qp))?7 and the corresponding resolution generator

A'= j i)(qi dqdp. (18)

Then the admissibility condition (12) must be strengthened by a support condition
on q: the Galilean probe r E 71 is said to be admissible mod(P x T.a) if it satisfies
the following two conditions:

(i) Vk E R. p.0(k -p) >!m =>, r(p) = 0;

(ii) the integral (18) converges weakly to a bounden positive operator, with
bounded inverse.

Given an admissible 7?. the resolution operator A" turns out to be a multiplication
operator: (.4,)(k) - ,(k)ti(k). where

A"(k) = 2 , (1 - Ip.o(k - p))-'Ir(p)I2 dp. (19)
Jp.O~k-p)<m Ml

6. Einsteinian quantum frames

We turn now to the 1 + 1 dimensional Poincar6 group pT (1.1) = SO(1. 1) AR2 and
follow the sanie steps as before (this case has been treated at length in [1-3]).

+ t( 1 .I) - {g = (a,,\)}. with a G R' and ApC E SOo(1.1), a Lorentz boost

indexed by p = (pop). where Po = V 2 T :

"* Wignei representation UI, on -HE = L 2 (V +.±) where V, = {k = (k, k).

k 2 = k
2 

- ink > 0}:

(IU.C(g)t')(k) = exp ik.a L'(Ak'k): (20)

In this representation. the energy and momentum operators read, respectively:

Poy,(k) = k.,(k). Pi,(k) =,k t.(k) (21)

"* phase space: I' = P2+(1, 1)/T with coordinates (q.p) and invariant measure
dq dp;

"* Galilean section . : F -, P,(+, 1) : oo(q.p) = ((0. q). Ar).
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'We consider now an arbitrary section of the form (affine section)

or(q.p) = oao(q,p) ((q.O(p), 0). I) =_ ((4- 4). A,). (22)

If we parametrize the section a in terms of a momentum-dependent speed 3: 4C =
3 (p)4.p Ipj-', we see that the vector ý is time-like. resp.light-like, space-like, if
131 > 1, resp. 1,31 = 1, 131 < 1.It is useful to introduce also the dual speed 3*(p) =
[IPl - p0

3 (p)].[p0 - 1p13(p)]-'. These two speeds obey several interesting identities.
for instance : (p, - [pJ 3 )(p, - 1p1 3P) = n'.

We define now the Poincar6 CS ij,, = U,4(a(q.p))q and the corresponding
resolution generator

A" f[.p)(qq.pj dqdp. (23)

Then a detailed analysis [1-3] yields the following results:

(i) Any time-like section, i.e. 131 > 1, implies support conditions on the probe q/.

(ii) Any space-like or light-like section. i.e. 1.31 < 1. produces a frame iff the probe
is of finite energy: 17 E D(Po/2 ).

(iii) The width of such a frame is bounded: t.(An) < (IPl),.(Po)-'

(iv) More precisely, for 131 < 1 and q E D(Pi/2). .4" is a positive bounded multi-
plication operator with bounded inverse: (A,'L)(k) = A.'(k)L•(k). where

An (k) 7p a - 2 dp(24)

.AI(k) = V po + p sign(k- p)(.\3-.Vk) PO-24

The spectrum of the operator A" obeys the following universal bounds:

inf infSpec(A') = 27r( - IPl). u supSpec(A. = 27 .(PO + IPI)

Among the class of admissible sections, the following particular cases are remarkable:

(1) Lorentz section. 3 = pIj p-1 # 13" = 0 : An4 = 2,. rn(P`'), I.
thus the frame is tight for any admissible probe q.

(2) Galileaa section. 3 = 0 * 3 = IpI p7- : 4A" = -![(Po)n I - (P), -E]. and

w(Ano) = 1(P),7l.(P0 )-', thus the frame can be made tight Nith a 'polarized'
probe, i.e. (P), = 0.

(3) Self-dual section, 3 = 3* = jlp (Po + m)-: the frame is never tight, for any

rq: for instance, w(A•) = [(Po), - ,IMI 2 E.I(Po), + injqjl 2-'. if (P), = 0.

(4) Light-l;ke sections, 3 = -;3 = ±1: here too the frame is never tight.
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7. Final remarks

A similar analysis can be made for the anti-deSitter group S0O(1.2). with phase

space: SOo(1,2)/SO(2) - D, the unit open disk in C, and a discrete series repre-

sentation [10]. However. the resolution generator .4A so obtained is complicated and

it seems difficult to derive an explicit admissibility condition for a general probe 71.

Yet this case, already treated in [2]. is interesting, both physically and mathe-

matically. because the three relevant groups are related by a process of contraction:

S0o(1.2) • P•'P(1.1) c - . (25)

The same is true for the respective representations that yield CS. and also for a

particular type of 'quantum probe'. namely Gaussian states q. 7 S:

-0 (26)77SU ---- * TIG -- '-6)

qG(k) qE(k) x s() + .- 2 (z E P). (27)

The privileged position of those Gaussian CS is obviously related to the central role

of the harniutic o-cillator in quantum physics (see [10] for a detailed study).

An impoitant question would be to clarify the relationship between the method

of quantization described here, which implies the choice of a particular section, and
the form of the commutation relations between the operators of position and mo-

mentum. In the Poincar6 case, preliminary results [10] indicate that those CR take

their canonical form only for the Galilean section o,. with the position operator in

the Newton-Wigner form. Another interesting point is the extension of the analysis
to non-affine sections.
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VECTOR COHERENT STATE REPRESENTATIONS
AS INDUCED REPRESENTATIONS

D. J. Rowe.
Department of Physics, University of Toronto, Toronto. Ont. M5S 1A7. Canada.

This brief review, b;L~ed on a recent article [1], presents the laiguage of coherent
states [21 as a natural setting for the various constructions of induced group representa
tions [3]. The coherent state language is intuitively natural and highly practical and, as
shown in numerous alpplications, give explicit constructions of the otatrices of induced
representations with a wide variety of potential applications.

1. Vector coherent state representations
Let T be a representation of a group G on a Hilbert space I' with a hermit ian inner

product ('P nIV'). Let { 1,) } be an orthononral basis for a subspace U C 1' Then a state
'P C- I' can be represented as a vector-valued function. ?-' : G -. U with

t'(g) = E, D.(,IT(g) q'). 1)

The set of such vector-valued functions carries a \CS representation F of G in which

[Fi' )t',](g') = n,'(g') = O.(g'Y). 12)

A VCS representation is isolmorphic to a sul)representation of T. It cant also hac
viewed as a representation of G induced front a representation p )f a subgroup H C G.
where p is defined by

p(h)(D = T(h)-t. Vh E H, (D E U. (31

and H is the stability subgroup,

H = {h z GIT(h)(D E U. V (P E U), (4)

of elements of G that leave the subspace U C t invariant. Since the projection operator

is the identity operator on the subspace U C V, the VCS wav(, finctions satisfy

V',(hg) = EZ 'P(I'-(4T(hg)j'P) = p(hEn'(q). h E H, (6)

as required for an induced representation.

2. A more general VCS inducing construction
Let T be a representation of a group G on a complex linear space I'. Let H C G

be compact and have a representation p on a conmplex linear space U. We no longer
require U" to be a subspace of V or V to be a Hilbert space. However, we do require the
restriction of T to H to contain a subrepresenitation equivalent to p in the sense that
there exists an H-intertwining operator 7r :V I' U such that

rroT(h)=p(h)o7r, VhEH. (7)

V
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'ri ri, the s(t of - L f t'i,u ,,

{,icl -- T 0 (.)' 'FE lV} (SE

is P Irrodtuic for a VCS repurtscuatiroz F of G with

{rt~g)c),Ci' ) = •( 'I, u

Thre relationship uk'( y) = p(h Wt. (g), for h E H. suggests an algoridum for construct-
ing VCS reprcscltatiions. We first se(,k a factorizatiomi of G

g = Itk, qEG. h G H', k , K, (101

where H+ is a siibgroup of G' that contains H, aid K is a subset of G'. We also
require that. the repres'entalion i, of H should extend naturally to a representation of

H+ and thie repIreseintation T shiould extend to A C GC. We then choose a suitable set

of K -. U flructi rlou I v and extend them to G by ureai:s of the equation

4t.,kj - p,(h)'.'U'i.. 11 )

A suinable set is one which lextends(1 to a module four a relruec('lttati(hor F with the group

action given by 'q. (9). (Onre way to choo)se a ilitabhl set of flt rctio)'t,. is lby co(nsid'eration

of a representation T of G (e,., the regular repr'selrtatiro) and air H-int,'rtwining

operator Finally. we seek appropriate invariant subsets of wave fuurctions.

3. Holomorphic representations
Suppose G is a 'omiected retluctive Lie, groiip and that H c, G i. i compart a10d

contains a Cartmi strbgrourp A' for C. Dot can think of tin' se'queneie G D H _ K ;rs a

chain of matrix groups of the forrm) , °)} (12))
{ * )) D{ 0 0(12

0 0 *0t 0*

The elements of G have the factorization

g = p(g)z(9J). p(j) E P. s(g) E NV+. 13)

where P D H' and N+ are, respectively. thre parabolic and filliotcnt subgroups of G"2( )) .. + { Y )} (4
P =I( * * N+ (= 1 (•.14)

*** 0 0 1~l

We assume the. existenc(' of a rlpr(esentation T of G on a Hilbert sarc, e anri take

U to be art H-invariant subsparce of vectors in V that are aniihilated i)y the raising
operators of (the Lie algebra of) N+. Then

T(z-)•= (D, Vs E N+,

T(h)=p(h) Vh C H, (15)
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""where p is a unitary representation of H. i,,t 7, be the orthog-.nal V --. projection.
Then each vector ýP C- V is represented by the U-valued VCS wave function

i/, : G - U : g -. ;,(g) ý 7r o T(gy'J - p(p(g))\(z=)), IG)

where N+ - U is the holomorphic function of the matrix elements of z -V+ with

X(z) = 7r oT(z) 17)

and p(p) is defined by P (a )ob ( ) :(18)

note that a, b and c may be interpreted as matrices.

One finds that the holoinoiphir functions defined in thi. way carry a VCS repre-
sentation F and that they transform according to the equation

[F(a)•j(z) = p0 (z)x(z- a), a E G. (19)

where z(g) -ct = -(go) and

p.(=) x =t-oT(z)T(o)k. for kC U. (20)

The subset of holonlorphic vector-vallled functions that span an irreducible VCS
representation can be constructed starting from the z-in(tettendent fuinctions

v,(z)=7, oT(z)(, = (D, 4, C U. (21)

These are highest weight functions in the sense that they are annihilated by all the
raising operators of N+; i.e.,

F(X+),,p = 0, VX+ c n+. {221

where n+ is the Lie algebra of N+. Thus, the carrier space for an in,, lucible holomorphic
VCS representation is the space of vector-valued polynomials of the type

Xý'(Z) = P,(F(X-))ý. (23)

where {P, } is a set of polynomials in the lowering operators. Tlte construction of such

spaces is discussed in ref. [1] and in references quoted therein.

4. Representations of SL(2, R)
We now start with the IwaLsawa decomuposition

o (a b o 0 -siit l (03 • 0 aI siO co8 ]"(24)

of an SL(2,K) matrix. Thus, we can define VCS wave funct; nos ott SO(2) by

(cos 0 - sin o
w(O) =r o T (csi -scosO , q" C (25)
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One finds VCS representations, on subspaces of £2(SO(2)), of the sl:2,R) Lie algebra
with

=r• 0 +i -1 d= eIn2iO ( 2 s± , d (26 )

For different choices of the parameters ( and 2s, eq. (26) gives all the standard
representations of SL(2,R); i.e., the unitary principle series, the discrete series, the sup-
plementary series and the non-unitary tensor representations. A parallel construction
gives the representations of SL(3,R), and hence SU(3), on subspaces of £2 (SO(3)).

5. Semi-direct product groups
Suppose G = N 0, K is a semi-direct product group with product

(n, k)(n', k') = (ntk(n'), kk'), (27)

where tk is an automnorphism of N. We can induce a VCS representation of G from
a representation p of N. However, such a representation is generally reducible even
when p is irreducible. As Mack-y has shown, it is preferable to induce from the larger
subgroup H = N 2., C of G, where C is the subgroup of K

C = {h Cl Klp(th(,?)) = p(7), Vn E N). (28)

Then, if p and a are, respectively, irreps of A' and C, the combination p x a, defined by

p x a(nh) = p(n)a(h), n E N,h E C7 (29)

is an irrep of H. Application of the VCS construction now gives a representation of G
that parallels Mackey's inducing construction [3].

6. Concluding remarks
There is no space to discuss inner products in this review. This topic is important

for a discussion of unitarity and practical applications. It has been developed to a
sophisticated state in terms of K-matrix theory and is treated in ref. [1] and references
quoted therein. We mention only the important feature of K-matrix theory that it gives
inner products for representations which may or may not be unitary and that it often
works when the so-called "resolution of the identity" diverges.
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GEOMETRIC QUANTIZATION
AND COHERENT STATES METHODS

A. ODZIJEWICZ

Institute of Physics, Warsaw University Division in Bialystok,
PL-15-424 Bialystok 41 Lipowa. POLAND.

Abstract:
On the basis of reproducing kernels and complex line bundles theories one
unifies quantum and classical descriptions of physical systems.

This is a short version of the paper in reference [4]. It presents part of the results esta-
blished there. The question we address here is how to recognize a physical microsystem
when starting with elementary experimental dates. The situation encountered when
dealing with experiments on microscopic events could be shortly described in the follo-
wing way: (i) one wants to know the amplitude A of the transition that could be achieved
by the considered system between any two of its states; (ii) states taken into account are
parametrized by a finite-dimensional manifold Af (the case dim M = D is experimen-
tally non-realizable). This manifold describes the geometry of classical measurement
aparatus (classical frame system). In the case considered here it will be interpreted as
a classical phase space of the microsystem. Let us assume for the transition amplitude
A the following natural physical conditions:

ad.(q,q) = 1 for q E Q. (1.1)

-- (q,p) = aý. (pq) for q E Q. and p E Q, (1.2)

N

Z iTiao6j, 0 (q,,qj) _> 0 VN E N,Vq, E 0,, and Vv, E C (1.3)
',J=lI

oa&(qp) = g3(p)o6 ,(p), gj31 : Q3 n Q.• -* U(1) s.t g3,g-,6 = g36- (1.4)

Open sets {IQr }o-E are domains of charts of some fixed atlas of the manifold M.
In a geometrical language the category of physical microsystems is exactly the

category A of complex line bundles L -- Al with a distinguished positive hermitian
kernel:

A = a&(q.p)pr, S.(q) 9. pr2 S,(p) E rF(AJ x Mpr,*fL C pr2L*).

Conditions (1.1-4) axe independant on the choice of frame S, : --- C* and the
bundle L --- M is defined by the cocycle g,,,. The set of morphisms between two
objects (L 1 --+ M 1,_41 ) and (L 2 -- M2 , A2 ) E Ob(A) consists of maps f : M --+ A12

such that f*L 2 = L1 and f*A 2 = A,.
Let us also define the category C whose objects are triples (M.M,A, : M

CP(M)), where M is a complex Hilbert space and K is a map from AM in the complex
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projectif Hilbert space CP(M). Morphisms of this category are given by commutative
diagrams, K, ,

M, •* CP(M1,)

f I] . (1.5)
A 2  -- CP(M42 )

where y; is a complex Hilbert spaces monomorphism, such taht ,;*E1 = E 2 . E is the
universal line bundle over CP(M).

Finally let C be the category of line bundles with distinguished Hermitian metric
H E r,(M, ,* ® L) and a metrical connection V : F'(Q, L) -, '(¶Q, L o T*M), Q c
M.The following theorem states important relations between the above three categories.

Theorem:
(i) There exist natural functors given in the explicit way:

A v C
S / (1.6)

£

(ii) Each object of the category C is obtained as .it(C) and .Fia(A) for some A E Ob(A)
and C E Ob(C)
(iii) Categories A and e of classes of isomorphic objects are isomorphic.
(iv) The three statements above are also valid for symplectic subcategories A,1 , Cp and
Lip •

Proof (See [4]).

The symplectic character of categories A 1 , , C., and C,1 means the non-degeneracy
of the 2-forms AI*dld2 log alO,,K:*,UFs and icurvV, respectively, where A : M -*
. ×l M is diagonal map. WFS is Fubini-study form on CP(M) and d, denotes differential
with respect to the i-th argument of log(a, Q2.

In this way we could define a mechanical microsystem as an object, (Al,,M,C :
M - CP(M)) of the symplectic subcategory C,,. A natural question now arises,
namely how one identifies the system in the standard mechanical framework, when
(L -- M, A) or equivalently (M, M, , : Al --+ CP(M)) are fixed by experimental
or mathematical dates. In other words, how one constructs a Lagrangian for a given
triple (M, M, K: : M --+ CP(M)). Before answering this question, let us introduce
the following physical terminology: (a)(M, VLFS) is the classical phase space of the
system; (b) (CP(M.),wFS) is the quantum phase space of the system; (c) )C(M) is the
set of coherent states of the system; (d) the transition amplitude between two coherent
states K(q) and C(p) is defined by

aid(q,p) = (K.(q) I K.(p)) (1.7)
VW"Wq) I (K.(q)) VK,6(p) I KI(P))

where K, : Q,, --+ M is such that [K.(q)] A:(q) and p E Qs;
(e) for p E L(hMdPL),P(q) -and dELL = A"K'*,FS. where 2n =(e) or pE L(-Mdtz),P~) =(K 0 (q)lhKtq))

dim M, we define

P(P) = Jp(q)p(q)dPL(q) (1.8)

JJ

1

I
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as a mixed state of the system.
Let us fix H : M --+ R+ U {0},k C Rk and a family of diffeomorphisms

og : R+ {0} -- R+ U {0} where i E Ak. By definition p = o H is an equili-
brium state of the system iff

(i) 3 3 E Ak s.t. Tr(P(•go H)P(q)) = ( oH)(q),

(ii) P(pj0 o H) = 1 for some /o E -Ak.

The condition P(po) = 1 means that the system amplitudes satisfy the composition
rule

aaj(q,p) = J y h.,(r)a6 (q,r)az3(r,p)po(r)dpL(r) (1.9)

for some natural phase space measure podpL,(El h.,(r) = 1 and supph, C Q,). Ite-
rating formula (1.9) and taking the number of iterations N to infinity we obtain the
formal path integral expression

a cj(q~p = P) '1,E[,,]jdK1'(_-) expi f Im (K dK) J -yd- 1.0
[IS~ (K dK) dya~jq~p =]IIEVTIJd~(rex tm (-11R-) j -dr (1.10)

for the transition amplitude, where

j V i ' (1 .1 1a )l'IE~, rld•(r lim t_2 fl po(Ar(T.)dpL(y(TA)) 11a

rf K d) lM N-

expi im(J- L / -dr = 1im Ili'aa, 0 a•+(qi,qj+)I (1.11b)

-y is a piecewise curve which extrapolate a discrete process ?(r,) = q,-(r 2 ) =q2
-- pan da ((• is a connection 1-form for KC*VFS. So, the•'(rl)M71n =pan (h -• =(K_-_Fo)

transition amplitude along -) is identified as a parallel transport for K:*VFS.
In (1.10) one integrates over all possible processes joining the states q and p. Howe-

ver, if one restricts this integratives to those processes satisfying H(-7()) = E = const
i.e. processes along which the equilibrium state of the system is preserved, we come
by formal path integration to the following expression for the systems path integration
(See [4] for details),

ae,(q, p, H = E, A0) = e-iE(tf-ti) f/lE[1,,1dK1(7)
SI[dK) dlexp i ,tm ."J~d)d H()(,))] dt, (1.12)

where t = fA )o(r)dr is the time parameter given by the fixing of some classical clock,
i.e. the parametrization A0 . Thus according to Feynman interpretation of path integral
we identify the action of the system

"OK,H[7[] = j [Im([. dK) Jd2 _ H(-(t)) dt. (1.13)
(K K) dr
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In real expremients one always deals with discrete processes, so it is enough to
work with processes consisting of a finite number N of phase space events, restricted
by the resolution of the measuring aparatus. Thus instead of the path integral formula
(1.12) we evaluate well defined integrals on an (N - 1)-th Cartesian product of M.
Therefore, the evaluation of the path integral appears in this context as a purely formal
question. On the other hand, if one restricts oneself to the mathematical context,
the problem of path integration is in our formulation equivalent to the finding of the
map K : M -* CP(M) for a fixed Hamiltonian H and a connection V = K*VFS.
Suggesting that without additional assumptions about the transition amplitude, the
above equivalence is impossible, since the connection one-forms 7  depend only
on the trestriction of d, log a6a to the diagonal A Cl M x M. The limiting case. N - 00,
is however crucial for the correspondence of the quantum description to a classical one.
In fact, it allows one to identify the system in the framework of classical mechanics.

As it follwos from the above theorem objects of mechanical microsystems category
A8 p generate in a canonical way objects of the prequantum bundles category 4,,.

Hence, geometric quantization appears naturally in the theory of mechanical micro-
systems. In paper [4], we show on the basis of our model how Kostant-Souriau and
Berezin quantizations procedures, as well as Ehrenfest theorem are related (see [1) [21).
Moreover, we test this model on different fundamental microsystems such as relativistic
massive particles, Hermitian oscillators and the Kepler problem in papers [3], [4] and
[51.

Finally let us note that the prosposed model shows that such theories as com-
plex geometry, complex analysis, representation theory and reproducing kernel theory
contribute in a natural way in the description of physical microphenomena.
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Massless Poincar6 Coherent States and Wavelets
J.-P. Antoine and U. Moschclla

Institut de Physique Th(orique, Universit6 Catholique de Louvain
B - 1348 Louvain-la-Neuve, Belgium

1. Coherent states: a generalization

Various notions of square integrability of a group representation have been intro-
duced in the literature, leading to the construction of sets of coherent states (see
[1] and references therein). Here we want to build up a set of massless coher-
ent states for the two dimensional Poincar6 group 7P+{(1, 1). This construction is
plagued by additional difficulties with respect to the massive case [1], essentially
because of the bad infrared singularities. For this reason we are forced to general-
ize further the previous definitions of square integrability of a representation. Let
G be a locally compact topological group, H a closed subgroup of G, U a unitary
irreducible representation of G in a Hilbert space 7-X. We call quasi-section of the
principal bundle (G,ir,CG/H,H) a map of which satisfies the foll.k.wing condition:
Uj :G/H -- G, and 7r -af = f where f : G/H --- GIH is a homeomorphism.
It is clear that the quasi-section a1I is the composition a • f of a genuine section
and a homeomorphism of the base manifold. We say that the representation U is
square integrable mod(H, af ) if for some ( E R the following integral converges for
all 0EDC "H, *D dense:

1f = 6) I(U(af(x), I)2 dv(:r). (1)

Notice that this definition allows also the resolution of unbounded operators. In cer-
tain favourable cases the coset space G/1l corresponds to a coadjoint orbit of the
group G, which has the interpretation of a phase space. Thus generalized coherent
states may be indexed by points of a phase space (which is a nice way of recovering
their classical character).

2. Massless representations and coadjoint orbits of P+(1, 1)

As it is well known [2], there does not exist any Poincar6 invariant positive-definite
two-point distribution W solving the equation 14 = 0 and such that suppWf(k) =
C, = {k E R2 : k -'k, = 0, kV > 0}. However, if we relax the positivity condition.
we may find a Poincar6 invariant distribution having the desired support proper-
ties, namely W(ý) = -- log(-ý 2 + ida0). This distribution is not positive-definith
and therefore the Wightman reconstruction theorem gives only a nondegenerate
sesquilinear form on S: (fjg) = f f(x)W(x-y)g(y)dtxd2 y and consequently a rep)-
resentation of P+( 1,1) on a linear space. To obtain a representation on a Hlilb-rt
space, we have to complete S using a Hlilbert majorant topology [3,A]. The explicit
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construction runs as follows [4,5]. Let y E S(R2 ) be such that ý(O) = 1, < X, X >= 0.
Given f E S(R 2 ), define fo(x) = f(x) - f(O)X. Then the desired inner product may
be written as

(f,g) = (fo, go) + (f,x)(X,g) + f(0) (0). (2)

Comi-leting S in this topology one obtains a Krein space [3]

dkI
7-t L2C+, k•)• V X,(3)

where X and V are one dimensional subspaces. Now the representation given by

Wightman's theorem extends to a representation U of PT(1,1) defined on a (lense
subset of R"/. This representation is n-unitary, i.e. (U(a, A)f, U(a, A)g) = (f,g) but,
(U(a,A)f,LU(a,A)g) 54 (f,g). Second, the representation U is neither irreducible
nor completely reducible, but indecomposable. Finally we notice that the Hilbert
subspace L 2 may be decomposed into the following direct sum: L2(C+, L) = 7'H

7-R, 7
RI = L2(R-, L), 7, = L2(R+. -) (left and right Itilbert spaces). We may

obtain two unitary irreducible representations of PT(l,l) 171(,) defined on H1(r) by
quotienting the representation U, that is by considering the matrix elements
(V•, U(aA), 2)nH,), 01,0'2 E 7Hl(,), and associating to the sesquilinear forms so
defined the operators 111(')(a, A). The final result is

(U(a, A)I(,)V(k) = eikaV,(A-1k), V, E H-i(,). (4)

The coadjoint orbits of P{(1,1) are given by the following formula:

Ad'(g)(ý, A•) = (A 5•,,A + (Av•,oraV)MW) (5)

where g = (v, Ap) and o-2 = antidiag(l,l), with A, E L', ,v E M' and (,' )M2
denotes the Minkowski inner product. More explicitly, we can identify the coad-
joint orbits of P+T(1,1) with the families of hyperbolic cylinders (m > 0){° =

±V 'O + m 2}, {Q1 = ±_ •V + m 2 }, the four half-planes {f0 = ±Q, a > 0}, {$) =
±V:1, Vo < 0}, and the degenerate orbits consisting of a single point {,\ = const, • =

0}. The nondegenerate coadjoint orbits may be interpreted as classical phase spaces
corresponding to elementary systems having PT (1,1) as relativity group . As we will

see, they are particularly suited for the construction of systems of coherent states
and each family of coherent states will be indexed by the points of a certain coad-
joint orbit.

3. Massless Coherent States

Let us now pass to the construction of masslesss coherent states. The coadjoint
orbits corresponding to a mass!ess relativistic particle, are the half planes Fr {=\ E
R,ý E M 2 : 0= _,, < 0 (left orbit), F, = {A E R. E M 2 : = > 0}
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(right orbit). Let us concentrate our attention on r -_ P1+(1,1)/L,. A global
parametrization of this orbit is given by (r,p) with r = A, p = Q'. The coadjoint
action reads (7,p) -4 (r',p') = (a,Ak)(T,p) with r' = r + (Akp,0`2a)M2, p' =
(ko + k)p; the invariant measure is dti(r, p) = drdp/p. Correspondingly, we consider
the representation Ur on the Hilbert space ?-( that we have displayed in Eq.(4).
We must choose a quasi-section o, Fr , P+1 and try to construct coherent states
out of it. Notice that the natural quasi-section o,(T,p) = ((O, r),A,) cannot do
the work. The reason is that (U,(a`(T,p))()(k) = ei•k(((po - p)k). Since p > 0,
it follows that 0 < (p0 - p) < 1 and therefore the argument of the function (
cannot be arbitrarily dilated. A well-chosen quasi-section should have the following
form: a,(r,p) = ((0, r),Ap(p)), where p:R+ --+ R is an auxiliary bijective map. An
interesting explicit form for the function p is the following one: p(p) = -L - F. The

2p 2
nice features of this function are due to the following relation: p2(p) + 1 = + P"
Consequently we obtain that

(Ur(1r,,(T,p))()(k) = eiTkC(pk), ( E 74. (6)

l'P ~ (U OP ~(7 M ))Qhr5 12 dj(r, p) I p Ik -K(pk) 12 1(k)l 2
du dp 12 dk 2

10I(k)l (7)u dk

Define the following operator on 7Hr: D(Hr) = { E 7i ; f dkk[¢(k)12 < 0},

(Hr¢)(k) = k ¢(k), € E DY(Hr). (8)

H, is an unbounded self-adjoint operator on D(H,) C R-, and IP((, q) exists if and
only if 0 E D(H;'/ 2). In this case it follows that

fr U,(o,(r,p))()(U,(o,(r,p))(I dp(T,p) = Cc H;', (9)

in the sense of quadratic forms. Thus, the vectors given in Eq.(6) constitute a set
of massless coherent states for every ( E H4, but the operator that is "resolved" in
Eq.(9) is not bounded and, moreover, its inverse is also unbounded. Because of these
facts, this set of coherent states is more general than those considered in [1]. Let
us exploit our freedom in the choice of quasi-sections to get a more appealing set of
massless coherent states and define o,(r,p) = ((0, 1), A_(p)).. With the help of this
quasi-section we get the following set of states:

ik k(Ur(ojrp))()(k) = e ((-), ( E R4. (10)

In this case the integral (I) becomes:

l (• 1) dP dk 1((k) 2 ]0(k)I2  'U1 2 k(k) 12  (11)V !( Po 2 (k l
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Therefore, vectors H , 7"4 are admissible for the quasi-section o,(r,p) if and only if
they satisfy the condition ý C D(H-I/2 ). If this condition is satisfied we obtain that

C () I r LU4(Ur (r,p))()(UITTr( r,( p))(I dj,(r,p) = 1, (12)

i.e. we get a gunuine resolution of the identity ! We call the states defined in
equation (10) right coherent states. In a perfectly identical way we may construct
a corresponding set of left coherent states. We finally obtain a resolution of the
identity in the Krein space (3) :

S= vI)(vl + h)(I + c----)-f Ui(ot(r,p))O)(Uj(az(r,p))] djti(r'p)

+ fr 1f4(rp)),)(Ur(or(r, p))(,I dt, (r.p). (13)C"

with E E 7-Yt, V, E I-4. An interesting feature of the sets of coherent states (10)
is that they are exactly identical to wavelets, i.e. the coherent states of the affine
group. Indeed, we may convince ourselves easily that the previous coherent states
coincide with the wavelets given for instance in [6] making the following identifica-
tions: _ = a, L = -b, ) = ;(w). The admissibility condition D E (H-1)
becomes

r dk d., p2f•d (,,),12<• l
CJ•l(k)i2 = -j(

The invariant measure reads now dp(r,p) = d7dp = D edbP = ---. Define the following oper-

ator : U : Hr4 = L2(R+, A) -, L 2(R+,dk), (Ut,)(k) = z,(k) = (k) Then we obtain
that

,_•u(Lar(rI,p))¢, •)n = j e'•(( )i¢(k)b = e j e(aw)V'(•)d•,',

(15)
which is exactly the wavelet transform for a progressive wavelet 'P (cfr. [6] Sect.
3.1.). This correspondence opens a new range of applications for wavelet-analysis,
namely Quantum Field Theory.

References
[1] J-P.Antoine and J-P.Gazeau, Coherent states: from group representations to

relativistic quantum frames, in these Proceedings
[2] A.S.Wightman, Introduction to some aspects of quantized fields, in Lecture not es.

Carg•se Summer School, 1964 (Gordon and Breach, New York)
[3] J.Bognar, Indefinite Inner Product Spaces (Springer, Berlin, 1974)

[4] G.Morchio and F.Strocchi, Ann.lnst.H. Poincari 33A, 251 (1980);
G.Morchio, D.Pierotti and F.Strocchi, J.Math.Phys. 31, 1467 (1990)

[5] U.Moschella, J.Math.Phys. 31, 2480 (1990)
[6] A.Grossmann, J.Morlet and T.Paul, Ann.lnst.H.Poincar6 45, 293 (1986).



388

Phase space description of electrons
in the one-band approximation

P. Kasperkovitz
nstitut fiir Theoretische Physik. Technische Universitait

Wiedner Hauptstr. 8-10, A-1040 Wien. Austria

Charge transport in semiconductors is usually discussed in terms of the the
Wigner-Weyl (WW) formalism [1] which is adapted to wave mechanical prob-
lems with natural boundary conditions [2]. Recently a similar scheme has been
proposed [3] to include - within an approximation - the hitherto neglected peri-
odic potential of the ions and the resulting transformation properties of the wave
functions. In this contribution the mathematical structure of the new scheme
is presented in a more transparent way ad an alternative phase space form of
the approximation, formally corresponding to the Husimi-Coherent-State (HCS)
formalism [4]. is outlined.

We consider a fixed band of a one-dimensional periodic potential. If periodic
boundary conditions are used the number of Bloch states I p > belonging to this
band is finite. They span the state space of the (simplified) quantum mechanical
problem that is considered in the following. By a finite Fourier transform one
may pass from Bloch to Wannier states I q > which also form an orthonormal
basis.

1q>=EFqpIp>, Fqp q P (1)
PV7

w = exp (2ri/.N) (2)

Here N = 2D + 1 is an odd integer, p, q E {-1 1 ..... I}. and expressions like
pq, 2pq. pq/2, P1 + P2. etc. are considered as integers modulo N.

Every operator A acting in this state space may be defined by its action on
the basis { I q > }. Of special interest are the operators V (momentum transla-
tion), W (position translation). and the Weyl operators U(p, q).

V I q > = ,,-, I q >, W Iq >= Iq +lI> (3)

U(p, q) = ,,-PI/2 Vp Wq (4)

If we combine the pair p. q into a vector i and introduce the (symplectic) product

plq2- qlp2 = 77 x _72 = - 72 x 171 (5)

the multiplication law of the Weyl operators reads as follows.

U(nl) U(%.-) = xn72 " U(nl + n2.-) (6)
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It follows from (2)-(6) that U(-77) = U()-= U(i,)t, and U(rq) U(v1') U(-7))
• AX`7I U(77') , the latter relation showing that the U's are tensor operators of
rank 1.

Equation (6) shows that the operators ,;rU(p. q) form a representation of a
group of order N 3 , or a projective representation of the Abelian group C, x C.v.
This representation is irreducible as has been pointed out by Schwinger [5] who
first introduced the operators (3)-(4); as a consequence every operator A can be
represented as a linear combination of the U's (see [5], [6]. and, for the one-band
approximation, also [7]). The idea of a linear space of operators, a complex
vector space of dimension N 2 in the present case, lies behind all phase space
formulations of quantum mechanical problems. In such a formalism an opera-
tor A is characterized by a set of numbers, either its expansion coefficients with
respect to a complete set of operators ('basis'). or by its 'projection' onto suffi-
ciently many linearly indpendent operators. Here we use the second approach:
starting from a fixed self-adjoint operator Z = Zt we form the .V2 operators

Z(n) = U( )Z U(-71). (7)

Their labels 1r = (p, q) form a two-dimensional grid of N 2 points, symmetrically
arranged around the origin p = q = 0. and called 'phase space' in the following.
To each operator A a function a is assigned by the definition

a(rt) = Trace Z(r 1 )tA = << Z(ti), A >> : (8)

the last expression refers to the definition of a scalar product that makes the
linear space of operators a unitary space. Relation (8) is therefore nothing but
a projection where aA + 3B is mapped onto aa + 3b and At onto a'. If the unit
operator E is to be represented by the constant function 1 the operator Z has
to satisfy

Trace Z = 1. (9)

The phase space function a contains the same information as the operator
A if, and only if, a(rt) = 0 for all 17 implies A = 0. As the Weyl operators form
a complete set of operators and the image of U(r7') is proportional to the 'plane
wave' ,21'x?7 one-to-one correspondence of operators and phase space functions
is guaranteed if none of the proportionality factors

a(,q') = Trace U(7')Z (10)

vanishes. For WW

Z = I (inversion operator: II q > = -q>) (11)

and a(i?) = 1 for all 17. For HCS

Z = I0>< O1, Z(7) = 117 >< 771 (projection operators) (12)
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where the state vectors 1,I > = U(q) 1I6 > are the 'coherent states' gexLfrated
from I6 >, and 16 > is the normalized eigenvector of

H = (2E- W-W-1) +(2E-V-V-1) (13)

that belongs to the lowest eigenvalue. Also in this case o'(r) $ 0 for all "1 so that
the mapping of operators onto functions is bijective both for WW and HCS.

In order to be able to perform all the steps of a conventional quantum
mechanical calculation also in the phase space formalsim under consideration
its mathematical structure has to be elaborated further. Here it is essential
that the operators do not only form a linear space but a star-algebra, where
products - and hence commutators - are defined. Completeness of the operators
Z(i7) implies the existence of a kernel If(lj', 17") such that

E~l = Z (7j" •'') a(71 + 17') b(i7 + ?)") (14)

17',17,,

if c is the function that corresponds to the operator C = AB. Explicit calculation
gives

1
-10',W') -, 7-'X7,-n1"x17,+?7,x17,/2 0'(071 +17.2) (13)

A, ý772(n )U(77012)

Not only are these kernels very similar to those found in the continuous WW
and HCS schemes but it is also possible to find 'local' forms of the multiplica-
tion law (14) where the first term of c(ij) is a(i7)b(i7) and the succeding terms
contain more and more information on the form of the functions a and b in the
neighborhood of 17. The counterpart of Groenewold's fomula [8.2] for the WW
scheme reads

v-i

c(7)= j, [Va(?j)] [ .,b(i1 )] (16)
r~j=0

here the I's are numbers and the D's are difference operators that can be de-
termined recursively. The equivalent of Ruschin's product formula [9,4] in the
HCS scheme is

N-i

c(17) = [ (•Va(i7)] [P',b(i7 )] (17)
n=O

where the D's are 'integral* operators with kernels dn(ir., 1') that look like dis-
crete versions of smoothened distributions 6(')(17 - tY'). In principle, the n-th
eigenfunction of (13) has to be known to obtain d, but simple approximations
exist for n < N.

With the formulas obtained up to now all algebraic calculations (linear com-
binations. products, transition to the adjoint) can be performed entirely within
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the chosen phase space formalism. What is left is a mapping into the complex
numbers that corresponds to the trace ore-ration in the conventional formalism.
However, it is easily derived from the irreducibility of the Weyl operators and
the properties of the operators (11) and (12) that both for WW and HCS

Trace A + Z a('7) (18)
17

Altough the formulas given above are valid for arbitrary odd integers %N > 3
large values of N are more appropiiate for the physical problem under consid-
eration. The limit N I x is best discussed by scaling the original phase space
variables.

17 = (p, q) (k -1) = (2,'rp/Va,2,-rq/Nb) (19)

The multiplication law of the operators U(71) = 0(ý) is then identical in form
with that of the usual Weyl operators except that C appears instead of the
continuous vector (p. q) and the parameter

a = 2,r/.Vab (20)

in the place of h. It is therefore not surprising that in the limit . [ tX. a > 0
formal coincidence with the usual WW and HCS schemes is obtained. If a
aproaches zero (after N t oc) the product is commutative up to terms of order
a and the quantum-Liouville equation approaches the semi-classical transport
equation which is the starting point of [3].
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INVARIANCE OF THE GEOMETRICAL PHASE UNDER
TIME DEPENDENT UNITARY TRANSFORMATIONS*

B. IKENDRlICIK
Center for Particle Theory. The University of Texas at Austin

Austin, Texas 78712 USA

I. Introduction

The effects of time dependlent unitary transformation. oil till geomletric (Berry)
phase have beeni tiscu~.setl by several ailthior, in dlifferenlt contexts. In the adiabatic
treattnerlts." the Berry phase was said to become '-dviaiuiical" under these transfor-
mnations. Br becoming -dynainical- it loses geometrical meaning and could in this wvar
be -remnoved-.' It was then shown that even though the Berry p)hase could become
..dynamnical" it ret ained it,, geometrical meaning and was therefore not -reinovedl 2

.Non-adiabatic treatmnents have been given for specific physical systemns and for peri-
odhic transformnat ions.' We will considler arbi trarv time dependlent unitary transforma-
tions and work in the general non-adiabatic setting. By carefully considering the thime
evolutioni of both paths in an interference experiment,.w will show that the geomnetrical
and dynamical phases are invariant, and that the geometrical phaw. remains enitirely
geometrical.

II. The Interference Experiment

The measurement of a relative phase is accomplished by performing anl interference
extperniment." This experiment mneasures the relative p)hase between two state vectors
which have tndergone different time evolmitiozis. butt rep~resent the samet Initial and finial
physical state. In order to derive tlhe measuredl relat ive phase. we mtust considler the

tine eroltition equations for both paths. We will denote p~ath I as the path which goes,
through the apparat us and pathI 2 as t lie path which goes aroumnd lthe ap~parat us. We1
will assumie that the transit t imnes have baeei set equal so that we c-an ignore the free
space Hamiltonian. The timet evo~lution equ-ations, for b)oth p~athis are

where L ( t )ý is the, state vretor representing the( st ato of p~athi 1. L ( t I) is the state
rector rep)resenting thme st ate of p~athi 2 and I)(f) is the' Hanmiltonmian representing the
applarat us. The H a milto ntia n 1( t ) is chosen so as to prodluce cyclic evolumt ion fo r pathI 1.
By crcbic evolution we nimean that t lii curve in the space of physical states (project ire

* This work relates to Department of Na%-v- Grant N00014-91-J- 16719 issued hr the

Office of Naval Research. The United States Governmnent has a royalty-free license
throughout the world in all copy right able niaterial conitained hierin.
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Hilbert space) is closed. We will denote the physical states of path 1 and 2 by the
projection operators

7,( t) t ,,()< •t~l 72( t) V2 I••t) 1-'2( t~ (3)

We can express the condition for cyclic volution over a time period T as

7r,(T) = ,ri(0). (4)

At the times t = 0 and t = T the states of the two paths are equal

7rl(0) = 7'2(0). -,(T) = -r2(T). (5)

The measured relative phase between the two state vectors (which represent the same

physical state at time T) is given by

ti I(T)) = V ju2(T)) (6)

where a = ol -02 (mod 2 ir). and the phases a, and 02 are the phases accumulated by
the state vectors of path 1 and path 2. From Eq. (2) we see that 02 = 0 which implies
that a = ol. In the usual way we can express the total relative phase o in terms of a
geometrical and dynamical part' (the connection defines this splitting7

.8)

a =0 a = (o(t) o(t)) dt- (L(t)Jh(t)k.,(t))dt (7)

where the vectors Io(t)) are related to the vectors iul(t)) by a phase such that lo(T)) =

10(0)). The geometric phase is

= (O = ( A (8)

where we have introduced the coordinates x of projective Hilbert space (c represents a

closed path in this space) and defined the connection form A as

A - i(o(x)ldIo(x)). (9)

The operator d is the exterior derivative with respect to the coordinates x. The dynam-

ical phase is
= (t,,(t)Jh(t)Jv, (t))dt. (10)

III. Time Dependent Unitary Transformations

We want to consider time dependent unitary transformations acting on Hilbert
space. All the vectors transform according to

lk(t)) = U1tMk,(t))(I
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where U(t) • Ut(t) = 1 for all 1. The transformation U(t) is acting on all the vectors In
Hilbert space. It therefore effects the time evolution equations of both path 1 and path
2 of our interference experiment. Equations ( 1) and (2) become

i1-2 (t)) = h2(t)I1' 2(t)) (12b)
where

hI(t) = U(t)h(t)Ut(t) + iv(t)ut(t) (13a)

h 2 (t) = 0 + it"(t0ut(t). (13b)

Under the transformation U(t) the curves in projective Hilbert space represented by the
projection operators 7r,(t) and 7r2 (t) change according to

(t) I U(t)-I(t)ut(t). i'2 (t) = U(t)r,2(t)Ut(t). (14)

Thus under the transformation U(t) the time evolution of path 1 and path 2 generates
two new curves in projective Hilbert space. The two curves start at the same point at
t = 0 and later meet at some other point at t = T. This can be seen explicitly from Eq.
(14) upon setting t = 0 and t = T and using Eq. (5)

i(0) = -1 2 (O), *(T) = *r2 (T). (15)

Taken together these two curves form a new closed curve in projective Hilbert space
which will be denoted by E

It is straightforward to show that the measured relative phase is invariant

,.",V(T)) = F`JIv 2(T)). (16)

We will now evaluate the measured relative phase using the transformed vectors. We
can express ILI(t)) and It 72 (t)) in terms of vectors denoted by 1o0(t)) and 102(t)) where
101(t)) and 162(t)) are chosen so that they form a closed curve in Hilbert space (analogous
to 10(t))). By performing a few simple steps we obtain the final expression for a under
the transformation U(t)

J = J - i J(o(x)IdU(x)U0(x)Jo(x)) j(•i(t)[U(t)h(t)ut(t)lTl(t)) dt. (17)

The transformed geometrical and dynamical phases are given by

A= j 4- i o(x)IdU(x)Ut(x)Io(x)) (18a)

(t / I,(t)IU(t)h(t )(t(t) L ,(t)) dt. (18b)

By comparing Eq. (18b) with Eq. (10) we see that the transformed dynamical phase
is equal to the original dynamical phase. Since we know that the relative phase o is
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invariant, this obviously implies that the geometrical phase is also invariant

3 = . (19)

Substituting the expressions for 3 and .) into Eq. (19) we find

J A = -A_- i(o(x),dU(x)Ut(x)io(x)). (20)

Equation (20) shows that even though the curve in projective Hilbert space has changed

(c --• ). the i(oldt'Utlo) term compensates for this change keeping the geometric phnse

invariant. We can interpret i(oldUUtlo) as a connection form which i- induced by the

transformation to a -'rotating- frame of reference. This is not i Yduge transformation.

the curvature two-form F = dA also changes. From Eqs. (12) and (13) we see that

the operator UhUt is present only in the time c •olution equation for path 1 just like

the operator h in Eq. (1). This operator represents the apparatus and gives rise to the

dynamical phase. Note that the i term is common to both time evolution equations

which allows it to be givil a geometrical interpretation. From a mathematical point

of view the choice of a connection is in general arbitrary. It is the physical quantities

which must be invariant. The connection is chosen to divide the total phase n into

the physically observed geometrical and dynamical parts. A different choice for the

connection must be made in order to calculate the observed geometrical phase under a

time dependent unitary transformation.
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Abstract

Different expressions for the calculation of the quantum geometrical phase
are reviewed and their limitations are discussed. The comparison between the
Berry Phase [I1 and the Aharonov-Anandan phase (2) is made. The expres-
sions are illustrated for a circuit surrounding a triple degeneracy.

1 Introduction

In this paper we endeavour to show different ways of calculating the quantum geo-
metrical phase. We give three expressions for tihe calculation of the Berry Phase of
an adiabatic process. We discuss advantages and limitations of different expressions.
Then we define the Aharonov-Anandan phase and describe the geometry of the fibre
bundle based on the projective Hilbert space. Quantum states evolve along horizon-
tal lifts in this bundle. We show that the phase, acquired during this evolution, in
fact coincides with the phase introduced by Berry. The formulas are then applied
to the calculation of the geometrical phase corresponding to the evolution of the
eigenvector of a general threefold degenerate state [3].

2 The Geometrical Phase

Suppose that the Hamiltonian H(X) of a quantum system depends on an arbitrary
parameter X E Q. Then, in the adiabatic approximation the time evolution of a
given state of this system 10,(X)) E N along a smooth curve X(t) E Q, t E (O,T] is
given by

10(t)) -n(X(t)))--e(
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where jn(X(t))) is a nondegenerate eigenstate of the stationary Schr6dinger equation
HIn) = E.In), at X(t), corresponding to the eigenvalue E,(X(t)) and D(t) =
-h-' f E•(X(t')) dt' is the usual dynamic factor

It turns out that only those states in(X)) which obey the parallel transport law

Jw.(,n(.) ! dn(X)) = O. X E 0 (2)

are in accordance with the Schr6dinger equation [4]. Suppose that the system en-
circles a closed loop C in the space Q, i.e. X(T) = X(O). Then eqs (1,2) imply
that

('lVinailWinitiai) = fxp(-i(D(T) + /3ý(C))) (3)

the final state differs from the initial one by the phase being the sum of dynamic
D(T) and geometrical 3n(C) factors. The latter is the Berry phase, which according
to eqs (1,3) is equal to

3n(C) = -1h ln(nyinai I ninitiai). (4)

It is worth noticing that the phase depends only on the path C in 0, no matter what
were dynamic details of the evolution. The direct calculation of the phase 3n(C)
from the definition (4) is in practice difficult because vectors In(X)) must be found
in a gauge in which they obey the parallel transport law (2).

It is sometimes easier to bring the state in) to a gauge In'(X)) = In(X)) e-(X)
in which it is continuous along C, including the point closing the loop X(O) = X(T).
Then the phase

ý3n(C) = -I- J1(n' I dna) (5)

is given as a line integral, along C, of the 1-form -Ira(n' I dn').
In the expressions (4) and (5) specific gauge transformations were seen to be

required what might make it appear that the phase itself is gauge dependent. This
is however not the case. Using the Stokes' theorem one can convert (5) into a gauge
independent form

,3,(C) = -lmj(dn I A I dn), (6)

where S must be an orientable surface bounded by the circuit C. This formula is
less general than (4) also because the 2-form (dn I A I dn) does not always exists.

A more general way of defining the geometrical phase is due to Aharonov and
Anandan (A-A). They considered cyclic evolutions, i.e. such that the initial and
final states coincide, in the projectire Hilbert space P(h). In Berry's approach it
is the adiabatic approximation (1) that allows a given physical system to remain,
during evolution, at the same state In) up to a phase. Here it is assured by the
definition of the cyclic evolution.

The A-A phase is defined as [2]

a(C) = 0 +i .(i I,),
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where o is the total phase ('f-01ý-'i, = exp(-io) acquired along a closed loop
C C P(R"-) by the state vector Iii,). We would like to stress that if in Berry's approach
one omits the adiabatic approximation then the Berry phase becomes equal to the
A-A phase. In fact, the second term in RHS of eq (7) is equal to minus the dynamic
phase i Jc.(i, I d4-) =- fo ((t') I H I ,(t'))dt = -D(T) and hence, comparing (7)
with (3) we have

o,.(C) = 3.(('). (8)

3 Geometrical Description

Formulation of the geometric phase in terms of the fibre bundle formalism provides
us with a better insight into the whole concept [5].

The projective Hilbert space P(R) is the base space of a fibre bundle E = H- -
{0} with the structure group U(1). The variation of a given state [L,) in this bundle
has its horizontal and vertical parts

d L,) = dHJ V) + driu-'). (9)

The horizontal variation dHIL,) adds to the path in the projective space and is
orthogonal to the fibre

(4' I dH I =0. (10)

The vertical variation driy,) composes the phase acquired by the vector during evo-
lution. It is directed along the fibre

dviL') = .'In). (11)

where In) is a smooth field of normalized representantives of fibres , i.e. li) = e'In)
and w•1 is a differential 1-form - the connection form on P(?-i). Combining (9), (10)
and (11) one gets its explicit form

,L2 = C" (n I dn) + d d'. (12)

The horizontal lift of a closed curve C in P(h) is the trajectory along which 2 = 0
i.e. evolving only in the horizontal direction. Such a trajectory is. in general, not
closed in E. The resulting fibre element -,,(C) that relates the initial and final states
of this trajectory is the holonomy given from (12) by

-Yý(C) = - ii (n I dn). (13)

This holonomy is a purely geometrical object depending only on the path in the
space of physical states and not on the Hamiltonian. Comparing (13) with (5) and
(8) we recognize that the Berry phase as well as the A-A phase are both equal to the
holonomy of the bundle E over the projective Hilbert space P(R) corresponding to
the circuit C.
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4 The Geometrical Phase for a SU(3) state
The general normalized quantum state having SU(3) symmetry is given by

',) - e ) = (sin0cos + sin0sin6&•'( -Y)lr7) + cosOIC)) (14)
where 1•, q) and I() form an arbitrary orthonormal. basis, a, ý, 0 and 0 parameter-
izes the general element In) of the CP 2 projective Hilbert space and et - represents

the element of the structure group. The phase parameters (a, 3) belong to the torus
5 $1 -• [0, 27r)

2 whereas (0, 6) are restricted to the positive octant S2/8 n- [0, 7r/2]2
of the sphere [3].

The connection (12) in this parameterization of CP 2 is wl = ierq[(cos20)dy +
sin 2 0(sin 2 € d;3 + cos 2 6 do)], which yields for the geometrical phase

ic(O)= -ctan20(sin2 0 d + cos2 0 do). (15)

This result was already obtained [6] for a different parameterization of the CP 2

space. In the particular case of 0 = r/2 the phase (15) coincides with the SU(2)
case considered by Berry [1].

Summary In this paper we have shown different ways of calculating the geometri-
cal phase. We investigated the Berry phase obtained in the adiabatic approximation.
We have given three expressions for that phase discussing differences among them.
Then we have introduced the A-A phase in the framework of the geometry of the
fibre bundle and shown that the adiabatic approximation is not necessary in this
context. Finally we have calculated the geometrical phase for the parameter space
CP 2 of a threefold degenerate state.
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1 Introduction

Recently a lot of work has been done for nonabelean generalizations of Berry's phase
[1]. In particular, Uhlmann proposed a connection governing parallel transport along
density matrices [2). In the generic case of nondegenerate not normalized density
matrices it leads to an u(n)-valued connection form w on the principal bundle

GI(n,C) , Gl(n,C)/U(n) (1)

defined implicitly by the equation

g*gw+wg*g=g*dg-dg*g; g E GL(n,C). (2)

By the polar decomposition g = p2u, the space GI(n,C)/U(n) can be identified
with the space of positive matrices. The horizontal subspaces of this connection
are just the orthogonal complements of the vertical subspaces with respect to the
induced Riemannian metric h, h(X, Y) = Re Tr XY*, on GI(n, C) C gl(n, C). It is
rather difficult to write down explicit formulae for w and its curvature Q in terms
of natural matrix operations. However, one finds

w =wo+(Adp±+1)' o(Adp -1)(0+0,) (3)

where P := 9*g 0 = 9gdg, wOO= 1(0 - 0), (4)
2

(0 - the canonical left invariant 1-form on GI(n,C); wo - the canonical connection
form on the above bundle [3]).

Here we consider a whole class of connections including the above one and cal-
culate the curvature. For n=2 we give explicit formulae for the above connection
and its curvature. The proofs and technical details can be found in [5].
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2 General Results

Note, that tile operator

z := Adp GI(n, C) -- Gl(n, C) (5)

has thle positive spectrum or(z) { • A,pu are eigenvalues ofp}. Therefore, f(z)

is well defined for a function f on R+. Generalizing solution (3) of equation (2) we

obtain the following
Theorem 1: Let f : R+ - C be a C0-function satisfying f(x) = -f(x- 1)
Then the 1-form w defined by

S2 +f(z) -0 , (6)

is a connection form on the principal bundle (1) invariant under natural left U(n)-
action. C1
The main difficulty in calculating the curvature Q = dw + 1 [2,•'] is to determine
the operator valued l-form d f(z). For this purpose we introduce a "commutator"
of certain operator functions. Obviously, for X E gl(n. C) the term "_-si X" does
not make sense, because 1 belongs to the spectrum of z. However, we may define a
generalized commutator of tile operators f(z) and 'ad z----X' as follows:
Definition: If zX = AX, X E g, A c a(z), let

S[ z) ,ad. f-adX-I if A41 (7)
Z-{ zof'(z) oadX if A= 1

For general X we define the commutator by linearity.
The second case in the definition is just the formal limit of the first one if A tends to 1.
Moreover, the so defined commutator is compatible with the usual commutator and
the Riesz-Dunford-calculus [41 (for analytic f on U; R+ C U C C) in the following
sense:

[f(z), ad X = f(z) ,ad I((Z -1) X) (8)

and
f z - ,a X1" = J-- f((f) -T z"ad • X d( . (9)

If a is a gl(n, C)-valued differential form on GI(n,C), then [f(z), ad Z'j a] is in an
obvious way defined as an operator-valued differential form by application of the
above Definition to the values of a. The above Definition is justified by
"Theorem 2: The differential of the operator valued function f(z) is given by

d(f(z)) = [f(z),ad- I(dpp-')] with dpp-I = zO + 0 (10)

Z
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To proof this Theorem one uses the following technical
Lemma 3: Let X C gl(n, C) and ( 47 u(z). Then

0o adX o ad o (11)•I -z(•1 -z -

Using Theorem 2 the curvature Q of the connection form Lo defined in Theorem 1 is
now obtained by a straightforward calculation. The result is the following
Theorem 3:

0 = go + f(z),ad z_- 13+ 1 [f(z)/3,f(z)ý3] , (12)

where 13 = • (0 + 0*) and Qo = -• [0+0",0+0"] (curvature of the canonical
connection form wo).

3 Example
We consider the case

f(() - •+ "(13)

(+

'7hen 1 lz-1
w = -(9- *) + Z- - (0 + 0*) (14)

2 2 z+1
coincides by (3) with Uhlmann's connection given by (2). From Theorem 3 we obtain
for the curvature of this connection

Q=fQo+ z-- ,,ad ' 3 + Z•-1-3, z- 10 (15)

I1z+1 z -1 2 _ z__ (15)+

Thus, an explicit calculation of w and Q essentially amounts to explicit knowledge
of (z + 1)-' = (Adp + 1)-'. We consider the case n=2. Using the characteristic
equation of p we obtain

-E (Adp+ 1)I 1 - -adp (16)z~l =2 Tr p "

Denoting

q : -p (17)

we get
z-1

- adq. 
(18)z+l

In this notation the connection form is given by the simple formula

W= Wo + [q,i3]. (19)
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The above Lemma, (15), (18) and the the Jacobi identity yield

='• ( [/J, 03] - [q, [/3. [q, i3]l - [3, [q, [q, 3]]] (20)

The termn on the right hand side can be reduced using the following identity for

traceless 2 x 2-matrices and their consequences for sl(2,C)-valued 1-forms:

[X, [Y, Z1] = -2Tr(XZ) Y + 2Tr(X Y) Z; X, Y, Z E sl(2, C). (21)

We obtain
( 1Tr(q 2 )) [d 1 2detp

(Tr p)
2 [ (22)

Thus, the final result for n 2 is:

detp
=:(0-0,) + [p,O0+0'1. - Q- [0+ 0",0 + 0* (23)

2 2Trp 2 (Trp)2

We observe that this curvature coincides - up to a factor depending on p - with the

curvature go of the canonical connection.
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Abstract: We give explicit results for the Bures metric on the space of density
matrices in the 2- and n-dimensional cases. At the same time. this applifs to Uhlmann's
transition probability for mixed states on a *-algebra. The Bures metric, Uhlmann's
connection, the Fubini-Study metric and the Pancharatnain parallelity are special cases
of a general construction.

1. Generalities
Let us consider two states ,,-1. ,•2 on a *-algebra Al and all *-repre-

sentations -r : M B(7-H) on Hilbert spaces 7-R for which there exist vectors 11 >
,12>E 7- which induce the states .• 1 .w'2 :

,',ý(a) =< ijw.(a)Ii > Vo E l.

Uhlmann introduced in 1976 the generalized transition probability
P(w 1 ,2 W) as a suprenum

P(101 .,1;2) SUP sup <11[2> 1 2 (1)

over all admissible representations 7, and all vector representatives
11 >, 12 > of the states [4]. This is intimately connected with the Bures metric d on
the space of states:

d(wl.•-'2 ) := inf 1111 > -12> 11 (2)

Bures [21 introduced his metric in order to study infinite tensor products of von Neumann
algebras. thereby generalizing classical results of Kakutani [1] to the noncommutative
case. Besides many interesting facts, he showed the triangle inequality for d. thus
proving the nontrivial proposition that (2) defines a metric after all. From (1) and (2)
we get immediately [5]

d(61:.1- 2 )2 =2(1 - P-'.•:2 ) ). (3)

Thus all results for the Bures metric apply to Uhlmann's transition probability and
vice versa. Araki and Raggio proved in [6] that Uhimann's concept contains Cantoni's
generalized transition probability [3] as a special case. The Bures distance was further
clarified in deep papers by Araki [7] and Araki and Yamagami [8]. Alberti and Uhlmann
proved intuitively appealing results on the behaviour of Uhhnann's transition probability
with respect to stochastic maps on state spaces [9].

Results on the explicit form of the Bures metric were lacking for a long time.
A.Uhlmann posed this to me as a problem and we collect our findings in the next
section. More details can be found in [11.12.13].

2. Results
On a type I factor, states are represented by density matrices

,,(a) = tr p(a)
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on the representation Hilbert space 7"X. We identify A;, anu p,. Using a result of Uhlmann.

we can establish

d(pl, P2 )2 = inf tr(ll 1 - 1172 )((1' - 11"2)*, (4)

where the infimum runs over all Hilbert-Schmidt matrices fulfilling
IV IV= p'. It is not hard to show

d(P, P2 )2 = tr (pi + P2) - 2 tr V/TP1-p2 Vri.

Consider the simplest nontrixial case, a 2-dimensional Hilbert space. Parametrizing the
density matrices by Pauli matrices, we get after computation

P(P 1.P2 ) = (tr V/'/-I-Tp v/- -l )2 = tr p1p 2 + 2 det-pp 2 (I)

and the Bures distance follows from (3).
The infinitesimal form of the Bures distance is more interesting. It turns out that

the squared distance of two neighbouring density matrices is of second order in the
infinitesimal translations. So the metric caln be described by a metric tensor. This can
be calculated and the result is in invariant matrix operations (i.e. without refering to a
certain ONB of 7-1) :

d( p.po+dp)2 
= •tr(dp)2 +(d dcet . (6)

The space of 2-dimensional normalized density matrices is topologically equivalent to
the 3-dimensional solid ball. But (6) is not a metric tensor for a flat metric. Examining
the last formula, we get the

TI. ?orern: The set of 2-dimensional normalized density matrices with the Biircs
metric is isometric to one closed half of the Euclidean 8-.4phere with radius 2'

In n dimensions there is apparently no way to express the Bures metric in invariant
matrix operations. avoiding the disturbing square root operation in the definition. But
we can write down an explicit formula for the mnet.ic tensor of the Bures metric at a
certain nonsingular density matrix p, if we have knowledge about the oigenvalues {I ,
and eigenvectors {Ii >} of p. Defining the Hermitian matrix At t) by the relation

.4(t) 2  fp v/-(p + tdp)v-f

(t being a small real parameter), differentiating two times after t and setting t equal to
zero gives

d(p.p+dp)2  I < i ldplj> 122(A, + AJ) 7

With the aid of this formula we can obtain useful estimations of the Bures metric from
below and above, see the references [12.13].

3. A unifyh.g concept
Consider a bundle p E - B with structure group G acting transitively on the

isomorphic fibres p-(b),b E B. Suppose that the total space E is given a metric d and

ji

*1
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assume the action of G on E to be isometric and continuous with respect to the metric
topology on E

d(gegf') = d(c.

Now define the function d on B x B as

d(b.b') := inf d(i,.). (8)
pkt )=b.p(,,)=b'

Of course. d(b.b') > 0 and d(b.b) = 0 Vb, b' E B. Symmretry of d in its arguments is

evident. For compact fibres d takes on its infimum on the compact space p-'(b) xp-'(b').
thus

d(b. b') > 0 for b 5 b',

Furthermore it is not hard to prove the triangle inequality for d - it is here. where we

need the transitivity of the action on the fibres. We established that d is a metric on
the base space B [12].

Now for even more structure on the bundle. Fix a certain c E E. If the infimum in

(8) occurs for a unique t' E p-'(b'), then t' is defined to be parallel to e. Every point

in the total space E is parallel to itself. Applying transitivity of the action of G on the

fibres one more time we see:

1. Parallelity is a symmetric relation on E.
2. If e.c' are parallel. then ye. g' are parallel for all g E G. So the parallelity

relation is equivariant with respect to the group action.

This is a rather useful construction. Notice that the failure of this parallelity

relation to be transitive corresponds to the curvature of the parallel transport.

Example 1: Take a Hilbert space and the Hopf bundle of its unit vectors over the

corresponding projective Hilbert space. Then the metric d turns out to be the Fubini-

Study metric on the complex projective space. Our definition of parallelity coincides

with Pancharatnam's notion of parallelity: two unit vectors are parallel if their scalar

product is positive [14]. (This breaks down for orthogonal subspaces.) Considering the

parallel transport infinitesimally. we get the canonical connection in the Hopf bundle.

obtained in fundamental work by Aharonov and Anandan [14]. If we pull this bun-

dle back to a parameter space and consider Hamiltonian evolution wvith adiabatically

changing parameters. we get the Berry phase.

Example 2: Take the injective Hilbert-Schnmidt operators with the natural metric

and project onto the injective positive trace class operators. Then the metric d is the

Bures metric and the parallelity and connection is the one due to Uhlmann [10]. For

many more details, see [12,131.
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The Great Orthogonal"ty Theorem and Informational Completeness

Franklin E. Schroeck, Jr. t
Florida Atlantic University

Abstract. From the orthogonality theorem for square integrable representa-
tions on homogeneous spaces of a locally compact group, a series of lemmas
are derived showing the informational completeness for the generalized Wigner
distributions (matrix elements of the group) as well as the informational com-
pleteness of the natural covariant localization operators. The results are ap-
plied to special (phase space) representations of the Heisenberg, Galilei, and
Poincar6 groups.

A set of quantum observables is informationally complete if a collection of values
assigned to that set of observables uniquely determines a quantum state for which
these values are the quantum expectation values of the observables in that state. To
perform any determinative measurement, an experimenter must have a (practical) way
of measuring such a set. An obvious penalty for measuring only an informationally
incomplete set of observables is that the ambiguity of the results permits incorrect
conclusions. On the other hand, measuring more than a complete set (oversampling)
leads to various efficient methods of error/noise reduction.

Analysis shows that no commuting set of observables is informationally complete.
Examples are the family of spectral projectors for position, or through Fourier trans-
form, the family of spectral projectors for momentum. Even the union of these two
spectral families is informationally incomplete although not commuting. The set of all
bounded self-adjoint operators in the representing Hilbert space is complete, but it is
impractical to attempt to measure everything in this set. We show here that the set of
joint momentum and position localization observables (as well as spin for non-spin zero
systems) has the property of informational completeness for non-relativistic quantum
mechanics. This set is termed "the set of (generalized) phase space localization opera-
tors." Our mathematical approach also leads to a definition of phase space localization
operators for Poincar6 invariant quantum mechanics, for both massive and massless
particles. In all cases, the localization operators are covariant with respect to the entire
symmetry group, and not just with respect to the Euclidean subgroup.

The method used is the following in outline. We begin with a symmetry group
G for the system (G = Weyl-Heisenberg or Galilean or Poincar6 or other kinematical
group.) For H a closed subgroup of G, consider the homogeneous space G/H (or H\G).
Various choices for H will be considered, but we must be able to carry out the following
steps:

Step I. Find a left G-invariant measure p on G/H.

Step 2. In order to have a phase space interpretation of G/H, we must exhibit a
symplectic form through which one can construct p by taking wedge products.

t This is a report on joint work with D. Healy and J. A. Brooke.
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Step 3. Form L (G/H, p). Let U(') denote the ith irreducible representation of G on
some Hilbert space R('). (These may be obtained by Mackey's method of induced repre-
sentations.) One finds an isometry, W, of 7(') to a closed subspace K(0 of L 2(G/H, p)
and thereby intertwines U(') with a representation, VO), of G on K(') C L 2(G/H, A).
For example, one might intertwine with the left (quasi-) regular representation, VL, on
L 2(G/H, p).

Step 4. For f E L 2(G/Hq), and A a Borel subset of G/H, define the localiza-

tion operator A(A) by A(A)[f] = (Af, where X a is the characteristic function of A.

{A(A)IA is Borel} is a projection valued measure. It is covariant with respect to VL,
but is informationally incomplete.

Step 5. With P('): L 2(G/H,p) - K(') being the orthogonal projection, define

A(')(A) = W*p(I')A(A)W

Then {A(')(A)IA E Borel(G/H)} is a positive operator valued measure (localization
operator) on the irreducible representation space W) . If W intertwines U(') with VL,
then A(') is covariant with respect to the entire group G, not just with respect to a
subgroup (such as the Euclidean group.)

Step 6. The localization operator A(I) must form an informationally complete set
in Wt() . This is a constraint on the pair {7I(V), G/H}.

Step 7. An explicit formula for reconstructing a state from the set of expected values
of the A(')(A) must be given. The formula should have a discretized approximation and
must yield a numerically stable algorithm.

The smaller H is, the more likely the condition in step 6 can be met. On the other
hand, the smaller H is, the more difficult step 3 becomes. Hence, there is an optimal
range of choices if not a unique choice for H. The present analysis, although related
to that of Perelomov (1971), differs from his approach in which H is determined as the
stabilizer subgroup of a given vector in the representation space rather than on general
principles.

In particular, for q, f E V0) the map W = IV, takes on the form

[W,(fl(x) = () f)

where o is a Borel cross section from G/H to G. The condition that IY,7 be an isometry
is then closely related to the condition that Y7 must be square integrable with respect
to o(G/H). We wish to derive the orthogonality relations as a consequence of square
integrability. These relations read

( .Uli(C(aX))i 71)Ui)(U"(aX))r1 2, 2 )dp(.r) =(Ctj 2, C 7 J)(1 ,0 2)1H

for some self-adjoint operator C in VT0, ej, 7j E hli, admissible. If H is in the
center of G, these results are known (Grossmann et a], 1985). From these orthogonality
relations the informational completeness of the AM') follows (see below).
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The details for steps 1 through 5 for the Heisenberg and Galilei groups are known
(Guillemin and Sternberg, 1984). For the Poincar6 group, they were recently investi-
gated by J. Brooke and the author for obtaining fully covariant phase space localization
operators for both massive and massless relativistic particles, such as the photon (Brooke
and Schroeck, 1989 and in preparation). In the non-relativistic cases and the massive
Poincar6 case, the intertwining of the UM') is with the left regular representation VL. In
the non-relativistic cases the only choice for G/H such that all steps are satisfied seems
to fix G/H to be configuration space x momentum space x spin space.

To satisfy steps (6) and (7) consider the following:
Definition: A nonzero 17 E 7R() is admissible with respect to a(G/H) iff

If WO is irreducible, we say UO') is square integrable over a(G/H).

Condition (a). There exists a: H --+ C such that U(h)7I = a(h),7 Vh E H. If this
holds and q is admissible, we say Y is a-admissible.

Condition (b). There exists B: G/H x G/H --ý C and a dense set of 1-admissible
vectors q such that

B(x,y),7 = U(a(x)-1a(y)-a(x)a(y))i? Vx,y E G/H.

D. Healy and the author (in preparation) show that (a) & (b) imply that our square
integrability condition implies that of Ali et al (1991). (a) implies that the results are
section independent. (a) implies that the orthogonality theorem holds on the subspace

of 7H generated by the a-admissible vectors; (a) & (b) imply that the operator C in
the orthogonality condition is a multiple of the identity.

Now let 0 E R.t, I1111 = 1, and let {ej} be an orthonormal basis for 7"1. Then

from the orthogonality theorem we obtain

JG/H(, U()(a(x)),o)(U( (a(x))4,,4dp) = (C4,, ~)e,4)

Thus the set {(U() (a(x))4,, 4) ix E G/H} of "generalized Wigner coefficients" deter-
mines 4 up to a phase; conditions (a), (b) imply the informational completeness of the
Wigner coefficients in "H,, modulo the fact that the U() (a(x)) are not observables.

The localization operators A(') are shown to have a projection valued density T":
A(•)(A) = f, T'1(x)dp(x). Healy and the author then show

IG/H B(x, y)(0, T'1(x)?P)dp(x) = (07, CU (a(y))7)(V (U(y)) 0, 0'),

for 77 E "W., 4 E Wt, y E G/H. By the result on Wigner coefficients, this shows
that the set {T'7(x)Ix E G/H}, which is equivalent to {A(')(A)IA E Borel(G/H)}, is
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informationally complete on W.,. The algorithm this yields is not as effficient as the
following:

Since the T? are informationally complete in ?f,, any density operator p in H,ý
may be written in the form p = fGfH f(y)TV(y)d4(y). Then one shows

J B(y, k)Tr(pTI(y))dp(y) = (Ct7,CU(a(k))vj)(U(a(k)),7,7))
/H

SJG/g

Thus, if

(c) (U(-(k))r, 77) 0 0 a.e. k E G/H

holds, then one may reconstruct p via an integral formula if one can reconstruct f from
its B-transform.

Healy and the author show that (a), (b), (c) may be satisfied in the non-relativistic
cases and that the B-transform is the Fourier transform. Discrete approximations to
this integral provide the numerically stable procedures desired in steps 6 and 7.
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PHASE-SPACE- AND OTHER REPRESENTATIONS OF
QUANTUM MECHANICS: A UNIFYING APPROACH

Helmut Fink and Hajo Leschke

Institut far Theoretische Physik 1, Universitat Erlangen-Nilrnberg,
Staudtstr.7, W-8520 Erlangen, Germany.

Abstract: Bi-orthogonal systems in Liouville space, which are parametrized by phase space,
provide a convenient way of formal insight into the common structure of all linear phase-
space representations of quantum mechanics. The farest reaching generalization of the
early Weyl-Wigner representation is achieved by replacing phase space by a general pa-
rameter space F equipped with a measure and possibly with a group structure. Positivity
and invariance properties of the representations with respect to transformation groups on
F are studied in relation to coherent states.

1 Introduction: Motivation and goal

The choice of a representation (rep) of Hilbert-space operators is necessary for
most concrete calculations in quantum mechanics. In view of many recent pub-
lications on Weyl-Wigner-Moyal theory, positive phase-space reps, coherent states.
squeezed states, wavelets with applications in quasiclassical physics, quantum chaos,
(quantum) optics, signal processing etc., we are concerned with a unifying approach
which reveals the common (mathematical) structure of these kinds of reps. Com-
bining and generalizing ideas of various authors [1-71, we provide an overall view for
orientation and classification of special results and aim at a basis for better intuition.
In doing so we stay at a formal level not caring about questions of mathematical
rigor.

2 The general formalism: F-representations

Consider the Liouville space £(7H) consisting of operators acting on a given
Hilbert space 7H. Expectation values are then given by the Liouville-space scalar
product Tr[WA] of state operators W = W+ > 0, Tr W = 1 with observable
operators A = A+. A set F equipped with a measure it serves as a parameter
space. To represent elements of £(H-t) by functions on F, it is useful to introduce bi-
orthogonal operator systems {A(a), 2(J3) : a_3 E F}, obeying the bi-orthogonality
relation

Tr [A+(a) A(3)] = (a, 3) (a,3 E F) (1)
and the completeness relation in £(7-)

Id(l1) S+(y)AA(y) = I Tr A (A E £(-)). (2)

A is called the dual basis for X, b stands for a Kronecker- or Dirac-delta depending
on whether F is discrete or continuous.
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As is easily shown by considering A = in)(n'j, where {in)} denotes an orthonor-
mal basis in 7-H, eq. (2) is equivalent to the operator expansion

A =Jd.(-y) Tr [S+(y) A] -- ). (:3)

An operator A is thus represented by its expansion coefficients with respect to tie
£(h)-basis A. This complex-valued function on F,

a(-y) := Tr [!+(-y) A], (4)

is called, extending a notion of [1], the contravariant symbol of A. Replacing A by
A, one obtains the covariant symbol aA(y) .

Given A and A, the scalar product in C(R"t) is representable as

Tr [A+B] dz(,t) aý-(-y) ba(-). (5)

Remarks:

* The symbols are linear in the represented operators. For nonlinear reps see [8].

e The contravariant symbol of A(-y') is 6 (y,-y'), see (1) and (4).

* A self-dual basis A = A is orthonormal, see (1).

* Change of rep by use of a generalized matrix

aa,(') = Jd/(y) t(-y',-y) aa(-t). (6)
r

Here the transformation kernel t(y',y) := Tr [A+(') -'(y')] represents the
new basis A'(-Y-), y' E F' with respect to the old one A(-I), -Y E F.

* Phase-space reps (H- • L2 (R), F = iRk {(p,q)}) are treated, within this
approach, in [2]; for special cases cf. also [3,9].

Two important examples:

1. Ordinary Hilbert-space reps with respect to an orthonormal basis { n) } in ?
fit into the £(1)-approach [4]:
F = IN2, fdi(-y) = Z , A(-y) = In)(n'l E £(E ), a,(y) = (nAlan').

n,n'

2. Let F be a group with a unitary irreducible rep U as an orthonormal basis in
C(7-t) and u a Haar-measure on F. (2) is obvious for A = I by Schur's lemma.

It can be shown that A > 0 iff its U-symbol au(-y) : Tr [U+(-y) .4] is
F-positive definite, i.e. the n x n-matrix (aj(Yti o "yj)) is positive for

all {7,,-,7} C F and all n E IN (cf.[10]).
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For the Heisenberg-Weyl group F, F-positive definiteness reduces to h-positive
definiteness [10,11] except for a phase factor arising because the Weyl operators
U(-y) = D(p,q) := e(PQ-P)/ (QP - PQ = ih) constitute only a ray rep of F.

3 G-covariant F-representations and G-coherent states

Now let G be a transformation group acting on F, dju(-y) = dji(g'y) for all g E G
and U a unitary irreducible rep of G in C(H-). The requirement that aA(g-y) repre-
sents U+(g)AU(g), when aA(-y) represents A, yieids the G-covariance condition

A(g'y) = U(g)A(-y)U+(g) for all g E G, -y E F. (7)

For G acting transitively on F (i.e. for all 71,72 there is g: 72 = g70), (7) reduces to

A(y) = U(g)A(Yo)U+(g), = g-Yo. (8)

A is uniquely determined by A(-yo), which has to be invariant under the isotropy
group of -yo (i.e. for g with g-yo = -yo).

F-reps (with basis A in C(?-()) are called real, positive and normalized iff
A(-y) = A+(-y), A(-,) > 0 and TrA(-y) = 1 for all -y E F, respectively. Real reps
associate aA = al with A = A+, positive reps associate a6 > 0 with A > 9. and
normalized reps yield aA = 1 for A = 1, according to (4).

For G-covariant positive normalized F-reps, (8) takes the form

W(g) = U(g)WoU+(g). (9)

W(g) are the G-coherent (mixed!) states [12] with fiducial state A(-yo) = Wo

Examples and remarks:

1. G= translations on F = R2 = {(p,q)}, Wo = 1,0o)(,oI. The rep of A by
its expectation values (i'ojD+(p,q)AD(p,q)ji]o) in the well-known canonical
coherent states is obviously positive for each fiducial vector IV0). By choosing
I0/,o) as a squeezed harmonic-oscillator ground state, one obtains the rep by
squeezed states [131. For the analogous introduction of coherent states in case
of a discrete finite F, relevant for quantum lattice systems, see [14].

2. G= affine group: q-translations and scale transformations, W0 = 10o)(V,01,

U(q,A) = exP -qP exp - -- -(Q+QP), A >0. (10)

A is represented as a(q,A) = (OoiU+(q,A)AU(q,A)jIo), especially I?)(01 as

Ifdx ý,% OV (x) 2, the square modulus of the wavelet-transform of ,
with analyzing wavelet 0o [15].
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4 Quantum mechanics in phase space

All translation-covariant phase-space reps are, according to (8), characterized by
A(0,0), or alternatively, by the "f-function" fl(p,q) := Tr [D+(p, -q)A(0, 0)].
Conversely, A is given by 59 as [2]

A(p,q) = dp'd/' 7(p, q') exp{hLp'(Q - q) +q'(P -p)]} (11)

Analogously, A is given by 1/fI. For special cases and detailed considerations in this
Ql-approach see [2,3,5] and cf. also [6]. For 11 = 1 one gets the famous (non-positive)
Weyl-Wigner rep [7], corresponaing to a £(H)-basis of shifted parity operators [161,
which is uniquely determined by the requirement of metaplectic covariance [17].

Conclusion: Bi-orthogonal systems in Liouville space are a natural general approach
to F-representations (F-reps), leading to ordinary Hilbert-space reps, phase-space
reps, coherent-state reps and wavelet transformations.
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The Dual Nature of Phase-Space Representations

Jens Peder Dahl
Technical University of Denmark

Chemical Physics, Chem. Dep. B, DTH 301
DK-2800 Lyngby, Denmark

In this communication we discuss the well-known class of phase-space repre-
sentations defined by state-independent kernels. f(6, r). WVe show that for a given
f(0, r), we must also consider the dual representation defined by the kernel g(O. r) =

f(-, -r)- 1 and thus involve two different phase-space Hamiltonians. This is of
particular importance for the construction of dynamical equations.

We tie our discussion to the one-dimensional motion of a physical system with
Cartesian coordinate q and conjugate momentum p. The corresponding quantum-
mechanical operators are denoted Q and P; they satisfy the commutation relation
[Q, 15] = -ih. The restriction to a single dimension is made for simplicity, and the
extension to several dimensions is straightforward.

Let Iw) be a normalized state vector in the Hilbert space associated with our
system, and let

,(q) = (qlv), o(p) = (pit') (1)

be the corresponding position and momentum wave functions, in the notation of
Dirac. They are normalized to unity,

(t'0') = I dq4,(q)%,(q) = J dpo(p)ro(p) = 1 (2)

and are connected by a Fourier transformation:

v =q = - Jdp6(p),&Pq/A, o4p) = yJdqL1(q)tC'Ps/ (3)

with all integrations here and elsewhere going from -cc to oc . Then the quantity
,(q)'t",(q) measures the probability (tensity in position space and o(p)*O(p) the

probability density in momentum space. We may also consider the more general
quantities i•'i(q)' 3 (q) and oj(p)*O,(p) which are probability densities when i and j
refer to the same state (i = j). and transition densities when i and j refer to different
states (i 5 j).

Now, let f(0., ) be any well behaved function for which

f(0, r) = f(O,0) = 1 (4)
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Then each such function defines a phase-space representation [1, 21. according to the
following prescriptions.

For any pair of states, 1ý'1) and yt). we define the phase-space distribution func-
tion

V{3(qp) = ud~ dt**.(u - 1hT)(u + 1h7)f(0,r)eOF& pe6
o 5)

Its marginal densities are, independently of the form of f(O. T):

J dpD'j(q.p) = t-j(q)rQ,(q), JdqD'j(qjp) =Oi(pr'O(p)(6

This is readily verified by using Equation 4 and noting that

f dye" -= 2wr6 (y) (7)

Next, we construct a correspondence between operators on Hiloert space and
dynamical functions on phase space. Thus. we take the dynamical function corre-
sponding to the operator A to be [3]:

aj(q.p) = -j f dudOdr(i- + 1h~-.iJU - 'hr7) e e (8)

We shall refer to aj(q,p) as the f-transform of .i. The inverse of relation 8 is:

A= J dOdrf(0, )o,(9.0, (9)

where of (0, r) is the Fourier transform of aj(q,p), obtained by writing:

aj(q,p) = IJJ dOdr a f(0. T)e Oq+rP) (10)

With the above definitions, we can show that

(,ilt') = / Jdqdpaf(q. p)D(q -p) (11)

This is a central relation in the phase-space formulation of quantum mechanics.
Let us now assume that aj(q. p) and bj(q, p) are the phase-space functions corre-

sponding to the operators A and b, respectively. It is then a fundamental problem
to determine the phase-space function corresponding to the operator product AB.
We denote this function by cj(q,p) and write:

0 = Ab, c 1(q.p) = a/(q.p) * f * bg(q.p) (12)

As indicated by the symbol *f*, the actual form of this twisted product depends on
the form of the function f(O, r). It is relatively simple in some specific cases [1,41,
much more complicated in others, but we shall not need explicit expressions in the
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present context. Assuming the expressions to be known, we may also evaluate the
f-bracket:

{af(q,p). bf(q.p)}! = -. (aj(q.p) * f * bf(q.p) - bf(q.p) * f * af(q.p)) (13)

which corresponds to 1/ih times the commutator

[A. h] = Ab• -/hA (14)

Knowing the form of the f-bracket 13. we may go on and determine the phase-
space equivalent of the dynamical equation:

dA OA0ih TA [.A, H] + ih 0t 15Sat -b7(1.5)

where H is the Hamiltonian and t the time. This is the familidr Heisenberg equation.
It refers to operators expressed in the Heist nbe rg picture. The phase-space equivalent
is:

dt - {ta(q.p).hf(q.p)}l 4 taf(q.p,t)Ot t (

where h;(qp) is the f-transform of the Hamiltonian k.
Another important dyramical equation is the quantum Liourillf cqaation. also

known as con .Veumann's equation. It refers to the Schr6dingtr picturf and has the
form: 0

-= [l.•J] (17)

where
b,= I- l')•, (18)

2rh
The factor 1/27rh is optional. It is included here for convenience.

To determine the phase-space equivalent of the quantum Liouville equation we
begin by noting that the relation 1 allows us to write the expression .5 for Df(q.p)
in the form:

DV'qýp) = 1- JJ/dudOd(r(u + 1hThr,,)(viu - ½hr)f(O.T)(e-'8qe-'P'O' (19)

or, by introducing ýjj from Equation 18:

Df (q. p) = h IJJ dud~dr(. + lh7j-3ýiju - !h)f (0, T)eO-, fePelau (20)

This equation may also be written:

j(q. p) =' -I I I ddOdT (1 + lhT Iu - 1r) T,(Pc 'eu (2'1)
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where g(O, r) (22)

f(-O.-T)

The function g(O, T) will also define a phase-space representation, and by com-
paring with Equation 8 we see. in fact, that Df (q,p) may be identified with the

g-transform of Aj, To turn Equation 17 into an equation of motion for V%(q,p) we
must therefore take the g-transform on both sides, not the f-transform. This gives:

aDf (q, p, t) {h (q,p),D f(q,p,t)} (23)

where hV(q, p) is the g-transform of the Hamiltonian. It is generically different from
h1 (q, p), although it may be the same in particular cases.

The phase-space equivalents of the two fundamental equations of motion, i.e.,
the Heisenberg equation and the quantum Liouville equation, must accordingly be
constructed by different procedures. This was already noted, albeit not explained,
by Mehta [5].

The phase-space representations induced by f(9. r) and g(O. r)may be considered
the duals of each other, and we see that both must be applied together to cover
the phase- space description of a quantum system. A great simplification appears
when f(0. r) = 1. for then f(0, r) and g(O, r) become the same, i.e.. the phase-
space representation becomes self-dual. This representation is the Weyl-Wigner
representation.

As an example, we mention that the so-called standard and antistandard repre-
sentations are the duals of each other. This special example has been discussed by
the author in a different context [4].
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Abstract
The existence of phase space distributions which are true probabilities de-

pends critically on Wigner's theorem, which is however only applicable to
phase space functions which are linear functionals of the density matrix. We
present therefore a complete analysis of distributions which are quadratic func-
tionals of the density matrix. There exists a unique positive representation
with the correct quantum- mechanical marginals. This representation corre-
sponds to a new concept of joint probability distribution. We introduce a
scheme which holds the possibility to describe a single ecent as well as the
ensemrble.

1 Positive joint probability distributions
Perhaps the most convenient way towards a realistic underpinning of non-relativistic
quantum phenomena is the representation of quantum mechanics by joint distribu-

tions in phase space [1]. The existence of true (positive) joint probability densities
(jpd) in phase space is severely restricted by Wigner's theorem [2]. which states that
the following requirements are incompatible : i) the distribution function is a linear
functional of the density matrix, n) it is a true (positive) probability function. ni)
the marginal distributions coincide with the proper quantum-mechanical probabil-
ities (in the stronger version of Kruszynski and de Muynck [3] only one marginal
distribution has to coincide).

In contradistinction to a widespread belief, different ways are left open for the
construction of jpd in different interpretations [4]. Jpd of the first kind (i.e. where
the jpd is interpreted as the probability that the variables q and p have certain
values, the variable being considered as a property of the object system) and jpd
of the second kind (i.e. where the jpd is considered as the probability that on
simultaneous measurements of the observables Q and P the values q and p are
found) which are linear functionals of the density matrix, exist only with relation
to a restricted class of functions (e.g. Wigner distributions corresponding to pure
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states are necessarily Gaussians in phase space [5] [6]). Jpd which are nonlinear
functionals of the state function are not restricted by Wigner's theorem. In this talk
we present a complete analysis of jpd which are bilinear functionals of the density
matrix; however, there exist also examples of jpd which are multilinear functionals
of the density matrix [7]. Jpd of the third kind are not functionals of the density
operator only, but also depend on the measurement arrangement of two incompatibie
observables Q and P. The measurements mutually influence each other in such a way
that the singly measured quantum probability function cannot be reproduced from
the measurement results. So it is no longer desirable that the marginal probability
distributions equal the single measured ones, and hence Wigner's theorem does not
restrict this class of jpd either. The jpd of the third kind can be written as a
convolution of two Wigner functions, the first corresponding to the object system
and the second representing the measurement apparatus.

2 Bilinear functionals of the density matrix

Using Galilei-invariance. jpd with proper marginals which are bilinear functionals
of the density matrix p corresponding to a pure state can be represented by

1 f/ i0 n, , r, x. r T xTy'

f (q. p) = Q(0.r,)exp,[(uf -q- q )- 0 - q - 0'
4 7 2 h 2J2 2 2

+P(r - x < p I y >< y' I x' > dOdO'dzdydx'dy' (1)

in two-dimensional phase space. For a general density matrix p = AAt we introduce
a straightforward generalisation by replacing p by A and pt by At in eq. (1). The
requirements to obtain the proper marginals and positivity yield:

Jf(q,p)dp =< q p pI q > = ((O,O'. 7r, ) = 1. (2)

J f(q,p)dq =< IpI p > ==:Z Q(OO.r,r') =1. (3)

f(q,p) >_ 0 ==ý. Q(0.O. '. r') = , ().,(O, T) Q, ('. -'). (4)

with Ai > 0. On account of the bilinearity these requirements are compatible. More-
over. we can show that they have the unique solution Q(0, 0'. r, r') = 1. leading in
general to the jpd

ffq.p-) ----< ýJ AIff>lJ- (5)

This jpd corresponds to a quantummechanical state if AtA = AAt (for a pure
state A = p). E.g. if < q I A I p >, the complex phase space amplitude, is
Gaussian, then A4A = AAt yields Heisenberg's uncertainty relation in Schr6dinger
form: aqap - aq,p2 > 0 2 /4.

The representation (5) corresponds to a new concept of jpd. Let us consider the
wave function •,(• E, L. Lz) in coordinate representation with eigenvalues E, L, L,
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as the amplitude of a jpd of position, energy E and angular momentum L, L, or
< " I A I E, L, L, >. By eliminating the eigenvalues E, L, L. in favour of the
momentumf gwe obtain E < I A l E,L,L, > < E,L,L, 1ff> =< i A >
leading also to eq. (5).

3 Evolution in phase space
Because the phase space amplitude t'(•,p-) =< q I A I g > has the same transfor-
mation properties as a density matrix, the evolution equation in phase space is

SO po - H ( , I 4 -q H ( - - ,p- ,p ) (6)

By setting z,, = f exp(iS/h) we obtain two coupled equations for the real functions
f(h,p) and S(j,p-). For quadratic Hamiltonians we obtain a lintar quantum Liouville
equation and a generalised Hamilton-Jacobi equation where the last term, depending
on the Lagrange function L, is the analogue of Bohm's quantum potential, but now
in phase space:

Of(Tfp-f) + a OS aa H [OH sf = 0 (71

as (,') ('s-) =2 " ( 0a, ) V
t- - + H - ) - H -- .p = - L , -• / f( S

In the classical limit h -- 0 these equations reduce to the classical Liouville equation
and to S = qff- Et, generating the identity transformation. In general the coupled
evolution equations are nonlinear in the derivatives, and hence a causal interpre-
tation by means of trajectories in phase space is therefore restricted to quadratic
Hamiltonians. The evolution equations are however well suited for the calculation
of corrections to the classical limit.

4 Representation of single events and ensembles
Solutions f(jp-f) of the evolution eqs. (7) and (8) corresponding to a density matrix
describe an ensemble, but there exist also solutions not corresponding to a density
matrix (AtA # AAt). which may be much more localised than is allowed by Heisen-
berg's uncertainty relation. These solutions, f 5 ,(j.p- say, can be associated with a
representation of a single et'cnt (e.g. the observation during measurement of an in-
dividual electron), in contradistinction to an tnscinbh. wich describes the xpected
behaviour of a single entity in repeatedexperiments. The "'hidden parameters" of the
single event are nothing more than position. velocity and shape parameters of the
jpd. The sup-rposition principle for 4,, expresses the rules for cornbining probabiliti s
during the preparation, but for ',•, the superposition of two solutions represents two
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individual particles. In this conception. the notion of the collapse of the wavefunc-
tion evaporates, and the j.d.f. f for the ensemble emerges after averaging over the
"hidden parameters" of (,,, such that AtA = AAt is fulfilled.

5 An exact solution for an individual particle

Take in eq. (8) dS/dt = -E = -nc 2 > H (which is allowed by relativistic
considerations), then eq. (8) splits into two equations. The first equation leads
to S = q1Y- Et and to the classical Liouville equation, while the second equation
reduces, for the simple example of the free particle, to

A • + 2 Vf,, o o, (9)

which determines the shape of the localised solution. The simplest spherical sym-
metric solution with maximum localisation in ff is

sin
2

(4,1
2

)fLIWp-') ~ 6(9') (10)

where o' =- 4- - (p•/m)rt 9i' = 9 -jio are the classical trajectories. Eq. (10)
describes a localised solution with a long oscillatory tail, the center following the
classical path in phase space. The solution shows an important overlap of classical
and quantum behaviour, and resembles the solution for a single particle derived by
Barut [81 in configuration space. The limit in -- 0 yields the classical point particle.
while averaging over the -hidden parameters" leads to an ensemble description which
is equivalent to the usual quantummechanical formalism.

Acknowledgment. I am grateful to W.M.de Muynck for interesting discussions
and a critical reading of the manuscript.
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Wigner (1932) observed and later (Wigner, 1971) proved that the joint

probability distribution of canonically conjugate observables does not

exist in the sense that "it may take negative valLes, but of course this

must not hinder the use of it in calculations as an auxiliary function

which obeys many relations we would expect from such a probability." An

ample study of such a quasi-probability was done by MUckenheim (1986).

The objective of this paper is to construct the joint (product)

measure induced by the correlation between two observables and show that

such a joint measure is a probability measure only if the correlation is

very small or, in the cases of interest, even equal to zero. For strongly

correlated observables the joint measure is not necessarily nonnegative,

confirming, in a constructive way, Wigner's result.

Let P and Q be two observables and f(p) and g(q) their marginal

probability densities. Let p 1 2 and aI , r2 be the mean values and the

standard deviations of P and Q, respectively. Let p be the correlation

coefficient measuring the (linear) dependence between P and Q. If the

joint distribution has the density 0(p,q), then

p = (0- 1 2 D(p - p,)(q - A2) O(p,q) dp dq. (1)

If 0 is known and the integral (1) does exist, then p is calculable

in a unique way. The converse assertion, however, is not true. If p, f(p),

and g(q) are given, then there are infinitely many densities 0 compatible

with them. We construct the closest joint density 0 to the independent

(direct) product fg of the two marginals subject to the given correlation

coefficient p, (-1 : p s 1), where closeness Is measured by the Pearson's

<X >-indicator,

<X 2>(:fg} = ffDf({(p,q)-f(p)g(q)1 2/(f(p)g(ql]}dp dq (2)

where the integrals (1) and (2) are taken on the Cartesian product of the

supports of f and g, D = ((p.q); f(p)g(q) 0 )}. Mathematically, we have
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to solve the least weighted squares variational problem with constraints:

min <X
2
>(O:fg) subject to the given value of p. Using the standard

Lagrange multipliers method, the solution is

""[P - Al q - ju2],

R (p,q) = f(p)g(q) 1 + p -M q - (3)

Remarks: (a) is called the joint density induced by the correlation

coefficient p between P and Q.

(b) If p = 0 (i.e. P and Q are not correlated), then 4 (p,q)=f(p)g(q)
2

and <X >(C :fg) = 0.
*

(c) 4 is normed, I.e.

iD' D(p,q) dp dq = 1.

(d) is compatible with the given marginals, i.e.

JD 0 pq) dp = g(q), f DC(p,q) dq =f(p),

1 2
where D = {p; f(p) 0 )}, D = {q; g(q) * O}.

1 2

(e) However, 4' is not necessarily a joint probability density. Taking

all (p,q) E D, let m = min ((p - p I)Cq - p2)} and M = max {(p - p 1 )(q - p2

Obviously, m < 0 and M > 0, unless P and/or Q are degenerate, being then
*

identically equal to pi and/or 2' , respectively. Then 4 would be non-

negative, and therefore a joint probability density, only if

1 2 
1 2

On the other hand, 4' can take on negative values if p < - -0 /M and

-- 2 < M, or if p > - I a- /m and - c I > m, which in fact does happen in12 12 12

the cases of practical interest, as predicted by Wigner (1932).

The deviation from independence due to the correlation coefficient p

between P and Q is

0(p,q) = 4 (p,q) - f(p)g(q) = f(p) p P 1 g(q)-
1 2

The set

W = J(p q); 1 + p p I <lq2 0
l i 2 }

is called the Wigner region.

Special case: Let Q be the coordinate (position) and P the momentum.

Suppose that they are both normally distributed N(O,1), in which case

I= 92= 0, a- = -2= 1, m = -w, M = +, and D Is the whole two-dimensional
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real space R2 . If p is the correlation coefficient between P and Q, the

joint density (3) becomes

* (p,q) = (2()-le-(p2+q2V2I(1 + ppq). (5)

If P and Q were independent, p would be equal to zero, the joint

density 0 would be a probability density (Fig.l), the contours would be

like in Fig.2, and the corresponding Wigner region W would be the empty

set. But, as P and Q are dependent, for any correlation coefficient p # 0

the Wigner region W is not empty and 0 given by (3) is not a probability

density. Fig.3 gives the graph of (5) when p = 0.999, while Fig.4 shows

the corresponding Wigner region (the shaded sets), with an accuracy of

three decimals in computation, provided by SAS/GRAPH computer package.

Although the Heisenberg's uncertainty relation prevents at least the

simultaneous knowledge of the coordinate and momentum of a particle, the

joint density # shows the degree of implausibility (on the Wigner region),

and the degree of plausibility (on the complementary set to the Wigner

region) in locating the potential values of P and Q
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Lorentz Squeezed Harmonic Oscillators
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As has been noted in previous papers.[I, 2], the Wigner phase-space picture of
quantum mechanics[3. 4] is the natural language for squeezed states of light. Since
most of the squeezed states observed in the laboratory are two-mode states.[5] it
is natural to study the canonical transformations of two-mode states within the
framework of the phase-space picture of quantum mechanics. The basic symmetry.
in this case, is that of Sp(4).[5]

The groups SlU(2) and SU(1.1). which are locally isomorphic to the 0(3) and
0(1.2) subgroup of the (3+2)-dimensional Lorentz group.[6] are also important in
quantum optics.[7] The (3+2)-dimensional Lorentz group. together with the (4+1)-
dimensional Lorentz group. is often called the de Sitter group 0(3.2). It is the
local isomorphisrn between Sp(4) and 0(3.2)[5, 8] that allows the study of space-
tim e symmetries of the relativistic world in terms of canonical transformations of
the Wigner function for two-mode squeezed states. The mathematical language of
squeezed states is based on the Lorentz group and the harmonic oscillator.J8]

It is possible to begin this study of squeezed states in terms of special relativity
and vice versus by exploiting the correspondence between SU( 1.1) and 0(2.1 ).[1. 7 9]
There are many 0(2.1 )-like subgroups of 0(1.2). One of the subgroups of 0(3,2) is
the --ordinary- (3+1)-dimensional Lorentz group which has one three dimensional
rotation group and three (2+1)-dimensional Lorentz groups. It would thus be easy
to be misled into believing that SU(2) [or 0(3)] and SU(1.1) [or 0(2,1) and 0(1.2)]
are those from the ordinary Lorentz group. However, there are only three rotation
generators in 0(3.1). hence the rotation generator of 0(2.1) must be one of the
three generators of the rotation group. To see that this is not true, let us look at
the interferometers of Yurke. Mc('all and Klauder.[7] Their S$1(2) interferometer is
based on .I1. J2 and .13. satisfying the commutation relations of the usual rotation
genierat ors:

[J * ]= (1)

Their SI ( 1.1) interferometer is based on J0 A•'3 and Q3[5. 8] satiisfying the conr-
iuitation relations:

[i 1.Q] = i.1. [P0. K31]= -iQ 3. [I.- Q3:=1 . (2)

It is important to note that Jo. while being a generator of rotation, is not one of the
generators of the SU(2) group. SI'(2) is locally isomorphic to the three-dimensional
rot at ion group, while S'( 1A1) is locally isoniorphic to t le (2+1 )-dimensional Lorentz
group. The rotation generator of S'( 1.1) (Jo) is not one of the three generators of
"SU(2). This confirms that there are four generators of rotation and indicates that
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the SU(2) and SU(1,1) groups cannot be isomorphic to subgroups of the familiar
(3 +1)-dimensional Lorentz group which has only three rotation generators. Rather,
these groups are isomorphic to 0(3) and 0(2.1) of the (3+2)-diminsional Lorentz
group. Thus the SU(1,1) group given here is one of the three 0(1,2) subgroups of
the 0(3,2) de Sitter group and not a subgroup of the (3+1)-dimensional Lorentz
group.

In the system of interferometers of Yurke, McCall and Klauder, there are three
generators for SU(2) and three for SU(1,1) making a total of six generators. They do
not, however, form a closed system of commutation relations, but require four more
generators. If we add them together, the result is the set of ten generators of Dirac's
two-oscillator representation of the 0(3,2) group.[6] One of the characteristics of
0(3,2) is that /K3 in the SU(1,1) interferometer is capable of forming another SU( 1.1 )
group. It would be very helpful if we could design experiments to test the set of
0(2,1) commutation relations involving k/ and the generators not contained in the
interferometer of Yurke, McCall and Klauder. k 3 can form the following sets of
closed commutation relations:

[J,,/' 31 = -ik 2 . [J 1,/ 2] = k Ril3. [ k 2 ,k 3 l -i 1 , (3)

or

[.1, k 3] = i k-, [il, = - k 3, A11, K3] = ii. (4)
The same reasoning is applicable to the expressions where the ki are replaced by
the Qi.

An experiment based on one or more of the above four sets of commutation
relations would prove the existence of both the 0(2.1) and 0(1.2) symmetries. This
experiment would also reinforce the evidence of the 0(3,2) symmetry in the two-
mode system and would allow us to study space-time symmetries of squeezed states
in terms of the canonical transformations of the Wigner function for these states.
The nine (2+1)-dimensional subgroups in the 0(3+2)-like symmetry group of two-
mode squeezed states, are either separable or can be transformed into separable
representations by a rotation, for example. K3 and Q3 can be transformed into K,
and Q, by J2.

Although we cannot design an experiment which incorporates all ten genera-
tors of Dirac's two-oscillator representation, it is still possible to detect the 0(3.2)
characteristics with its subgroups. Let us ,egin by studying how we can extract
measureable numbers from the Wigner function.

In quantum mechanics, we calculate those numbers from the overlap of the dis-
tribution functions and the expectation value of the operators for two given wave
functions V,(,r) and 6(x), and their corresponding Wigner functions W1,(x.p) and
W4,(x,p). Then the transition probability takes the form

I (6(.r), ,(r) 12= 27rJ r, p)W0 (.r, p)dxdp. (5)

This expression is useful when we calculate the probability of a certain state being
in a particular eigenstate. For two pairs of canonical variables, the overlap integral
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may be written as

I ( O( X 1, X 2) , •;,( X l, X 2) ) I

= (27w)2 J •,(XI,x2;pI,p 2 )1V4.(Xr.X 2 :pl.p 2)dxidX2dpIdp2 . (6)

We consider next the expectation value of an operator applicable to r'(x) or the
momentum operator f(p). If the operator R is a function only of x or p. then the
expectation value is

< R >= (i€,(x), R(x) ,(x)) = JR(x.)W(x.p)dxdp. (7)

with a similar expression for R(p). If R is a function of both x and p. we are not
aware of any simple expression. It is possible to prove that

JW(x,p) (x pp") dxdp

The photon number and the (photon number) 2 operators are the two most important
quantum mechanical operators in quantum optics. In the Schr6dinger representa-
tion, the number operator takes the form

12

Thus. in the Wigner phase-space picture, the expectation value of this operator is

<.\.>= -f (.r' + p2 _ 1) W(x.rp)d.rdp. 10)

The expression for N2 is more complicated because there is a term proportional to
x 2p2 . We obtain:

1/ ,Hr +p 2 -) -1> il'(.r.p)dxdp. (1
<.N,2>= I {(,r2 + 1) 2 1 (1]))d d)

In the single mode squeezed state, it was observed that every squeezed state can
be represented by the Wigner function of Gaussian form localized within an elliptic
region in phase space. If the region of localization is a circle, the Wigner function
corresponds to an unsqueezed coherent state. The circle centered on the origin is
the vacuum state. Without loss of generality, we can obtain every squeezed state by
squeezing the vacuum followed by translation. Every squeezed state is a translated

i

L
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squeezed vacuum. If J0 measures the total tumber of photons,[8] then J 3 measures
the differencc between the photon numbers of the first and second kinds. In terms
of the expectation values of N 1 and N2 this is

<Ni> = < Jo + J 3 + 2)>= 2J(x +p• - 1) V'(X -x 2, p, -p2 )dxldx2dpdp2 ,

<N 2> = <(J - J3 + 1>= -J(x2 + p- 1 )W(xi, x 2 ,p 1 ,p 2 )dxldx2 dpxdp2(12j

Likewise.

<X> = [ [(4X2+ I2 _)2 H 1 W(X1 .x,p 1 .Pjd.1 d 2dPjdP2.

<N2 > 4 2J {(2 +±P, - 1)2 ~1 IV'(.rj.r 2 p.p1. 2)d.rldx2dpidp2 .

<NN> = x +p 1)II'(.rl,x 2,pP,p 2 )dxidx2 dpldp2 .(13)

These quantities are needed in calculating the photon number variations:

<(AXN )2>. <(A.\*1)2>. <(A \'2)2> , 11
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Wigner Formalism for Quantum Statistics of
Nonrelativistic and Relativistic Anharmonic

Oscillator Systems

Ch. Zylka and G.Vojta. Sektion Physik. Universit it L(~pzig

In recent years, there has been growing interest in the foundations, extensions.

and applications of the Wigner phase space formalism of quantum mechanics [t]. An

importent advantage of this fori..alism is the possibility to calculate exactly partition
functions of quantum statistics by means of a phase space integration without the
necessity to determine the energy etgenvalucs of the system considered or to sum up

the series of corresponding Boltzmann factors. In practice. a suitable tool for the
evaluation of exact quantum corrections to the classical partition function -Ind to

thermodynamic functions is given by the Wigner-Kirkwood series in poWCýis of h2 .

The purpose of this contribution is threefold: Firstly. we generalize the \Vigner-
Kirkwood series expansion to include relativistic systems. Secondly. we give a survey

over varios anharmonic oszillator systems the partition functions of which can be

calculated in terms of well-known special functions ( e.g. Bessel functions. Kelvin

functions, gamma functions and parabolic cylinder functions ).Thirdly. we thus in-
dicate the applicability and utility of \WIgner formalism.

The relativistic quantum theory in the \Vigner formalism has been treated in

a number of papers for equilibrium as well as for nonequilibrium systems. The

nonequilibrium processes considered range from multiparticie production and kinetic

theory [21 to cosmology [3]. There exist only a few papers on relativistic phase

space quantum mechanics [4-8 and equilibrium quantum statistical mechanics [9].
cf [10,111. In this paper we develop a frame-dependent Wigner formalism using the

so-called synchronous gange [12], i.e. a comoving frame.

Let us consider a system with one degree of freedom and the Hamiltonian ope-
rator H and the Boltzmann operator Q = xp(-3H) . 3 . The Wigner

equivalent of Q given in the coordinate representation is defined as

.fb(q.p: 3) dý dP/ tl (q - 2 q + 2 (1)

and the partition function is represented by

Z =ffdqdp Q.(q p:,3i (2)
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The Bloch equation for the evaluation of Q,,. reads
_ h

D 2"(q'l: ') - tl,(q.p) cos(- Q,,(q.p:3) (3)

where H,, is the Wigner equivalent of H/ and A denotes the symplectic differential
operator ( Poisson bracket operator

6j dj
.A d- (4)O~p dq dq Op

Let if = f/u(p) + -'(q) with

Ho(p) = /(ro 2 (+ ple2 - Muc2  (5)

then H,, (q. p) = Ho(p) + l(q) . The Wigner-Kirkwood series is

Z 2h = ] dqdp{j.p - .1(11o(p) + l(q))} I h 2'" 4D,(q.p: .1) (6)
-0

with (D = 1 . Solving (3) we get

S(q. p..) 1 - I U + 1 .13(t 111; '"2 + 117 ") (7)

(q p 24(7

with H, = DHo/Op . U" = M'/0q etc. By use of the substitution p/me sinh u
we first perform the p-integration and get after some algebra , cf. [10] . Z(q) =

Zo + Zl(q) with

7a = 7r mc Kl(3`.•m)()

ZI (q) = h2 1h-s321''1+2- 3 9

where A represents a linear combination of Kelvin functions ( modified Hankel func-
tions [13]

I",.( 31c 2 ) = -. ,h (oI, n du .1 3 1 . . ... (10)

0

The full partition function up to the first (Iiiantum correction. proportional t,• h-
and relativistic corrections with second and fourth order in p/mc can now be

calcula•ed lY the q-integration of (S). (9) using the potential function V(q) of the
svstem to Ibe (oisid dered. Eq. (9 ) is a main result of our l)a)per : for a more delailed
exposition cf. 10. 11 The discript lon of nonrelat ivist ic (plant tun systvixis can be
obtained by performing the suitable limit or directly by use of I"1,ý = p2"/2w insteCad
of (5)
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As an example we take the symmetric relativistic quantum Toda oszillator with

V(q) = Vo (coshaq- 1) (11)

One gets the part:tion function Z = Zo + Z, with the classical part

1 3smc
2 mcb

Z( f - n eK 1 (3mc 2) a 2 Ko(3Vo) (12)
7rh a

and the quantum part

rh2  C 3,n2 K6(3Io) 32 j63 v B (13)

where B is given with K, = K&(3mc 2) v 1.3.5 . by

B 1206 _ 93 , 15 rc53. 6K,+71K3 7 -- h 1 (14)6 = •128A 128'i +2 1-[ -A 1 + -A 32-A 5 ].
6 -128 +72 128 12 16 16 16

For the nonrelativistic Toda oscillator see [14]. Singular and so-called isotonic oszil-
lators with the prototype potential

V(q) = -)2 (15)
a q

are treated in [15] and yield partition functions containing modified Hankel functions

,E.12(23to) with half-integer index. For systems of restricted rotators or particles in

multiwell potentials the partition function Z contains modified Bessel functions [16].
The partition functions of the full relativistic quantum Toda chain contains gamma

functions, and those of polynomial oszillators and double-well systems parabolic
cylinder functions ( 'Weber functions or modified Hermite polynomials ) . From the

partition functions the thermodynamic functions can be obtained in a well-known
manner. More detailed papers are in preparation.
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Wigner distribution function on a graded phase space
and its application to optical systems

Sumiyoshi Abe(a) anid Norikazu Suzuki(b)

(a) Institute for Theoretical Physics III. University of Erlangen-Niirnberg.
W-8.520 Erlangen, Germany

(b) Max-Planck-lnstitute for Nuclear Physics. W-6900 Heidelberg, Germany.
and Department of Physics. College of Science ,and Technology.
Nihon University, Tokyo 101. Japan

Sixty years ago. Wigner [1] has shown that the quantum expectation value of an
observable can be expressed in a form similar to the statistical average of the corre-
sponding classical quantity with respect to a distribution function on phase space.
Since this discovery, a lot of works have been done on the phase-space represent at ion
in the literature [2]. However. inclusion of fermions or spins is still nontrivial.

Recently. we have developed the phase-space represent at ion of a fermnion by using
the Grassmann variables (G-variables) [3]. We have defined the Wigner distribution
function (WDF) of a fermion as

|lIf(J,,.'
3 ) = Trg[fi~f._f(3 3, •)]. (1)

Here ,b- is the density operator. The fermionic \Vigner operator .Af is given by

._(.I. Y) = Jd2<exp[(jbt -. fl( - Q(b,- 3)]. (2)

bt and 6 are the usual creation and annihilation operators of a fermion. .3 and .3
are the corresponding classical phase-sl)ace (i-variables. The Berezin integrations
over G-numbers [4] are normalized as follows:

J d'( ((' = 1. J d2( (=J dý(- = 0. J (2( = 0. (d12( d( do. (3)

The symbol Tr, in Eq.(l1) denotes the graded trace operation. In terms of the Fock

basi {10). I) = 0t10)). it can be expressed as

ern(th ) = E trac operation tr )

We note that., not with the standard trace operation but with the graded trace
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operation, the \Vevi correspondence can be established in the fermion theory:

A(3, 3*) = Tr[A.(b, bf) Aýf(43, 3)], (5a)

,i, (b.') = dd23 A(3. X) Af(3, X). (3b)

where A•, and A are a \Veyl-ordered operator and its corresponding classical quantity
in phase space, respectively. The quantum expectation value is represented in the
form of a statistical phase-space average:

(A,,.) = Tr[hf.,] = d23I.'f(3. 3)A(3, 3"), (6a)

.4(3, 3*) - d 2(exp[2(.3( - C.3)]A((,(f). (6b)

A is not directly equal to A but its G-Fourier transform. since the quantum expec-
tation value is defined through the standard trace operation. Thus we see one of
the qualitative differences between boson and fermion theories.

In what follows, we extend the above formalism to a coupled boson-fermion
system and examine its possible application to the kinetic theory of an optical model
[5]. Let us discuss it by employing the Dicke model of a two-level atom interacting
with a monochromatic radiation field. The system Hamiltonian is given by

/H = wta + I + g(it + i)&.. (7)

where the usual creation and annihilation operators. 0i" and h, and the Pauli matrices
denote, respectively, the radiation field with frequency Q? and the atom of level
distance ,. g is a coupling constant.

To apply our formalism to this system, we represent the atom variables in terms
of the fermionic oscillator variables. A simple method is the substitution: 6-,
cbt o_ -* be, b -- 2btb - 1. [&± =_ l(a'±iy)]. where c is a real Clifford c-
number having the properties; c2 

- 1, cbt + Pc = cb + bc = 0, c3" + 3"c =
c3 + 3c = 0. Under this substitution. the Pauli-matrix algebra is kept unchanged,
and, furthermore, each term in the Hamiltonian becomes statistically bosonic. Thus.
instead of the form (7), we employ

Iif/= fqi"I', + ,,(bf• h + g(af + h•)(cbf + be). (8)



442

Now the total WDF of the system is given by

W(o, o', 3,?3*) = Trg[XAb(o,.o )Af(3, .3)]. (9)

where Ab is the ordinary- bosonic Wigner operator and o's are the complex phase-

space variables. The standard trace operation is understood for the boson part.

In the Schr6dinger picture, the WDF evolves in time as

0 = - iTrg{[/,l._b._r} -iTr,[Ab-fI/M] + iTrg,[MItb-f. (10)

provided that the cyclicity property of the graded trace operation (4) has been used.

By virtuie of the operator correspondence relations

-fbt = (P* +-b -- )V (+1at = (c- .~)b. =,"+20 W31

and so on. we see there always exists the operator L satisfying

Ab-fH=--L, 0. 0 3.3. 0d),3b.0 f. (12)

Therefore we obtain the following generalized Fokker-Planck equation:

__"+ L IW" + =L" 0. (13)

This equation may be regarded as a certain superfield equation defined on the graded
phase space (o, o., 3. ý3).

As can be seen. the WDF (9) depends on the fermionic variables only through
the combinations. 3c and c3'. Therefore. the expansion of the \VDF in terms of
these nilpotent variables has the following form:

UV = 4t{o(0.o) + l'(o.o)3c+ H'(o.o'c3 + W12(0'0-)333. (14)

In Ref.[5]. it has been shown that a set of these coefficient functions gives the phase-
space representation of the effective theory for the radiation field.

Substitution of Eq.(14) into Eq.(13) leads to an identity, which gives rise to the
following set of equations:

I
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+ + a a( aa
-aj-- +i[{Ql(o' -° °--)-)+}l•+g{(--- - )a~ a+) 2 ] 0 1b

To aa 5W- aa)1"'+V"']=0

aw, + ~la a a a (9a4
+i-{--t-n a - 0g " - o)W0+(Q+a+ol') 2}] = 0, (15c)

--- + i[S(nŽ-. - a )V2 + 2g(, + a')(w, -IV ')= 0. (1.5d)

This set of equations determines the effective dynamics of the radiation field.
In this note, we have constructed the WDF on a graded phase space and ap-

plied it to the kinetic theory of the Dicke model. This has also a meaning of the
phase-space representation of SU(2) spin with the complete Weyl correspondence.
Recently, the optical models with two-level atoms have been revisited in the con-
text of supersymmetry [6]. In the present approach, the atom and radiation field
variables are treated on a completely equal footing with each other. 'I herefoit. -;c
expect that this approach enables us to discuss such a symmetry geometrically on
the phase space. In the case of the supersymmetric quantum mechanics of Witten's
type, such a discussion has been actually developed in Ref.[7].

One of us (S.A.) acknowledges the Alexander von Humboldt foundation for sup-
port. Another author (N.S.) acknowledges Profs. J.Hiifner and H.A.Weidenmiiller,
and Max-Planck-Institute for Nuclear Physics for the hospitality extended to him.
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EXACT XVIGNER FUNCTION

OR SOME NON'QUADRATIC
QUANTUM SYSTEMS

E.A. Akhundova and V.V. Dodonov
Institute of Phys.. Baku. Azerbaijan Republic:

Moscow Physics Technical Institute,
Zhukovskiy, Moscow Region, USSR.

The explicit expressions for the Wigner functions [01 of quantum systems with quadratic Hamil-
tonians were given in refs. [0]-[0]. The case of the quantum particle motion in the potential field
U(z) = -Fx, x > 0 under the presence of an ideal reflecting wall at x = 0 was investigated in [01].

Here we obtain the explicit expression for the equilibrium Wigner functions of two nonquadratic
quantum systems and analize their various limit cases.

Let us consider first the one-dimensional motion of a quantum particle with mass m in the
following potential

U(z) = 0 if 0<.X<u
U(x) = ,xý if x>_u, x<_0 (1)

The exact Green function of the Schr6dinger equation with this potential was found by Pauli [0].
The explicit expression of the equilibrium Wigner function in this case has the following form

[0]:

W(p,q,3) = (-h) J ,in[?-2y] c

ap s/ h a

= 2 cos[-P--1 (0, e--) dy - A qsin[ p-]O, (I.ec'-3 (2)

where ", = --. 3 -- (T) and 01(v. r) is the derivative of the theta-function 0 3 (v. r) over the
first argument v.

In particular, near the wall (when q - 0) we get the following expansion,

2 q 3 • 1 I - ;3. , 2Yq)W (p,q - 0, 3) = - 3 {- 3( e I _- -3-(0 +e.

T-07 •)(o, e-3
)a e ) +.. (3)

Note, that this expression starts from cubic terms on coordinates. Moreover, this expression changes
its sign: when pq/h < l it is positive, while for pq/h > l it is negative.

The Wigner function for the half space can be obtained by making the asymptotic transition
a - x in (2).

W (q,p, 3) = exp[-3p2 /2in]Re erq n + )1/2

2w 3V 2p2rm )1/.2sin( 2mq) xp -ýý

(4)

where the error funtion erf(z) ist defined as follows.

erf(z) = 2 exp -t 2 dt.
70/
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The right-hand side of (4) leads to the classical distribution function if inq
2

/3h- , 1, i.e. for the
distances from a wall which are much greater than de Broglie's wave length.

The second system is a particle moving in a one-dimensional delta-funtion potential. The Hamil-
tonian is as follows,

p2
H = 2- -a6Wx

2

The propagator for this problem was obtained in [9-11]. The equilibrium Wigner function has the
form:

W(p,q, 3) = exp(-p 2
3/2) +

+ exp(-2qa + a
2

3/2)erf ( 2q - a(3/2)'/2) sin(2pq) +
p (23)112 /

+2 exp(-a 2
'3/2 - p -3/2)Re ( -3 + - +[ a + ip

(23)1/ a+ 'P

The asymptotic expression in the strong field case (a - x) of the Wigner function (5) is

W•(q,p, 3): exp[3p 2
/2]- (3 / 2 )-1/-sin)2I) exp(-2q2

/3) I- _q ] (6)

In the weak field case the following expansion (a - 0) can be derived from (5):

Wo(p, q. 3) - exp(-p
2
3/2) + sin(2pq)![(1 2))

(2q + + (3/2)1/2) a2

(2;3)1 /2

+ (2q2 + --L/2 + 2q(3/2)1/2) a3 
+ ... ] (7)

Comparing expression (6) with the analogous expression for the Wigner function of a free particle
moving in the half space [6] we see that they do not coincide because the delta-potential is a half-
penetrable one.
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ON THE POSITIVENESS OF THE SMOOTHED WIGNER FUNCTION

D.M.Davidovic and D.Lalovic
Laboratory for Multidisciplinary Research 180/2, Boris Kidrich

Institute for Nuclear Sciences, Belgrade, Yugoslavia.

Wigner function was for a first time introduced in 1932 for a
treatment of quantum correction to thermodynamics [1]. It found many
applications afterwards, and by its use the phase space formulation as
one of the equivalent representations of quantum mechanics was
established. Although defined as an ordinary function on phase space,
which plays the role analogous to that of classical distribution function
[2], Wigner function can not be directly interpreted as a probability
distribution function because, in the general case, it is necessarily
negative in some regions of phase space.For an indirect probabilistic
interpretation, a non-negative phase space function, related to Wigner
function, is necessary. One example of such a function is Husimi
distribution function [3] which can Le represented as a Gaussian
smoothing of Wigner function in phase space.

From early sixties [41 it was generally assumed, as most clearly
formulated in [5] and quoted again in relatively recent review article
[6] without comment, that Wigner function "once smoothed out over any
phase space region of dimensions larger then or equal to unity (= h ) is
always positive and smaller than one". In the review article on Wigner
representation of quantum mechanics [7] it was claimed that averaging of
Wigner function on finite phase space cells gives always non-negative
results. To prove this, instead of direct averaging over finite phase
space cells, the author performs Gaussian smoothing, tacitly assuming
that both procedures give close results necessarily of the same sign.

Wlodarz [8] in 1988 proved that, in the general case, it is not
possible to obtain a non-negative function on phase space by averaging
Wigner function over finite phase space cells. This conclusion was
directly related with the discontinuity of the characteristic functions
of the corresponding cells at their boundaries. Recently de Aguiar and de
Almeida [9], in a detailed and thorough analysis of Wigner function of a
particle in a box, have shown that averaging it on a rectangle in phase
space of area greater than 2nh one can obtain negative values. When
representing the characteristic function of a rectangle as a sequence of
analytic functions, they noticed that this result in their concrete
example remains valid even if the smoothing function is continuous on the
boundary of the non-zero region In this way they found one example to
which Wlodarz's proof, strictly speaking, does not apply.

In the present work we give a simple proof that whenever smoothing
function is zero outside a finite phase space region, but arbitrary
otherwise, the smoothed Wigner function, in the general case, can not be
non-negative.

For simplicity we shall restrict our considerations to one dimensional
case, and in what follows we shall put h = I.

For pure state Wigner function is defined as [2]
(W(q,p)=1/m f., (q+y)Oa(q-y)exp(2ipy)dy. (1)
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From this function the probability distributions in position and momentum
coordinates can be derived [2]:

I@(q)j = Jw(q,p)dp (2)

2
1ý(p)j = JS (q,p)dq (3)

where ý (p) = 1/n fo(q)exp(ipq)dq is the momentum wave function.
The absolute square of the scalar product of two wave functions Ok

and 0n may be expressed through their Wigner functions as

2
<'1Pk Ion >1 = JXWk(q,p)Wn(qp)dqdp.

This expression is zero when the two wave functions are orthogonal to
each other, what shows that Wigner functions, in the general case, can
not be positive everywhere in phase space. Due to this fact, the problem
of smoothing arises.

The conditions which the smoothing function f(q,p) must satisfy in
order that for every Wigner function the relation

P = f f(q,p) W(q,p) dqdp a 0 (4)

holds, were found in [2].There was shown that the smoothing function
f(qp) must be of the form

f(qp) = E Ak Wk(qp) Ak >0. (5)
k

In other words, f(q,p) must be, up to a multiplication factor, a Wigner
function.

Now we shall prove that such a function can never take non-zero values
on the finite part of phase space only.

Supposing the opposite, it would be always possible to find such qm

and pm that whenever at least one of the inequalities Ipj>pm or lql>qm is

satisfied one could write

f(q,p) = 0 = E Ak Wk(q,p) (6)
k

Taking into account the relations (2) and (3), after integration of (6)
over p and q one would have, respectively

0 = E AkJok(q)I2 jqi > qm (7)
k

0 = E Ak ik(p))2 (I > Pm (8)
k

(A k> )

However, (7) and (8) can not hold simultaneously. If, for example, (7)
were satisfied we would have

Ok (q)= 0 for Iqi > qm
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and +q m

Pk(P) = f 0k (q) exp(ipq) dq. (9)
-qm

The last equation implies the existence of all the integrals

+q m
f qn Ok(q) exp(ipq) dq

-q m

for arbitrary n and p. This means that 'k (p) is an entire function of p

and as such can not be zero on a segment, what is required for the
validity of (8). This terminates the proof.

Our result shows that smoothing of a Wigner function over an infinite
instead over a finite region of phase space, in order to get a
non-negative smoothed Wigner function, is not just a matter of
convenience or a matter of choice, as it is often, explicitly or
implicitly assumed [5,7], but is a necessary condition for getting a
non-negative smoothed Wigner function. We think that this fact should be
taken into account, in an appropriate way, in all endeavors to give a
probabilistic interpretation to the non-negative smoothed Wigner
functions.

REFERENCES

[1] E.P.Wigner, Phys. Rev. 40 (1932) 749.
[2] M. Hillery et al., Phys. Rep. 106 (1984) 121
[3] K.Husimi, Proc.Phys.Math.Soc.Japan 22 (1940) 264
[4] H.Mori et al., Studies in Statistical Mechanics vol I, ed J de

Boer and G E Uhlenbeck (Amsterdam:North Holland,1962)
[5] D.Iagolnitzer, J.Math.Phys. 10 (1969) 1241
[61 W.Muckenheim, Phys.Rep. 133 (1986) 337
17] V.I.Tatarsky, Uspekhi Fizicheskih Nauk (in russian) 139 (19S3) 587
[8] J.J.Wlodarz, Phys Lett.A 133 (1988) 459
[91 M.A.M. de Aguiar and A.M.O. de Almeida, J.Phys.A:Math Gen. 23 (1990)

L 1025



450

THE PHASE SPACE REPRESENTATION OF QUANTUM STATES

AND THE GIBBS ENTROPY
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1.Introdu-tion. The uncertainty principle of Duantum Mechanics (0M) is

a fundamental conc,,Dt of the theory since it represents the breakdown

of the possibility, that exists in classical physics, of a

simultaneous measurement of physical observables with arbitrary degree

of accuracy. OM introduced a fundamental limit on the simultaneous

knowledge of observables, formally represented by noncommutative

operators, which cannot share the same set of eigenstates and for some

state IV>, the product of their variances has a lower bound. The

concept of entropy permits to introduce an alternative approach to

represent the amount of uncertainty that is contained in a state

The aim of this contribution is to discuss the use of the

Squeezed-Coherent States (SCS) within the entropy formalism since this

is an adequate representation for noncompatible observables with
2

ontinuous spectrum (generators of the Weyl-Heisenberg group) .

2. The Squeezed-Coherent States and the Squeeze Operator

Ihe squeezed-coherent states are defined as,

lpq;y> := D(pq)S(y)jO> (1)

where 10> is the vacuum state,

D(pq) exp - qP(2)

is the phase space displacement operator and the squeeze operator is

Lry) = exp [-- , (3)

where the real squeeze parameter y controls the sharpness of the

states. The squeeze operator transforms P and 0 by simply introducing

a scale factor, S(y)QS'(y) = e-yQ , S(y)PS*(y) = er-P. Therefore. S(y)

squeezes c- streLches 0 (for y positive or negative, respectively),

but keeps the product PO invariant.

3. The Differential Equation of the "Projection" Operator Ipq~y)<pqgyJ

Let us consider the "projec ion" operator

ý(p~qy)= Ipqy><pq,yj. (4)

For any a dersity matrix p, P(p,q;y) = Tr pY(pqy) 0 0, while tor a

pure ,tare, p IW><V'1,
P (pq;y) 0 I<pq,ylk>12. (5)

, h3
P(p,q,y) has the important property
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q + 2T ap 2 -- aq

S) he- 2 (p,q,y) (6)
= ah a + 2e Z ap

which permits to verify the partial dif'erential equation

at le2 aY'2  
_he 

2 Y a 2
ay Pq;y) L 2 o 2(pq; y). (7)

2 dq 2 apz

Therefore, for a square integrable wavefunction p(x), P (p,q;y) is a

solution of the partial differential equation

k PW(P~q;\) 
2__ 2

aX 4 3 (8 )ý2 P P

This equation is similar to a diffusion equation in two

dimensions, where the parameter X plays the role of time. However, the

diffusion coefficients, 1/4 and -1/[4'.1), have opposite signs, so it

describes a diffusive process in the q-variable and an "infusive"

process in p-variable. For this reason it is called pseudo-diffusion

equation"". p and q have been made dimensionless and -y. The

coefficient of a /aqz depends on \, in such a way that for X < 1 there

is more "infusion" (1/.1 >1) than diffusion and the other way around

for X >M. Considering <liw> 1, the probability functions P (p,q;\)

have the properties, j)O -S P Ip,q;\) <- 1 , ii) P (qp;X\-), P (-p,q;'.)

and P (p,-q;A) are also solutions of the pseudo-diffusion equation.

4. Phase space entropy functionals

In probability theory two correlated random variables have their

probability distribution represented by a joint distribution function

rather than by two independint ones; also in UM the SCS permit to

associate to each state 1, > the probability density function

P lp,q;'), whereas the marqinal probabilities, 0 (q; X) and R (p;ý),

arr, obtained by integatinq on only one variable at a time.

As Wehrl s entropy for C5, which in the limit t. --. 0 goes to the

classital Gibbs entropy, we introduce a class of functionals for the

SCS, whc-r*- the jOint entropy or p-q entropy is given by

5 (,) _ - _d-pdq - '( p,q; ') In Pl(pq; )'1 (9)

while the marqina) entropies, S {() (q-entropy) and S ij() (p entropy)0 3

are defined similarly although the functions in the integral are now

the marqinral probabilitie,. The conditional entropies are defined as

5 (1) - (5 ) 1; (') and 0( - S (.) - S (X). (10)

Compar in(J these equat l(ins one can establ ish the halance equation

p, k Pu
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which is the only conservation law that one encounters in the entropy

formalism. Some inequalities among these functionals can be verified:

Any pair (x,y) of non-negative variables satisfy the Klein

inequality y In x - y In y - x - y < 0, then if we consider

y = P (p,q;k) and x = R(p;X)Q (q;\) and integrate on both variables,

p and q, one obtains

S (X) 5 S.IN) + S (,\), 1121

which means that the sums of the marginal entropies contains less

information (about Jw >) than the joint entropy which becomes a lower

bound. The equality holds only when the variables are uncorrelated

which is to say that the function (5) factorizes as R(p)Q(q). Now

comparing eqs. (10) - (12) one arrives to the inequalities

S 1k) 5k S (1 ) , S (k) < S (4). (131
-< P.R - ( 3

Therefore the conditional entropies contain more information than the

marginal entropies and they become equal only when the variables are

uncorrelated.

It is useful to define the p-q correlation functional ,

C (k) -- S (k) - S (K) = S.(0) - S l(,) = So(>,) + S (x) - S Ii) (14)

which has the properties of symmetry and positivenem,. The p-q

correlation is zero when the joint probability factorize, r1d t alue

grows as the correlations become more manifest.

When one variable determines the other exactly the co.iditional

entropies become zero, implying that the joint and marginal entropies

are equal, and the correlation becomes equal to the marginal entropies

5. Illustrative Application and Discussiovs

We cvnsider the 1-d harmonic oscillator wavefunctions, which,

have associated the probability distribution functions'

p (p,q; K) - 2ki'z -• -I 111-1)' L: -
2

H q__-
( ++1)

o '0 (15)

× L ...1, ;2p _ ep q÷p

where the Lk are the associated Laguerre polynomials. For I =

the P 's goes to the familiar Poisson distribution, so they are called

Generalized Poisson Distributions. See Figs 1,2 for P and P for

1 one verifies that the symmetry present for X = 1 is broken.

In Fig 3 the entropies are plotted as function of x, the joint

entropy (solid line) and the sum of the p-entropy and q-enlropr

(dashed line), verify the inequality (12); for n ý 0 both curves

conncide while for n X 0, the curves merge only in the limits
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N 0. implying the existence of correlations that are absent for

the ground state wavefunction. For N, = I (Glauber coherent states),

all curves attain their lowest value because the p-cl uncertainty

becomes a minimum. So one can appreciate the role of k, as it squeezes

or stretches the fundamental cell from its optimum value, XN 1. the

map blurs the information contained in Lhe wavefunction; in the

limits, kN 0, OD, the entropy becomes infinite and the phase space

becomes useless for providing information on both variables, jointly.

It Is worth to remember that independently of how the fundamental cell

is deformed its area h is always constant. In Fig. 4 the

p-q correlation attains a maximum value at X = 1, then decreases in

the extremes. Thus, one verifies that while the joint entropy attain a

minimum value at X = 1, for n X 0, the p-q correlation attain a

maximum; the only exception being n =0 which is zero because the

joint distribution function factorizes as 0 (q;\)RO(p;NI).

0-2 0

00
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NELSON'S STOCHASTIC MECHANICS AS
THE PROBLEM OF RANDOM FLIGHTS

Piotr Garbaczewski

Institute of Theoretical Physics, University of Wroclaw,
Cybulskiego 36, 50-205 Wroclaw, Poland

In the framework of Nelson's stochastic mechanics1' the notion of a particle
path can be given a well defined meaning in the configuration space. We can
view it as a sample trajectory followed by the mass point undergoing a Markovian

diffusion process in R 3 with dynamics constrained by the second Newton law in

the conditional mean. Leaving aside the problem to what extent a particular so-

lution of the respective stochastic differential equation with constraint is capable

of simulating a genuine point particle path in R 3 , we are left with a persuasive

representation of each Schrfdinger wave function by a collection of sample propa-

gation scenarios. (12) To understand this classically motivated stochastic model of

quantum phenomena on physically deeper grounds it appears necessary to reveal

a random phase-space propagation, whose configuration space projection would

imply stochastic mechanics.

The phase space route was originally abandoned by Nelson in his expository paper

(30) although it was clearly stated there that "the situation appears to be related

to diffusion processes in fluids with currents flowing in them". In fact this hydro-

dynamical aspect of the quantum mechanical formalism found a detailed analysis

in the papers by Takabayasi. (4") The only serious attempt to derive stochastic

mechanics from a random phase space model belongs to de la Pefia and Cetto, ("
but it was finally re•uced to the search for restrictions on the formalism which

would give rise to the Wigner distribution. Apparently, the Wigner function is

one only()7 (though best known to the physicists) example of the joint phase space

(listribution, unfortunately not everywhere positive and not a solution of the dif-

fusion equation.

In the present note, we wish to report that12 8 random phase space motions gover-

ned by white noise without friction, induce a diffusion equation, which if constrai-

ned by the appropriate equation of state (terminology borrowed from the kinetic

theory of gases and fluids) implies:

I ) Madelung fluid equations known to cilracterize wave functions of Schirdinger

mechanics in the nonrelativistic case
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2) Local conservation laws characterizing the positive energy solutions of the

Klein-Gordon field in case of relativistic Markovian diffusions.

Let us recall that in the nonrelativistic situation the white noise Langevin problem
without friction:

di _ Ti d F +F,3(t) < 3(t) >= o
dt m di (1)

P = -VV, < Oi(t),3j(t') >= (6,6(it - t')

implies the following evolution equation for the joint position - momentum proba-
bility distribution associated with the statistical ensemble of diffusing particles

, + P V,.t + PVA = _A14,' (2)
m (2

The white noise amplitude is not specified and i, take values in R3 x R 3 .

By introducing the marginal distribution p(i,t) = f dp 4(i4, , t) and local mo-

ments <- pi >= f.d'p p,•(i,j,t), < ppj >= fdap pip,$(iF,t) of 4 we impose
the following constraint (which is a direct analogue of the equation of state tra-

ditionally utilized in the kinetic theory of gases) on the adnmissible solutions of
(2)

1
< P.pj >= - < Pi >< P, > +Mt2pi

P
(3)

P i = - (,)Pv(i,t) 0  % Inp(i,t)

Let ' =< i) > /pm be an irrotational velocity field, then the constraint (3) relates

first and second moments of 4(i,1 ,t) with p(i,t), and in the infinite hierarchy

of local conservation equations (for moments) induced by 4 it transforms the

first two equations into a self-contained (closed) system. Its solution does not
involve an explicit form of the joint distribution, and given the initial position and

first moment distributions, we have uniquely determined p(;i, t) and < 5ý > (i, t)
together with P.j(zF,t) for all times. Under the assumption that (2) and (3) are

compatible, we recover then Nelson's stochastic mechanics.(')
The interesting situation is here obtained by comparing the Langevin problem

(1) with the Nelson's diffusion

h
dX (t) = (d + 6)(X (t), t)dt + - dW(O)

m
FI

-(X(t),t) = D_±D + DD+)X ()
(277 1 +V) (4)

V V ( -2 2 div d)
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where W(t) is a normalized Wiener noise in R ' . Although (4) generates wildly
random trajectories in R3 they cannot be identified with the individual particle
paths in the sense of (1). The drift b = F + F7 entering (4) indicates the local flow
tendency of propagation and comes from configuration space conditioned moments
of the phase-space probability distribution •(i,5,t). Hence is definitely not the
individual particle velocity consistent with (1). In the above the joint distribution
is not specified completely by the continuity and momentum balance equations,
and quite strong additional restrictions would be necessary to replace it by the
Wigner distribution in our formalism. At the moment no explicit phase space
solutions of (1)-(3) are available, but the mathematical structure of previous ar-
guments makes it plausible that the set of solutions is nonempty and sufficiently

rich. One should here consult how solutions of the Boltzmann equation are loo-
ked for. Higher moment equations were not exploited at all in the above and they

are non-trivial.
However, one should realize that the level of difficulty in obtaining explicit so-
lutions of the diffusion equation (2) is similar to this encountered in case of the
Boltzmann equation, or in search for general solutions of the Kramers equation,
see e.g. (') for an analysis of the innocent looking equation wt = u. - Xw., arising

in the analogous (random accelerations) context. In our investigation, the absence
of friction locates the problem in the domain of the non-equilibrium statistical
physics.

Let us pass to the relativistic generalization of the above observations. It is
instructive to notice that the left-hand-side of (2) would precisely represent d,/dt
in case of no noise. By passing to the finite difference approximation with small
time increments, we can evaluate the net change of -t due to noise in the time
interval At, as follows:

In case of the relativistic invariant phase space distribution f(x,p) the role of At

is taken by the proper time increment cAt = yAt with -y (1 -2), F =

Then (4) should be replaced by:

f (x p Ar, p FAr) - f(x,p) (noise term)A7 (6)

where
x - (ct, ;), p _ (pp, l, p p • pt 2 . m)c5 2

p m I rncu v m P M•u n? - M

F ?ncbu p½< ', 0
Fr

1

L..
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Apparently the noise term in (5) must be a relativistic invariant diffusion generator

coming from the assumption that a Markovian random walk is taking place on the

mass m hyperboloid.

The pertinent diffusion equation reads:

cu 6,,,f(x,u) + P" 0 fXU) = ALBf(x,u) (8)

where the Laplace-Beltrarni operator on ulu, = 1 is given in the hyperbolic para-

metrization as follows:

ALB = sh'- (Orsh2r 19 + I a¢2 (9)

sh~r r 5,1 -sin 80 50- -Sin2o aO

With the notion of the configuration space conditioned local moment v,(r) =

Sj'ujf(x,u)d3 u/L') we arrive at the continuity and energy-momentum balance

equations:

8,, (pv") = 0 (10)

OT' = pF" or pFl'v, (11)

which upon:

T,' = mc,2pv"O' +J f(x, O)m c-2 (U, v,,)(u' --v')d 3U/u,, M C2 (PV'"+'4 + ) (12)

and imposing the equation of state (osmotic) constraint:

-= p(,,) ,np (13)

give rise to the equation:

m - A,, (O'S -cA'I {(e- "Inp)( + 8 I np} M (14)

m c "I~ c / 2rn2

In case of M = mc 2 together with a continuity equation (14) forms a closed system

providing us with the positive energy solutions of the Klein-Gordon equation:

{,,--i c A,,) (9' - i C A" + in2c 'I AP(x) = 0 (15)

tinder the identification %P = exp (In p112 + , where the invariant scalar density

is given by p(x) =r '' f(X,,u).
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CANONICAL TRANSFORMATIONS IN CHANNEL SPACE
AND THEIR UNITARY REPRESENTATION:

A STEP TOWARD UNDERSTANDING
CHAOTIC SCATTERING IN QUANTUM MECHANICS

T.H. Seligman
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University of Mexico (UNAM)
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SWe define a classical scattering process in a four-dimensional
phase space as a canonical map between the two-dimensional phase
spaces of incoming and outgoing channels. Time reversal invariance is

introduced and the iterated scattering map appears naturally. Using
the theory of unitary representations of classical canononical trans-
formations the transition to the quantum problem is achieved in the
framework of a semi-classical aproximation. Families of canonical
scattering maps are defined by canonical transformations on channel
space; the invariance properties of these families translate naturally
in'o invariant ensembles of S-matrices that are unique according to
Dy.;on. The transitivity of the action of a chaotic iterated scattering
map i-.dicates that its unitary representation is a characteristic mem-
ber of tl.e ensemble and thus by way of ergodicity the corresponding
S-matrix has a distribution of eigenphases known as a COE.

The statistical behaviour of scattering processes has been of interest for many
years in nuclear physics [1], but recently it has acquired more general importance in
the context of quantum manifestations of chaos [2]. In this context one question asked.
refers to the statistical distribution of the eigenphases of the S-matrix. The interplay
between energy averages for specific models and ensemble averages for random matrix
ensembles is usually the key point of such an analysis.

Smilansky has shown [31, that in the senmi-classical limit, the two point function of
the eigenphase distribution coincides with the one of the circular ensemble of unitary
and symmetric matrices [4] (referred to in what follows as COE). if the corresponding
iterated scattering map [5] is chaotic.

The purpose of this paper is first to formulate the classical problem in terms of
classical canonical transformations that describe the scattering process and to discuss
the symmetry properties related to chaoticity of the iterated scattering map. Next we
use the theory of representation of classical canonical transformations in quantum me-
chanics [6.7]. The invariance properties derived for a family of classical transformations
can be translated to the quantum case and. due to the well known group structure of
U(n), induce in the semi-classical limit the invariant ensemble known as COE. Invoking
ergodicity we find the COE proprties for the eigenphases of every generic member of the
ensemble. Typical non-generic cases based on aditional symmetries of the problem are
discussed at the end. The entire problem will be restricted to the case of two degrees
of freedom, which is the simplest case that displays general features of chaos.
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First consider a free particle in four dimensional phase space with coordinates

(Pl,ql, P2, q2). We can perform a canonical transformation

(PIq1-P2,q2) - (E.t, Po,) (1)

to energy E. time f, angular momentum PO. and angle o. In principle this transfornia-

tion is two to one [8]. but we shall be interested in particular subspaces. The purpose
is to describe a scattering process by a time independant and time reversal invariant

Hamiltonian that differs from the free particle Hamiltonian on a compact support only.
Thus the energy is constant and the particles will be asymptotically free. Therefore we
consider the free particle for large times t ---+ c and outgoing particles as final channel
space and the same for times t -- -:c and incoming particles as initial channel space.
These are typical surfaces of section that on their own form a phase space each. The
choice of incoming and outgoing particles respectively chooses between the two Rieiann
like surfaces we have in phase space [8]. We shall call the outgoing and inconeing spaces
respectively M1 and t'and they are characterized by coordinates

(E = const., t = ±-tz. P,. o) - (P,.phl). (2)

These spaces are thus effectively two dimensional as E and t are fixed.
Scattering by a Haniltonian of the above mentioned type can ble represented as a

canonical transformation
C's : .1' 3 .

which we call scattering map.

As we are interested in time reversal invariant scattering processes we have to con-
sider the time reversal operation T. This operation is non-canonical in that it changes
Pj to -PO while simultaneously changing an outgoing into an incoming space or vice
versa. Time reversal invari'nce implies that TCsTC5 = I is the identical transforma-

tion on .M1'.
The iterated scattering map was introduced by Jungen [5] in order to be able to

use for iterated maps the surface of section implicit in the definition of channel space.

In our language we shall define the iterative map I., = TC4TCs. where CF is the map

induced by the free particle dynamics. This map can readily be iterated as it maps .t

onto itself, and its iteration is indeed identical to the iterated scattering map !51.
We now consider bijective canonical transforrmations C. of .11' onto itself. The

corresponding transformation on 3I1 is TC.oT. and we can (lefine a family of scatterint

maps -
Cso = TC'T('CS , (4)

with a corresponding family of iterative scattering maps IP. These two families of
scattering maps have lby construction a remarkable invariance property If we perform

an arbitrary bijective canonical transformation on .11' and sinmultaneously the tit,'

reversed transformation on MI the famfily of transformations C',, remains invariant.

and a similar argument holds for the iterative maps.
We now proceed to the quantun mechanical problem. To do this we follow ideas

of Dirac. Moshinsky and others [6.7], that allow us to associate unitary operators to

canonical transformations. It general these unitary operators do not represent the



462

quantum problem on hand "precisely" [9], as ordering problems will occur. On the
other hand any unitary representation we may choose will, by construction, give the

correct semi-classical limit [6]. We can therefore choose any representation in channel

space and associate a unitary operator to a canonical transformation. We furthermore

have to recall that the representation of conjugation by the time reversal operator is
simply the anti-unitary operation of canonical conjugation.

If the S-matrix S is the unitary representation of Cs then TCsTCs = 1 implies

S*S = 1 or, due to the unitarity of S, S = S'. We are only interested in those parts of
channel space, whose trajectories are affected by the non-free part of the Hamiltonian.

which was chosen to have compact support. This part of channel space is in turn

compact and for finite Planck constant will lead to a finite dimensional S-matrix. If

we further denote the representation of Cs. by S, we have a family of symmetric

S-matrices that, at least in the semi-classical limit, represents the family of canonical
scattering maps, which we constructed above.

The group of bijective canonical transformations is still very little understood and

no invariant measure is known. By consequence we cannot construct an ensemble from

the family of scattcring maps, which we defined in eq. (4). On the other hand the

corresponding S-matrices S can readily and naturally be endowed with a measure.

The invariance of the family of scattering maps discussed above, translates into an

invariance of the family of S-matrices, such that if S' is a member of the family so
is U7SoU where U is any unitary transformation that in turn represents any bijective

classical canonical transfornation. Yet this invariance is well-known for random matrix

ensembles and if we require it for the measure. that determines the ensemble it leads

uniquely [10] to one of the classical circular ensembles. also known as classical domains

[11]. namely the orthogonally invariant ensemble of unitary symmetric n x ii matrices

(COE).
Thus the family of scattering maps developed from classical notions leads naturally

to the COE. but we now have to establish under what circumstances we can expect the

individual S-matrix on hand to be typical in the sense that we can asumnme ergodicity.

Ergodicity is here invoked not in the usual sense where tiue averages are replaced by

ensemble averages. Rather we replace averages over eigenvalues by ensemble averages.

and in this sense we proceed in a similar fashion as for the energy averages commonly
considred in random matrix theory. Ergodic behaviour has been proven for the Gaussian

orthogonal ensemble [12], and can be extended to the closely related COE.

A first requisite is the transitivity of the scattering process on channel space. This

is expressed in terms of chaoticity of the iterated scattering map on .11'. This condition

is necessary because otherwise we can select some subspace of -I' such that no iteration

of I will take us out of this space. Time reversal invariance insures the equivalence of

incoming and outgoing spaces, and thus we could formulate a similar family of scattering

maps on the reduced space. This in turn induces an invariant measure on the subspace

and its complement. thus inducing a superposition of two COE's.

This leads us imediately to the next and well known restriction. In quantum me-

chanics spaces that belong to irreducible representations of a symmetry group will induce

independent invariant measures and thus lead to superpositions of COE's. This hap-

pens in close analogy to the bound case, and obliges us to consider minimal invariant

subspaces of each chaotic region of channel space.
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Even if we separate symmetry classes or eliminate symmetries to take this problem
into account, this is not sufficient to ensure COE behaviour as other types of symmetries
may also occur. Consider the map Css = CsIs wich is again a symmetric scattering
map. The corresponding S-matrix S2 has eigenphases that are double the eigenphases
of S according to the spectral theorem. If the eigenphases of S corresponded to a COE
those of S2 correspond to a superposition of two COE's. This behaviour is not particular
to the S-matrix; indeed the same is to be expected for time evolution operators conected
with periodic hamiltonians, if we choose hem over two periods rather than one. and
this has been numerically confirmed [13] for the quasi energies of the Fermi oscilator
[14].

Even now we can not be sure that we have identified all possible sources of non-
generic behaviour, though we have eliminated the most obvious ones. We have thus to
keep in mind that any property of the system that makes it possible to define separate
Hilbert spaces corrsponding to the same classically connected domain in phase space
but not connected by the quantum Hamiltonian will cause non-generic behaviour.

We can thus summarize as follows: The chaoticity of the iterated scattering map
is a necessary condition for a COE distribution of the eigenphases of the S-matrix and
furthermore generically scattering processes with a chaotic iterative scattering map have
COE distributions of eigenphases. We obtained this result using a new approach of the
concept of invariance that in a sense indicates a dynamical symmetry. because we use
the ergodic behaviour of the orbit to create an ensemble which by a second apparently
independend ergodic hypotesis gives us results on energy averages. The dynamical
aspect of this symmetry lies in the fact that the two ergodic behaviours must still be
more closely related, which is not done in this paper. The main difficulty arrises from
the appearence of other symmetries wich have to be globally understood to define the
generic case properly.
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INTRINSIC IRREVERSIBILITY OF QUANTUM SYSTEMS
RIGGED HILBERT SPACE FOR THE LEE-FRIEDRICHS MODEL
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Resonances in quantum systems with continuous spectrum as in scattering or in interact-
ing fields, give rise to divergencies in the conventional perturbation algorithms which should
solve the Hamiltonian eigenvalue problem. These quantum resonances are of the same na-
ture with the classical Poincar6 resonances1 of large systems 2 3

,
4 which prevent the analytic

integration of Hamilton's canonical equations. However, a natural time ordering of the dy-
namical states leads to a rule for analytic continuation of the perturbation terms according
to the processes they represent. The rule may be seen as a boundary condition. nessesarv to
guarantee the uniqueness of the solution of the dynamical system with continuous spectrum,
i.e. as a generalized Sommerfield radiation condition. The construction developed'5 6 by the
Brussels-Austin school, directed by I. Prigogine, not only integrates the system, but also leads
to a representation of dynamics in an extended space, where the Hamiltonian has complex
eigenvalues and the generated evolution is split into two semigroups , one decaying in the
future and the other in the past. Irreversibility emerges then, intrinsically as the selection of
the semigroup compatible with our future obsevations. In the case of the Friedrichs model,
a suitable mathematical framework for the time ordering construction is provided by the
Rigged Hilbert space of Hardy class, constructed by A. Bohm and M. Gadella8 .

1. COMPLEX EIGENVALUES FOR THE LEE-FRIEDRICHS MODEL,
The time ordering construction will be illustrated through the Lee-Friedrichs model"-".

This model is solvable in a non analytic way and served as a prototype for the decay problem in
quantum mechanics. In the simplest version, a discrete state 1i). is coupled with a continuum
of states I.,), w E I0. oc) corresponding to field modes. The Hamiltonian operator is

H =Ho +At'= Lai 1)(11 + dw 1w) ("i + A d-, • I•<I + 1)•I

The Friedrichs solutions9 are obtained through the wave operators'.' 1

+/- AV 1)-•• 1) + (L. A I ., 1,".) (2•)

Here + are the boundary functions from above and below correspondingly of the inverse
partial resolvent

?7(z) ((Z -w,) + ,-'' ',, (3)

The interaction is assumed to be such that the branches , of the partial resolvent have
meromorphic extensions to the lower and upper half planes, with simple poles at z, and
:z correspondingly. Conditions for the meromorphic structure of the partial resolvent are
discussed for example by Exner12.

Friedrichs eigenvectors (2) present two difficulties: first they are not analytic in the
coupling parameter4. 6 and second they provide a representation of the evolution as a shift in
the continuum. Transitions and events do not appear in this representation. The unstable
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state II) has disappeared, as there is no real point eigenvalue, and the complex poles :1 and
z' have instead emerged.

An eigenstate associated with the complex eigenvalue z, was constructed by Nakanishi' 3

and a complete set of right and left eigenvectors, including Nakanishi"3 
solution, was con-

structed by Sudarshan. Chiu and Gorini"4
. These solutions were also obtained6 

with the time

ordering rule and perturbation theory, as a first test of the method.
A more straightforward derivation' is based on the application of the analytic contin-

uation rule to the Brillouin-Wigner iteration formulas. For the eigenstate f, the Brillouin-
Wigner formulas give:

ZI =Wl + (1]AVVf) (41

1

If,) = (-~If,)lW) + Qi - VIf)

Q, =- I -1)(1 = I)(-I

The time ordering rule regularises the BW formulas (4), (5) according to the following nat-
ural convention. The terms representing transitions from the continuum modes I..) to the
eigenstate 11), i.e. excitations. are past oriented, therefore they are analytically continued
from the lower to the upper halt-plane. All other terms, i.e. de-excitations or mode-mode
transitions, are future oriented and they are analytically continued from the upper to the
lower half plane.
Formula (5). regularized according to the time ordering rule, gives:

Ifl) = (1f1h 11) + &o AV 1w) (6)

Putting (6) into (4) we get the formula for :z

Z, =W1 + dw[• _ 11ý1 (7)
f. P -Z11

Equation (7) means (3), that zi is the simple pole of the meromorphic extension of the

partial resolvent to the lower half plane.
For the complex eigenvalue zj we have also the left eigenvector ( i obtained in the same way

(7i I (f Ill) ((l F.jw&JA (wL ) !S

Normalization fixes14,6 
the undetermined factors:

(lif,) = (fill) = -[71(z,)]-' 9)

2. THE EIGENVECTORS ASSOCIATED TO THE COMPLEX EIGENVALUES LIVE IN
THE RIGGED HILBERT SPACE OF HARDY CLASS.

The eigenvectors (6) and (8) cannot live in the Hilbert space as they correspond to
complex eigenvalues of a self adjoint operator. However, they acquire meaning as generalized
eigenvectors in a suitable Pigged Hilbert Space extension Vt.

Rigging the Hilbert space "boat" in order to extend the eigenvalue problem of the self-
adjoitit operator H, means that we choose a suitable "carine" (b of test vectors, which is
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stable with respect to the operator H and construct the sails Pt as the continuous linear
functionals on (

Vo the topological dual of (DI

Hilbert space

4P a test vectors subspace.

For the Rigged Hilbert Space extension of the eigenvalue problem see for example the mono-
graph by Bohm and Gadella8 and references therein. The possibility of complex generalized
eigenvalues of self-adjoint operators was realized by Kuriyan, Mukunda and Sudarshan15 and
by Lindbland and Nagel"5 in the context of group representations.

From the defining formulas (6), (8) one can immediately guess suitable test spaces. The
test vectors o for f, should be chosen so that

( =l7) =- 1 (611) + j-'vZ(¢) (10)

has meaning as a complex :uimber.
It is enough therefore that (6lw) has an analytic extension to the lower half-plane which
includes the singularity zi, so that the integral defines an analytic function evaluated at
zj. The simplest choice for (6jw., which does not depend upon the location of zs, is that
(o1•-) is a square integrable Hardy function from below. Therefore the spectral representation
6(L,;) -= (,;o) of the test vector 0 should be in the upper Hardy class R-'z. The test vectors
6 for the eigenvector fl, may therefore be chosen to satisfy the condition that the spectral
representations (.f 0) are restrictions to the positive semiaxis of functions in the upper Hardy
class h+. which are also in the Schwartz class S of infinitely differentiable, rapidly decreasing
functions on the real line, i.e.:

(w.jO) are in G[Sfln-+

0 is the Heaviside step function.
In the same way we can show that the test vectors 0 for the left eigenvector fi may be chosen
so that the spectral representations (wId,) are in the lower Hardy class 7-1'.

Let us denote by $D+ and I- the test spaces for the right and left eigenvectors fl.
correspondingly

4ý+ = (61 (w'I6) arein O[S n%2]) (11)

The test spaces of Hardy class O[S nhl ] were introduced by Bohm and Gadella', who also
studied their properties.

The eigenvectors f, and 1f live therefore in the duals 1t. and $tt. The time ordering

rule leads to an extension of the Friedrichs Hamiltonian (1) to the space 4t+ +$t. Here we
cannot use the direct sum, as the spaces O[S n R7-I and O(SnlR21 are not disjoint'. However

the extension of the unitary group U, = exp(-iHt) generated by H, to the space 4D, + 4t_
has not the group property. As a result of the time asymmetric evolution of the Hardy spaces.
U1 can be extended" to <Pt for positive times, t > 0, only and to tt for negative times. t < 0,
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only. The time asymmetry of Hardy spaces is the basis of Lax-Phillips scattering theoryIT

and was used to show that relativistic fields are Kolmogorov systems"8 , 9 , The asymmetry in
the time evolution associated with f, and f, was also noticed' as divergence in the formal
expressions for the time evolution of f, in the past and f, in the future.

3.CONCLUDING REMARKS.

The time ordering rule leads to an extension of the eigenvalue problem to $t+ + Pt, where
the two roles of the Hamiltonian as the energy operator and as the generator of the evolution
are separated. The analogy of the two semigroups of the Friedrichs model with the two
semigroups of Kolmogorov systems 3 .,9 is striking. In the latter case, the two semigroups
arise through the time asymmetric evolution of the stable and the unftable K-partitions.
The above mentioned construction of the Friedrichs model shows the intrinsic irreversibility
at the dynamical level, but does not deal with the probabilistic character of the macroscopic
evolutions. This can be achieved for large Poincarý systems, at the level of the Liouville ýnpee
of densities. The time ordering on the basis of correlations5 leads to generalized eigendensities
which live in appropriate Rigged Liouville spaces and provide an intrinsically irreversible mnd
probabilistic representation of dynamics 2

0.
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Symmetry, as emphasised in the research and writings of Eugene Wigner, plays a
vital role in both the kinematics and dynamics of interacting fields and particles I ].
Through the inextricable linkage of invariance principles and conservation laws, the
existence of particular symmetries implies the nonexistence of particular processes. One
long-known example of this is the strict disallowance of optical activity in systems of free
atoms (to the extent that parity-breaking weak interactions between the nucleus and bound
electrons can he neglected 12]). Optical activity is the generic term for a complex of
optical phenomena (such as optical rotatory power and circular dichroism) that derive
from the nonequivalent interaction of chiral structures with left and right circularly
polarised light. Such structures lack a centre of symmetry and cannot be superposed on
their mirror images.

Recent studies have shown, however, that unbound atoms (treated as purely
electrodynamic systems) ought to manifest chirally asymmetric optical behaviour in a
rotating reference frame 13). All atoms on the spinning Earth, therefore, should exhibit a
weak optical activity [4).

From the perspective of quantum mechanics, the coupling of the total !nternal
angular momentum of the atom to the spin of the Earth lifts the degeneracy of magnetic
substates 151 thereby leading to chirally asymmetric atomic polarisabilities or
magnetisabilities, and ultimately to chirally asymmetric refractive indexes. From the
perspective of classical mechanics 16], the Coriolis force of the E.rth's rotation acts
oppositely upon clockwise and counterclockwise circulating electron orbits to produce
chirally asymmetric electric dipole moments that again give rise to an atomic circular
birefringence.

For a sufficiently rarefied sample of N atoms per unit volume, the electric
permittivity E and the magnetic permeability gt are expressible in ternms of the atomic
polarisability o: and the magnetisability 1 as follows

c =I + 4ito (la)
g =1+ 4n (Ib)

where tx and 13 relate the expectation values of the induced atomic electric and magnetic
dipole moments to the electric and magnetic fields of the incident light. Thus, the index
of refraction of the medium (for each of two orthogonal states of light polarisation) takes
the form

n = I =+ 2ntN(a+f3) (+c)

To determine ot and 13 for an atom in a rotating reference frame, one must solve the
Schroedinger equation where the Hamiltonian H (characterising a system at an
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instantaneous angular location 0) is related to the corresponding Hamiltonian HO in an
ineijý-al reference frame by the transformation [51

H = UHOU- I + iU(dU"1 /dt) (2a)

where

U = exp(-iFzO' (2b)

is the rotation operator generated by the total angular momentum F of the system (where
Fz is the proiection onto the axis of rotation). For a nonrelativistic hydrogenic system the
total Hamiltonian can be decomposed into a sum of two terms, one characterising the
centre of mass (CM), the other characterising the internal dynamics of the atom. The
effect of the Earth's rotation on the CM of a quantum system has already been
demonstrated by the neutron Sagnac effect [7]. The internal Hamiltonian, which is the
focus of interest here, takes the form

Hi = H0 i - (ofz (2c)

wheref is the total relative angular momentum of the electron and nucleus (with fz the
projection onto the rotation axis) and (o is the angular velocity of the reference frame.

First-order perturbation theory applied to an atom interacting with the electric field
of nonresonant left or right circularly polarised light waves leads to chiral polarisabilities
(as a result of virtual transitions to levels of parity opposite that of the ground state) and
hence, from Eq. (Ic) with P = 0, to a rotationally induced circular birefringence. This
circular birefringence, for a rotation rate o = 7.3 x 10-5 rad/sec corresponding to that of
the Earth, has been estimated for electromagnetic waves lying in the visible and ultraviolet
to be on the order of 10-18 [4]. Weak as this effect may be, it falls within the theoretical
capability of large ring-laser interferometers now under development [81, 191.

Recent examination of the effect of rotation on the ground state hyperfine structure
of atomic hydrogen [10] has shown that the splitting of the inertially degenerate states
with total angular momentum quantum numbers f = 1, mf = ±1 should be observable for
rotational rates lower than 1 Hz. The extreme sensitivity to rotation derives in part from
the long lifetimes, and consequently sharply defined energies, of the hydrogen IS
hyperfine states. This suggests the novel prospe-t of a ground state rotational optical
activity deriving exclusively from the spin degrees of freedom and falling within the
microwave region of the spectrum close to the hydrogen 1,420 MHz transition. The
optical activity is manifested through the interaction of the hydrogen atoms with the
magnetic field of the incident microwave radiation. Although strictly speaking the
classical Coriolis force is zero (since the states have zero orbital angular momentum), one
may heuristically attribute the chiral asymmetry to the precession of particle spins in the
rotating frame:

dS/dt = -(2ti /h)[S, Hi] =- (o x S (3)

To first order in perturbation theory, the virtual magnetic dipole transitions induced by
incident microwave radiation between the f = 0 and f = I states in the ground level of
rotating atomic hydrogen leads to the magnetisabilities

PL,R = (4n/h) (eh/47tmc) 2 wo/wo 2 - (W + (0))21 (4 a)

and hence (from Eq. (Ic) with a = 0) to the circular birefringence

An = nL - nR = (wwoWco)/[wc(w2 - W2 )2] (4b)
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where wo is the (hyperfine) Bohr transition frequency, W is the radiation frequency, wp
is the electronic plasma frequency of the medium

wp = (41tNe 2 /m) 112, (4c)

(where e/m is the charge to mass ratio of the electron), and wC is the Compton frequency

of the electron
wC = 27Tmc 2 /h• (4d)

All things being equal, the circular birefringence deriving from magnetic dipole

transitions between states of the same parity is of order aE2 smaller than that deriving
from electric dipole transitions between states of opposite parity, where o: is the fine

structure constant (= 1/137). Under the particular circumstances, however, the sharply
defined hyperfine energies and the relatively small Doppler width (proportional to the
hyperfine level separation) compared with optical transitions give rise to a circular
birefringence in the microwave region some ten orders of magnitude larger than that
estimately previously for visible/UV radiation. As an example, consider atomic hydrogen
gas at 1 Atm and 300 K, for which the atomic density N is about 2.4 x 1019 per cubic

centimetre and the Doppler width is 1.7 x 104 Hz. Assuming a hyperfine splitting of
1,420 MHz, an incident microwave frequency below resonance by ten times the Doppler
width, and the rotational angular velocity of the Earth leads to a circular birefringence

An = 9.2 x 10-9 (5a)

and an associated optical rotary power (rotation of the plane of polarisation of incident
linearly polarised radiation) 8 of

S= 10-7 degrees/cm . (5b)

Though small, this rotationally induced optical activity is now comparable to the optical
activity produced in heavy metal vapours by the nuclear weak interactions. On the other
hand, the technology that permits measurement of very weak chiral asymmetries in the
optical domain (e.g. the use of photoelastic modulation combined with phase sensitive
detection [111, 1121 or of ring laser interferometry [81, 191) does not yet exist for the
microwave domain. Thus, current prospects for observing predicted effects of the Earth's
rotation on the electromagnetic interactions of atoms centre upon optical methods.

Light waves of appropriate polarisations counterpropagating round a rotating ring
laser interferometer containing a birefringent sample are frequency shifted in opposite
directions and give rise to a beat frequency upon recombination. The beat frequency
derives in part directly from the rotation of the interferometer and in part from the
difference in phase velocities of the two differently polarised waves in the birefringent
medium kwhich, in the present case, is also attributable to the rotation of the
interferometer). Various procedures exist for measuring only that part of the beat
frequency deriving from the rotationally induced circular birefringence. For example, the
difference in beat frequencies between the configuration where right and left circularly
polarised waves (emitted in opposite directions by the laser) propagate respectively
clockwise and counterclockwise, and the configuration where the sense of propagation of
the circularly polarised waves is reversed, is linearly proportional to the mean light
frequency and the induced circular birefringence; that is,

(WR - WE) - (Wt 
- WR) 2W1 An (6)

where WX is the frequency of light of polarisation X = R,L and propagation sense s = +
(for s = - the wave propagates in the sense of interferometer rotation) and I is the filling
factor (fraction of optical path occupied by the birefringent sample). The predicted
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sensitivity (i.e. the measurable beat divided by the optical frequency) of realisable ring
laser interferometers has been shown to be on the order of 10-18-10-19.

Success in observing the predicted atomic optical activity will depend critically on
being able to eliminate spurious effects from two principal sources. One is the atomic
optical activity from weak neutral currents (medi tied by the exchange of a Zo vector
boson between the nucleus and the bound electrons). Of very short range (about 10-16
cm), the weak interactions act on S states giving rise to parity violating effects (through
mixing in of close-lying P states) that increase approximately with the cube of the atomic
number and have the same symmetry characteristics as structural (i.e. chemical) optical
activity. By contrast, the optical activity induced by the Earth's rotation is analogous to
the Faraday effect. This suggests, therefore, that one may circumvent the problem of
weak interactions by employing light atoms (e.g. hydrogen or helium), selecting a light
frequency that avoids virtual transitions from S states, and taking advantage of signal
enhancement by multiple passage through the sample. (It is worth noting that, in the
case of microwave optical activity in the hydrogen ground level, there is no I P state, and
hence no significant contribution from the weak interactions.)

The second problem, however, is the true Faraday effect induced by stray
magnetic fields, in particular the field of the Earth. As follows readily from Larmor's
theorem (and the analogy between dynamics of field-free rotating systems and inertial
systems in a static magnetic field [61, one must reduce the stray magnetic field along the
rotation axis of the Earth to the extent that

B _< 2mco)/e = 8 x 10- 12 G (7)

Although quantum magnetometry currently permits the measurement of magnetic fields
with a sensitivity on the order of femtotesla, the elimination or compensation of fields to
this extent poses a significant technical challenge.

Difficult though such an experiment may be, its successful achievement would
mark another step forward in the advance of high precision measurements and the
concomitant exploration of unusual physical phenomena, for, in effect, one will have
observed the coupling of the angular momentum of an atom !o the spin of a planet.
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Abstract

We propose a method of decoupling the Pauli equation of a neutral spin ½
particle in a strong, inhomogeneous magnetic field (Stern-Gerlach problem).

For a special choice of the magnetic field the resulting pair of Schrddinger

equations will be exactly solvable.

1 The Stern-Gerlach-Problem

The splitting of a beam of paramagnetic ate'ils in an inhomogeneous magnetic field (Stern-
Gerlach-Experiment S-E [(1) is one of the fundamental experiments of quantum theory
and has, moreover, often been used for illustrating or testing assumptions of theories
concerning the quantuln-nmechanical measuremnent process. For example, F. Wigner [21
proposes the SGE as a model for the intereiction between a qiuantu object (• spin

component) and measuring apparatus ( orbital component of the wave function). Ne-
vertheless, the SGE seems yet not to be completely understood. Many treatments of SGE

use the replacement of the interaction term 6- B by oB,, thereby decouplng the Pauli
equation. The heuristical argument for this is the vanishing of the ar., U.-components

in the time-avarage due to thOw apid sp, p~r, cC;sion ahout fi f21. In this paper we will

reformulate this heuristical argument in a more careful (though not completely rigorous)
manner. Our method se,mis to support a recent analysis of the SG,,E as an "unsharp" spin
measurement (41.

2 A Method of Decoupling the Pauli equation

After the usual simplifications we consider a dimensionless Pauli equation

where
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Al: mass of a silver atom,

Tt: electroll inlass.

d: width of the initial wave-packet z 10-( ni

IBO: strength of the Tnaglit'i( field I I .

Here length is inea-sured in units of d, time in units of Ad,/h 1- ITs. which is a typical

time for the diffusion of the wave packet. B- B. are assumnd to depend only on (x, Z)
antid B, - 0; hence the free motion into Y.-direction can be separated and 1 c,) in (1I
only depend oin (.r z). 'The Stern -(erlach-magnet occupies soie region 8 Ili': 2 _
11-. v , t '.2 in (I) are defi tled it' o the lcompileini ,t 5(' = HR2 \ V1, with l)irichlet toundary
conditions on O8 for W'l and V.

After a transformation to "mitagrietic--fieldc-oordiantes'" p. tdetirled hv

13,- t )siil 3. 8,' p- cos 2

and a *-dpel,)nding rotation in spin sPliae

OllS si n I
U 2

C';I5 , 
SI

we obtain, using div 1; - 0, rot /3 d:

dt '02) 2(A 0-2) 2(Cpl Qp o~ 21115 J

with i)( t?. B..1. - IA. 13
O(X. Z)

Writing a)1.2 ri.L2exp( 7- y)) = pt, I/ p we obtain equations of Ithe forni

Or, -,( ,•h., )+ ()( ) l = , 9i
Or

- =+ (JI(r,tt), r) + 0(f) (7)
aT

r - t ( ,r , b , ,2 , r ) + 0 () ( : .

C;, G and 11 are functionals depending on r,, O, p and its spatial derivatives of tirst and
second order.

The crucial point is the following: the explicit calculation of I',, G, It shows that
neglecting the non diagonal terms Ojo,2, in(pl, in (4) will not produce aitv change in tlie

averaged equations (6), (7), (8), where averaging is performed with respect to tilie rapidly'
oscillating phase p. This is what we take as a justification for considering the decooupled
form of (4). This justification is still heuristiical in the sense that we did not prove that a
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sol utijuln of (I ( 7), (8) can be' app ix in ated h 'v a soluit ion of the corres pundinrg average'I
equal7 .s; I- hillies smiialhr than it typical tirte of flight of Oihe silver attoni. We do not
kniuv Ali averaging t heoreiii foi- partial differeiitial equations of tie kind of J), (7), (8ý)

ita. l (s to the averagi rig pri uriple ini the theiory of ord inary different ial equat ions. sec
,.g. [5] Related t heorei Ils calli be founid ii [6i] and 71btteea hys ad r o

applicable to our problem-r
I owever . Itv t 1)is ver 'y ju~st ici(atioii it is clear, evenl without it detailed calcrilat ioun, that

t IIt ( ( all~ IannotI be itIrI ideal 111ciets IIreI I e I t , becatuse thI e d irect ion of B leterniniiiiig t he up- I
and down rirritoni('it varies froim place to pla ce.

3 A Solvable Example
T'he pair of S( hir6di nger equnat ions ohbtai ned by neglecting 0,r -2, in (4) will, nuliet li
less, ini geiieral riot be cxplici tel v solvable. 1However, the special choice

B, =--2xz. 1,= z2 Xr 1In <

(see figure I ) leads to a pair of Schrr6dirigcr equlationis equiivalenjt ht the 2 diniiens4ionai
t oinlomhb prohlrlei.

Fiur 1:/git(f d(9 n t oe ta

I'll, crrepondng imeindeendnt chr~ingr euatilisrea

1 1 .2 1/
2p( 11 4 0 + - 2i'1301.2 i 001, -T- _11 1.2(10

P P 2
wit t (unoriahze) soutios fo the sig

vx( lpg`'L-/ ý'q)

si n.2 2
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Kn=-+(3n + 2rnz i ')V/", 1'2

where mt ,C IN, r = 1, A.... for thl " (o, c('se . I = 2.4,6.... for the sn (am%. a;ild
LU'" denoting the generalized Laguerre polxynorlials. These solutions which (orreRIsjd
o hounmd states of the Coilomib proIt-tIl r'preselt orbits of the silver at,,rlt rdtf K,

tile" rtgl'to lo•tch. Tle .'-igenifunctionls for the -igr (rcpuksive' case are

6-0( ,)-- '. (, 3713) xi. I V'/, 'P)p /
2 
A(a.h, /1/)). I

Sill2

wihere

2 V, 2

) - I +- 1 153

n as ,ab •'. t -llU ari i ,( .A , 6, de rioti IigI . ( ollmhn t hYpelcrae Iet n ic fullfi liwl
A nItinmerical evaluation iif a spocial solition describing thle splitting Ili) O( ill ,dp"Il

ri•ed hearn will be presented inl a forth -(omiring paper.
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THE QUANTUM BEAMSPLITTER, THE 2-0 OSCILLATOR AND THE 2-D
HYDROGEN ATOM: GROUP THEORETICAL CONNECTIONS

P.K.Aravind
Physics Department

Worcester Polytechnic Institute
Worcester, MA 01609

The purpose of this paper is to point out some striking analogies between
the lossless optical beam splitter and the following two elementary quantum
systems: (1) the two-dimensional isotropic oscillator and (2) the two-
dimensional hydrogen atom. The analogies follow when one notes the underlying
symmetries of these systems and exploits them by means of standard techniques
from the quantum theory of angular momentum.(l]

Consider the lossless, two-port beamsplitter shown in Fig.l. Photons are

2'
1,2 --- > input ports

I 1',2' --- > output ports
B.S.

2

FIGURE 1. The lossless two-port beamsplitter.

incident at the input ports I and 2 and are partially transmitted to the output
ports V' and 2'. We will restrict the entire treatment to a single frequency
mode so that all photons, both incident and outgoing ones, are at the same
frequency w. Because the beamsplitter is assumed lossless, the average number of
incident photons is equal to the average number of outgoing photons. The quantum
mechanical theory of such a beamsplitter has been worked out by several
authors[2-5] in recent years. We will use this theory to exhibit some analogies
between the beamsplitter and the two quantum systems mention-J above.

We take as our starting point the quantum mechanical deocription of a
lossless beamsplitte- given by Prasad, Scully and Martienssen.[3] Denote by Itin>
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the joint input state of the photons at ports I and 2 and by Jo > the joint
output state at ports I' and 2'. Then, as shown by Prasad et .al., 1 3] the action of
the beamsplitter is to perform a unitary transformation on the input state J~in>
to yield the output state I~out> :

I*out> = B(OOc) Itin> (1)

The beamsplitter operator B(O,O,W) is given by

B(,0 w) = exp(iOJ 3 ) exp(iOJ 2 ) exp(iWJ 3 ) (2)

where J, = ½(al+aZ + aa 2 +), ,JZ = -½i(aI+a2 - ala 2+) and J 3 = ½(al+a, - a2 +a),
with a, and a2 being the annihilation operators for photons in the input ports 1
and 2. The angles 0,0 and W occuring in (2) are related to the properties of the
beamsplitter as follows: 0 and W are phase shifts imparted by the beamsplitter
while cos 2 (0/2) is the transmittance of the beamsplitter. In physical terms
Eqn.(2) says that the beamsplitter performs a sequence of Euler rotations on the
input state, with the generators of the rotations being the Schwinger operators
JJ2 and J3 and the angles of rotation being determined by the characteristics

Sthe beamsplitter.

A fundamental question one can ask about the beamsplitter is the following:
if the joint Fock state itin> = In> 2n> (i.e. nl photons in port I and n2
photons in port 2) is incident on the 5eamsplitter, what is the probability
amplitude for observing n1 ' photons in port 1' and n2' photons in port 2' ? The
answer, which we will denote P(ni',n 2 'Ini,n2), is given by[S]

P(ni',n 2'lnl,n 2) = <ni',n 2 'JB(O,#,W)In 1 ,n 2> (3a)

R1R(nl+n 2)(nln 2),i(ni,_n2,)(0,1,M (3b)

Equation (3b) is just a rotation matrix element[l] (or irreducible representation
of the rotation group) with the angular momentum parameters j = ½(nl+n2 ), m

-n2) and m' = U(ni'-n 2 ') and the Euler angles 0,6 and w.

Analogy with the 2-d isotropic oscillator

Consider a two-dimensional isotropic harmonic oscillator. The steady state
Schrodinger equation for this system can be separated in both cartesian and
polar coordinates. Denote the normalized cartesian and polar eigenfunctions by
9nI n2 (X,y) and pn((r,w), respectively, where nI,n 2 and nJ are the quantum
numb6ers labelling the two sets of eigenfunctions; we will assume that an extra
phase factor exp[-½i(n-()(x/2)] has been appended to each (otherwise real)
on((r,;), as this will prove convenient below. We ask now what the connection
between the two sets of eigenfunctions is, i.e. how can one express a polar
eigenfunction as a linear combination of the cartesian eigenfunctions and vice-
versa ? The answer, which can be worked out with the aid of the SU(2) degeneracy
group of the oscillator, is the following:

._J
•2~~,) = m' R-~m,m,(½P,½I,-i') Sj+m,,j~m,(x,y) (4)
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Equation (4) says that any polar eigenfunction can be expressed as a linear
combination of the degenerate cartesian eigenfunctions at the same energy, with
the coefficients in the linear combination being given by the rotation matrix
elements Rim, for the particular choice of Euler angles

6 = 1/2 ; 0 = -v = x/2 . (5)

To exhibit the analogy between the beamsplitter and the oscillator, consider
a beamsplitter possessing the Euler angles in (5) (such a beamsplitter has a
transmittance of 50% and also imparts phase shifts of 90' to the outgoing
beams). In this case the expression for P(n1' ,n2 'InLn 2 ), Eqn.(3b), reduces
exactly to that for RJm m,(if,1,-½) in (4J, proviaed that the quantities
(nI,ng,n1',n2') and {j,d,m') are related in the manner indicated below Eqn.(3b).
In other words, the fundamental probability amplitudes for the beamsplitter (5)
are identical to the coefficients relating the cartesian and polar eigenstates
of the 2-d oscillator! As an amusing application of this observation, we show
how the beamsplitter (5) can be used as an analog device to realize the
eigenstates of the 2-d oscillator. Suppose that the joint Fock state *it.> =

ln]>ln 2 > is incident on this beamsplitter. This input state can be thougl~t of as
a cartesian eigenstate of the oscillator with quantum numbers n and n2 . Then
the output state produced by the beamsplitter is analogous to tIe polar eigen-
state with quantum numbers n = n +n2 and ( = nl-n2. It should be stressed that
the output state does not consist of definite numbers of photons in the ports I'
and 2' but is rather a superposition of such states, with the coefficients in
the superposition being given by the RJm,m,(Il x, , of eqn.(4).

Analogy with the 2-d hydrogen atom

Consider a hydrogen atom in two spatial dimensions with a I/r potential
between the electron and proton. The Schrodinger equation for this system can be
separated both in polar (r,w) and parabolic (uv) coordinates (the latter
coordinates(6J are related to the former by the equations u = (2r)lcos(6/2) and v
= (2r)2sin(0/2); by restricting u and v to the ranges -m < u < L and 0 < v <
one ensures that the correspondence between the two sets of coordinates is one-
to-one). Denote by pn((r,w) and *nl 2 (u,v) the normalized polar and parabolic
eigenfunctions, respectively. All po ar eigenfunctions with the same n (but
different () are degenerate while all parabolic eigenfunctions with the same
ng+n2 (which is restricted to be even) are degenerate. We will assume that a
phase factor exp[-Jiwn?] has been affixed to each (otherwise purely real)
*n1 nj(uv), as this will prove convenient below. As in the oscillator problem,
we is what the connection is between the two alternate sets of eigenfunctions
(here polar and parabolic). The answer, obtained with the help of the SO(3)
degeneracy group of this problem[7], is

*(_m,(+m(U,V) = 2 R(mm'(O,-IO) *'+1m,(r,w) (6)

Equation (6) says that any parabolic eigenfunction can be expressed as a linear
combination of the degenerate polar eigenfunctions at the same energy, with the
coefficients in the linear combination being given by the rotation matrix
elements R m,m' for the particular choice of Euler angles 0 = -Ix and .= ( = 0.
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To exhibit the analogy between the beamsplitter and the hydrogen atom,
consider a beamsplitter with the Euler angles 0 = fi and f = = 0 (these imply
a transmittance of 50% and no phase shifts imparted to the outgoing beams). In
this case the matrix of probability amplitudes fP(nl',n 2 'lInl,n 2 ) becomes
identical to the inverse of the rotation matrix RCm ,(O,-½x,0) appearing in
(6). To put the matter more transparently, suppose Pat the joint Fock state
1*ýn> = Inl>1n 2 > (with n, + n? = even) is incident on a beamsplitter with 6 = Ix
an• 0 = = 0. This inpu sta e can be thought of as a parabolic eigenstate with
quantum numbers n, and n2. Then the output state produced by the beamsplitter is
analogous to the polar eigenstate with quantum numbers n = ½(nI+n2)+1 and ( =
4(n2-nl). The output state does not consist of definite numbers of photons in
the ports 1' and 2' but is rather a superposition of such states, with the
coefficients in the superposition being determined by the quantities R mm,(O,-
4ir,0) in (6).

CONCLUSION

We have shown that for particular types of beamsplitters (namely, those
with a transmittance of 50% and the appropriate phase shifting properties) the
connection between the input and output photon statistics is identical to the
connection between the cartesian and polar eigenstates of the 2-d oscillator or
the parabolic and polar eigenstates of the 2-d hydrogen atom. The analogies
between the optical beamsplitter and two fundamental quantum systems demonstrate
once again the unity that can be brought to seemingly diverse phenomena by the
application of symmetry methods.
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ABSTRACT

A generalization of the symmetry group of the harmonic oscillator,
which has the appropiate c--*- and co--(0 limits, is proposed. The

quantization is achieved by using a higher-order polarization leading to

a set of relativistic Hermite polinomials.

In a recent paper', we have solved the quantization of a system defined by the
following quantum operators commutation relations:

mp
IE,p I=imo2i x

where 1, p and x stand for energy, momentum and "position" (this is a relativistic
system) operator, respectively. Once the solution in configuration space was obtained,
this quantum system was found completely adequate to describe a quantum relativistic
harmonic oscillator (RHO) (even at the Lie algebra level, you can see how (I) leads to the
non-relativistic harmonic oscillator algebra, under the contraction c--oo , and in the limit
0o--)O to the algebra of the 1+1 dimensional Poincare group, when E has the rest-mass

energy substracted, just as it should be for the RHO algebra). Also, (1) is an affine
version of the algebra of the 1+1 dimensional antideSitter group. Thus, the quantum

system defined by (1) can also be regarded as a free particle in antideSitter space.
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Let us recall that the irreducible representations of (1) have been obtained by finding,
among functions satisfying the differential polarization condition Lp W = 0, the vacuum

defined by

o0 (2.a)

z r0= p ~ ~i wxmo0 0- (2.b)

and then applying repeatedly the creation operator z on the vacuum. As a result, we get a
family of states Wlin with energy levels equally spaced between them (just as in the case of

the non-relativistic oscillator),

1
n= Je e-inl"t n(D ) (3a)(2h)n/

ct.(•) = a'(N+n) HN) (3b)

/ N
where - ix, N=mc 2/lWo and (x = I I + (02X2/c 2 The functions Hn are

polinomials which generalize the non-relativistic ones, and therefore are called Relativistic

Hermite Polinomials. They satisfy the following recursion relations

Hn+I(> 2 N -2I d4 - ) Hn (4a)
d N Nn
dHn(•) = =(2N +n- I) I•N() (4b)

dýn N

and the differential equation

L2dd dN + 2L) NIn N d=2  -N +n- 1) n+L =(2N +n-)Hn=0 (5)

They have as general expression

[n/21
H • • = • a ,n ; n -2 s 2 ) " 2 ( 6 a )

s=0
n!N` (N-2) (2N+n- 0! (b

n2s = s! (n-2s)! (N+s-~)! (2N)" (2N- I)! (6b)

The first polinomials are
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HoN=1; HN=2ý; HN=40 +

N 3 1 1 (7
H2=8(1 + - - 12(1 (7)

As expected, in the limit c-4-. (N--oo), all expressions above go to their non-

relativistic counterparts. For example, we may explicitly see this for the vacuum.

m2lim ,t,0 I k

1,M + ý_ X (8)
C2=

(the function f in (3a) yields px in the limit c--o'-.

In this paper we want to use another method of solution that has been introduced

recently 2 in orden to reach the quantization of the RHO. Here will just sketch the method

in order to apply it, since it has been discussed in detail in Ref. 2. First of all, let us note

that the differential operators Lx ,L,, L•, close on the same algebra (1) as the physical

operators (but for a change of sign in each r.h.s. of (H )). Thus, the polarization condition

Lp xV = 0 prevents the imposition of any other first order condition. Therefore, we used in

Ref. I the method of determination of the vacuum and orbit through it in order to achieve

a full reduction. However, we can find out another reduction condition if we decide to use

elements of the envelopping algebra generated by L., .Lp. 1., thus leading to a HIGHER

ORDER POLARIZATION 2 (HOP).

The condition which is to determine the higher order condition is that it closes a

(HOP) subalgebra toghether with Lp. From the commutation relations it is easy to see that
21

2 1 (92iI(LO2 , LP]=--. Lt L, + L, Ltme(Lx) pI= L I L, + Lx Lt) L, (9)

and thus we have

[ (Lt)2- c2(L,,) + Ziý L,, Lp I,

Therefore, we set Lp V = 0as in Ref. I leading to y(t.x,p) = explif(tx,p)/hlWp(t,x) , and

then we impose the higher order condition

(L1 ) - c2(Lx)2 + 2 ImC2 (I I)



484

In order to work out (11) we first calculate

i iYP=c P_. + P "a-lv e0 -mc29°-j'•q + m +x mcz

t•V~e•( i ~ (_po0 p, dp,
-' eV (Pq + -0'T)xP + P d-m2t .P (12)

and then (11) turns into

[ a2wP 2imc 2 ap a2 2 a21 m
2
c

4  
Mr2c4 (

a2 h a2  ' - 2 0 x - - • --• - T 'P + 0

As is well known, the change (p = explimic 2 t/hl0 restores the rest-mass energy

(which was absent previously, see (1)) in the wavefunctions. Making this change in (13)

you. can check that 0 satisfies the wave equation

1 aq20 20u2 x0) 22 m2c 2

c2 0t2 T t_2 c- ' -2- U '- - a 2 -'x2 + • 0 = 0 (14)

or
m2c2  (15)

where [] is the D'Alembertian in antideSitter space. We want to note as an attractive

feature of the HOP method that it leads direct1) to the wave equation in configuration

space 2 . Moreover, the HOP fixes the indeterininated constant that appears in wave

equations obtained by means of procedures of conventional quantization in curved space-

time background 3 . On the other hand, we may compute the non-relativistic limit of the

wave equation - it is clear that, for this purpose, it is (13) that should be employed. As a

result, one gets inmediately the Schrddinger equation with potential V=1/2 mOax 2 .

t Aldaya V., Bisquert J. and Navarro-Salas J. "The quantum relativistic harmonic oscilator: generalized
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PHASE MEASUREMENT
IN QUANTUM MECHANICS
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Abstract

In quantum optics we can prepare the states which depend on the phase.
The question of detection and measurement of phase arises.

Difficulties

W] In quantum optics there is essentially only one type of experiments - the photon
counting. But it gives only an information about the number of photons and no
knowledge about the phase. To obtain any information about the phase properties
we should superpose the investigated signal with some known coherent impuls and
from the interference pattern infer about the pLsc.
L7 Really operating in the quantum area. we have a very low intensity of the unknown
signal. The interference picture is very vague, To overcome this difficult\. we should
amplify the investigated signal so that the information about the phase is not lost.

Measurement scheme

B
[] A

investigatedknon 
coherent

unkonwn 
signowl oherensignal 10)(O0sgal1,}e

(c , c *) (b , b -)



W The amplified unknown signal t is mixed in a partially transmitted beam-
splitter with transmittance c with the known coherent signal It,)(v, of the mode
(b'b) and finally detected in the photodetector D. The beamsplitter transforma-
tion is the following unitary map U = U(o) = exp(o a -b - a a- .ý b), where
n = rexp(ip). cosr = V/•. The photodetector with unity quantum efficiency is
as usual described by the spectral measure {In)(nI} connected with the number of
photos N = a'a = En jn)(nj. Treating B + D as a whole detector and elimating the

degrees of freedom of the mode (b, b') we obtain from the equation

Tr U(C C [c)(cI)U([n)(nI Q I) = Tr OE,(,,)

the positive operator-valued measure (POV-measure) E, (r). which describes our mix-
ing and detecting device B + D. From calculations

Eý(v) = O(xv)*E,,O(xr).

where D(:) = exp(za' - Za),.x = (1 - c)/t and

E,, = 0" - 1~P) (PI
P=n(P

The coherent signal Ic) should be strong enough to ensure a good quality of the
interference pattern. This can be achieved by taking II -* Dc. But then D(x.,) -* 0.
To obtain the reasonable result, we must use the arbitrariness of f. We take c 1
and simultaneously IvI - oc but in such a way that I.rtI -- Izl. The parameter z
can change but it is finite. At the level of POV-measure the above limit induces the
transition

Eý(v) -- D(_-)'jn)(njD(ý).

the limiting process preserves the known phase of Ic). The price we pay for obtaining
the expression describing both the phase and number of photons is the apperance of
the parameter Izi. This parameter makes our description of simultaneous measure-
ment of phase and number of photons in the device (B - D+ limiting procedure)
unsharp. From the expression D(z)'jn)(nID(z) we can extract seperate information
about the phase or about the number of photons. It is done in the standard way
using marginal observabels. These observables (again POV-measures) we denote

Fg(p) = /d(IZ12)D(:z)In)(nID(z) ,_ -_ /dD(z).In)(nID(:).
0 0

The phase observable is defined for the determined vector II).
R2 We use the non-degenarate parametric ampliffier. This amplifier couples a

signal wave (mode a, A*) and an idler wave (c, c) by the second and third order
nonlinear processes produced by the pump wave. This pump wave is treated as a
classical wave. the state of the mode (cc*) is the vacuum state 10). The interaction
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between modes has the shape H = k a' -S- c- + k a 2 c. where k is the parameter
of interaction. 0 = exp(-iH) describes the interaction unitary operator. When we
measure any observable (POV-measure) .4 in the part [j of the device, the whole
amplification process can be described as follows

Tr 0(p '3 10)(O)-(A 3 I) = Tr1OA = TrpA

Tilde over A describes the amplification process in Heisenberg picture. We obtain
the expressions for the observable of the number of quanta and the phase:

0 P=
0 

P! 27r

0 P=O

where y Inch 1kl,' x == c"th Jk! , k = t"Ijk'. In such a way we have the
final expressions for the desired observables connected with the experimental set-up
(A+B+D+limiting procedure) (see the picture). This kind of amplification increases
the number of photons. It also changes F. with the remarkable exception of n = 0.
The noise introduced by non-degenerate parametric amplification does not influence
the measurement of the lack of counts in the photodetector. A direct calculation
shows

t 0 = F,.

The POV-measure we have obtained to describe the measurement of phase and lack of
photons is Iz)(z!. In quantum optics 1z)(z1 is assumed as the POV-measure describing
the heterodyne detection. Hence our final result is a little bit in a spirit of the paper
J. H. SHAPIRO and S. S. WVAGNER IEEE J. Quantum Elctro..QE-20, 803(1984).
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Quantum Stochastic Calculus,
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and Heterodyne Detection in Quantum Optics

Alberto Barchielli

Dipartimento di Fi.qiia dll1Un~ii'irsitii di MAi~lano.

Via Celoria 16. 1 201.Y.3 Milano. Italy.

and L.4titato Nazionale di Fi.47iea Nitclare-. Srz~zovr di Milano

Quantum stochastic calculus ( QSC ) [1] is a noncoinintitative anjalogue of Ito's
stochastic calculus. Its usefulness iii (uantilni optics is mainly dlii toi the fact that
it is based on the use of certain Bose fields which canl be taken as anl approximlationi oif
the electromagnetic field [2]. In particular. by QSC one call develop a quanituml phn-
todetection theory (direct. heterodyne and homlodvue detection) [3 53 This subject i,
also connect ed to the t heory of inca su remen ts, coninut oua s ill timei III quaantul ti iineclia ii
ics [6.7[ . In this note we want to show how- this theory of let eroilyni'. detectionl cal 1w
applied to thle stutdy of thle fluorescence spect rui ioif a t wo level atiil ýt i xnlii t d 1)% a
strong monocroniatic laser (diinamical Stark ,vffect.9 Die to the Ahortage of space
we shall refer to the paper [41 for what concerns theory. general result, aiiid references.

Let us introduce d Bose fields oa (t). ot( ). satisfying the canonical Comnmutat ion

rules [a,(t).a (s~( = 0. {ci,( ). at( .,)] =i,( -).We consider the Fock representation:
this means that the Hilbert space on which the field operators act is the smn.111etric
Fock space over the 'one-particle space"' V1 L2(111). This space. which wve idenote b)-
.F. is spantied by the exponential vectors Of . wvhiose compinienits iii thle 0. 1. ....

particle sp~aces are uf) = (i.f f.... ' f. . ). f 7 V' Vd L 1). Apart
from the tiormalizatiori, the exponential vectors are the usual coherent vectorsý for the
fields aj(t): the vector i'( 0) is the Fork vaclinil. Thieii we define thle anniihilat ion and
creation processes by A)(t) := fo a,.) d,,, A t t) t ato(.,) dl.,. The rigorous (definitionl
of these processes in terms of their action onl th le' xponlential vectors is given inti' [1.
and 4. In particular. the exponential vectors are eigenstates of .4,( ) wvith respect to

the eigenvalues 4fr,'f(s) (I. A QSC' of Ito type, based onl the integrators (1.4,( t. I1.4t

and (it. has been developed by Hudson andl Parthiasarathy [11>
The Bose fields aj(t) can be considered as ain approxiniation of the electroxiiag-

net ic fiel-1: in this case the index j stay-s for polarization. direct ion of propagat cion

(discretizeci). and so onl. Then, let us consider a system (e.g. ati atom; Hilbert space H)
interacting with the electromagnetic field. In the so called broadband approximation
[21. the evolution operator UI (if the composed system (in the interactionl picture with
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respect to the free dynamnics of the fieldsý) sat isfic, sthe qumantum stochastic differential
equation (QSDE) ([) §1l and 2)

dU, { [ -R'dA3 U) +R, d.4')t) - J'?J1dt -iH (t}I U. U0I fl. (1)

where R, H1 are hounded operators, onl 'H and H = H1 . The solution U, of this equation
exists and is unique and, for anly t ~> 0. U, is a uImtary operator oil ([[.§)

ConIcretely. We COISjider a two level atom wvith ground state ;0) and excited .,late
11): its Hamiltonian is H ='1(~ with ,;> 0. We take d =2: the index j = 2
represents the modes of the( field carrying the laser signal and j 1 repiresenlt. all the
other modes carrying fluorescence light (sideways, scattering). The quantities R, are
atomiic dipole operators R, = ýF)1 0)(1 I. with F1 > 0. As initial state of the total
system we take Q - P f ) where a is the initial state of the atom (a statistical operator
oil H~) and i,',f) := i~)Lf~)if~.willh f~t = mfw i) 1 t) = 0 and
f 2(t) = ~e The funkctioni f2 is not square. integral~le. hut Call he seen as, a limit of

g2fntin 9; it represents a coherent input signal (the( laser field: in resonance, for
simplicity).

The power spectrum of the emitted light canIl he obtained hy mleasuremnents Onl the
fields after the interacit ion with the atom, These mtttptit ficld,, are givenl by ( 4]. §3)

and satisfy the QSDE's d_4"'M =t d1-4,(t) -1-ft R1 U, dt.j 1.2.
Let us consider now balanced hete rodyat drtrehein ýý4Y . By mevans of a beam

splitter the fluores.cence light of the atomi (output field lI is rii:dc itnterfere with a strong
laser signal of frequency 1/ (local oscillator). Two identical photoelectron Counters, art,
used for detecting the photons Coming oaw fromn thle two out put ports of t lie beami
splitter. The two olitptit Curretnts are sutitractedl one from the( other and resulting signal
I), t.) is analyzed. In [4j §5 it has been shown that the v.-hole p~rocedutre described here
correspond(s to the measurement of the ob~servabhle, (t > 0)

where F(t j is the detector response function and( f~,()M - iA\ _ e'v1 rep~resent, the local
laser field. Here the key point is that =-i. (1 . ~1 0. for any t.,s. Therefore, we
can use the standard prescriptions of (pianttimi mechanics in order to obtain the joint
probability ,listrihtition for I) v. ). t > 0 (here we identify thle stochastic ouitput sigtnal
and the qtianttlni observables (3)). We call say that our measuring lpro~ctdmire performs
a ineasitrenienlt continuIOus inl timle of D)v. t). Let us stress that the( pmaramieter v has a
different role: it is the( frequiency of thle local laser and to Change it means to Change the
measuring app)aratits and, indeed, for different Ithe ouitptmt cturretits are not represented
by Commuting operators,

In [4] it is shown how the whole statistics of the process I(v. t ). t > 0. Cali he
obtained. By eliminating the degrees of freedom of the fields this statistics can be
expressed in terins of atomic quiantities only (see eqiations (1.17). ( 4.8) (4.10) and



490

(5.18) of [41). This last level of description corresponds to the theory of continuous
measurements developed in 161. The power spectrumi of the fluorescence light P(v) will
be proportional to the power related to the current I(. t): more precisely,

P(v)-x lira 1 J(.T )2)(t(4
r+-.T 0Ivt')t 4

The whole spectrum is explored by changing tile frequency of the laser used as local
oscillator in the heterodyne scheme. Because the whole statistics of l(v.t) can be
obtained, in principle one could also compute the fluctua~ions of the detected spectrum.

A typical form for the detector response function in (3) is an exponential one:
moreover, in order that (4) give the power spectrumn we need that tile detector integrates
the input signal for a long time (bad time resolution, but good frequency resolution):
precisely,

k F(t) N o -' < ", < r := Fi + 1-2.(5

The first two moments (I(z. t)) and (I('. I)I(v, I')) are given by equations (5.19)
and (5.20) of [4). In our concrete case. by a unitary transformation under trace and by
changing the phases of the states. equation (5.20) of [4] gives

(I( .t) 2) 1x IAOl (1-V(2-4) -

+ 2 1d. d. ' 1 •,. Tr, J(. )ec - j(.,')eC' . (6)

j( t )o=IAoV0  F-1 1 \I WI ieV-C 0 (lW t. (7)
C a- = - 2fl0>(1( + 1+ (01 . ý,] - F1(2;0) (11, 1)>0 t ,,l)<l - (Slal .

Q := 2 1 A! l2.. (9)
9 is called Rabi frequency.

Because of the limit in (4). many termns do not contribute and (4) reduces to

P O ' ) x 1 + l im 4d d , d .f' e-' 1 2'. . . . ..

1 + 2F, (It Ie-'±("--•+ (Cecc [1)(0),} I) + , c.}

where y, is tile equilibrium state satisfying tile equation/2,. 0. from which it can he
easily computed. Note that the spectrum is determined by the equilibrium dipole dipole
correlation functicn.
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By setting o(t) e"' [0)ýljo-,1g. we obtain for its matrix eleents

cd d
Tteiim [ ,o= [ (t)- ,_(t)] - Fo,,i() -,, )

d 0 )( t) + F1 [oj,{t) .0o(t)] - I -,_ 0 ,(t) + lFn0 1 (t)

with

!?I(O) = '1o( 0 ) =0. oo( 0 ) -i 2 2 -+F' 2. )0 292+Fz. (12)

These equations can be solved by Laplace transform and we obtain, for Q > r/4.
PU )~+K~s. 2  2 +* , f

+(V) xa 1•, -K:-2 + ,) 1 +,5('- +
I + -,..4+ (13)

2 + ,, -_,)'2 -,2 (V, + -`.)2 j

-- P ai /i a +r/+r.(14)

F1r9
2  F,2  2 _ 1 2/2 r l0•2 -F

2
1  

+ F2,r/2" ?" F 9' /2 K3  292 -+F 2  
8-4= 8 2Q2F2 + r2

In the limit of a strongly stimulated atom. 0 < - << F << Q, we obtain

-' Q . 0-, ýF /2. . 1 2t3F/4. (16)

"r, K21 r,2- /Q1 . K, •1/2, t;4 2"- 5F/(SQ•).17

Equations (13). (16). (17) give the well known three-peaked spectrum typical of the
dynamical Stark effect [8.91, apart from the first constant term. which is a white- noise
contribution due to the continuous xneasuremlent [6].
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This contribution is aimed to give a short review of our results obtained by
applying the Hermitian phase formalism of Pegg and Barnett [1]- [33 to study phase
properties of the field generated in various nonlinear optical processes. The Pegg-
Barnett formalism allows us to study a number of phase characteristics of the optical
field that were inaccessible before, for example. the expectation values and variances
of the Hermitian phase operators, the phase probability distribution functions, and
the correlations between the phases of different modes.

We have systematically studied the phase properties of fields generated in a num-
ber of nonlinear processes. and results can be found in our original papers, which
include the anharmonic oscillator model [4. 5[. the elliptically polarized light prop-
agating in a nonlinear Kerr medium [6]- [8], the two-mode squeezed vacuum states
[10], the second harmonic generation [11]- [13], the parametric down-conversion
with quantum pump [14], the Jaynes-Cummings model [15, 16], the fractional
coherent states [17], and the displaced number states [18).

Our studies of the phase properties show that the phase distribution or the joint
phase distribution (for the two-mode fields) that can be obtained according to the
Pegg-Barnett formalism are new representations of the quantum state of the field
alternate to, for example, the Q function or the Wigner function, and they carry
quite a bit of information characterizing the field state. For instance, when the field
is a superposition of well separated coherent states the phase distribution splits into
separate peaks clearly indicating the components of the superposition [6], the phase
distribution splits into separate peaks when the transition from the second harmonic
generation to the down-conversion regime takes place [11]- [13], the multiplicity
of the phase distribution in the multiphoton down-conversion indicates clearly the
multiplicity of the process, etc. This gives the motivation for further studies.

Here, I would only like to explore the relationship between the Pegg-Barnett
phase distribution and the phase distributions obtained by integrating the Q function
and the Wigner function over the radial variable [cs[. It is interesting that all three
phase distributions can be unified into one analytical formula which has the form

P,(0) I {1 +2Re E pkexp[-i(n - k)O]G.(nk)}, (1)
2r n),k
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where the coefficients G,(n, k) distinguish between the three distributions, and they
are:

(i) for the Pegg-Barnett phase distribution

GpB(n, k) 1. (2)

(ii) for the distribution PQ(O) = f Q(o)IatdIaI
0

GQo(n, k) = r[(n + k)/2 + 1] (3)

(iii) for the distribution Pw(O) f 1V(o)joadIaI
0

P
Giw(n. k) = _ (- 1 )P-m(fl-kI+2-)/2

m=0

where p = min(n, k). q = max(n. k). All the coefficients G,(n, k) are symmetric.
G,(nk) = G,(k.n). and G,(n.n) = 1. Relation ( 1) is quite general and can be
applied for any field described by the density operator with the number state basis
matrix elements PNk.

The coefficients GQ(nk) can be easily calculated with the following recurrence
formula

Gq(n + k)= GQ(nk) (�+- + 1) V'-rl-li (I- -) for n + k even

,/n7t jV l-_ (i-± )f- for n + k odd (5)

where

i-+ A- +1- (n + + (6)! ~2 "

and [x] in ( 6) denotes the greatest integer less than or equal to x. The behaviour
of the coefficients GQ(n. A-) is such that the farther away we go from the diagonal
GQ(n, n) = 1. the smaller are GQ(n, k), although the rate of decay decreases as the
numbers n. k increase. Knowing the coefficients GQ(n, k) we can directly calculate
the phase distribution Po(O) according to ( 1), and inserting GQ(n,k) into ( 4),
calculating the coefficients Gw(n, k), we can again use ( 1) to calculate the phase
distribution Pw(O).

The Pegg-Barnett phase distribution Pp8 (O) and the distribution PQ(O) are pos-
itive definite and normalized to unity. so they satisfy the requirements imposed for
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the probability distributions. Since all the nondiagonal coefficients GQ(nZ.k) are
less than unity, the phase distribution PQ(O) is obtained from the Pegg-Barnett
phase distribution by weighting the nondiagonal density matrix elements PNk with
the "probabilities" GQ(n, k). This means a sort of averaging procedure that must
be performed to get PQ(O) from PpB(O). This procedure leads to the broadening of
the Pegg-Barnett phase distribution [19] and, in some cases. to washing out some
of the peaks present in the Pegg-Barnett phase distribution [18, 19]. This means
that the Pegg-Barnett phase distribution Pps(O) carries more phase information
characterizing a given state than the distribution PQ(O).

Since the Wigner function 14W'(o) can take on negative values, for some states
of the field, the phase probability Pw(O) can also be negative, and it cannot be
considered as a true probability distribution, but rather as a quasiprobability distri-
bution. However, even for the displaced number states for which W(o) really takes
the negative values, the distribution Pw(O) is positive and gives the phase structure
very similar to the Pegg-Barnett distribution [18]. The positiveness of Pwv(O) is,
however, not guaranteed. and the anharmonic oscillator model is an example which
leads to Pw(O) with negative values [20]. The coefficients Gw(n.,k) can take the
values that are both smaller and greater than unity (depending on n and k). so

their effect on the Pegg-Barnett phase distribution is not as simple as that of the
coefficients GQ(n,k). Nevertheless, formula ( 1) allows to calculate all the three
phase distributions and find the differences between them.

References

[1] D. T. Pegg and S. M. Barnett, Europhys. Lett. 6. 483 (1988)

[2] S. M. Barnett and D. T. Pegg, J. Mod. Opt. 36, 7 (1989)

[31 D. T. Pegg and S. M. Barnett. Phys. Rev. A 39, 1665 (1989)

[41 Ts. Gantsog and R. Tanag, J. Mod. Opt. 38, 1021 (1991)

[5] Ts. Gantsog and R. Tanag, Phys. Rev. A 44, 2086 (1991)

[6] Ts. Gantsog and R. Tanag, Quantum Opt. 3, 33 (1991)

[7] Ts. Gantsog and R. Tanag, J. Mod. Opt. 38, 1537 (1991)

[81 R. Tanaý and Ts. Gantsog, J. Opt. Soc. Am. B8, *** (1991)

[9] Ts. Gantsog and R. Tanag, Phys. Lett. A 152, 251 (1991)

[10] Ts. Gantsog and R. Tanag, Opt. Commun. 82, 145 (1991)

[11] Ts. Gantsog, R. Tanag and R. Zawodny. Phys. Lett. A 155, 1 (1991)

[12] R. Tanaý, Ts. Gantsog and R. Zawodny, Opt. Commun. 83, 278 (1991)



495

[131 R. Tanag, Ts. Gantsog and R. Zawodny. Qaantum Opt. 3, (1991)

[141 Ts. Gantsog, R. Tanag and R. Zawodny, Opt. Commun. 82.345 (1991)

[15] Ho Trung Dung, R. Tanag and A. S. Shumovsky, Opt. Commun. 79, 462 (1990)

[16] Ho Trung Dung, R. Tanag and A. S. Shumovsky, J. Mod. Opt. 38, *** (1991)

[17] Ts. Gantsog and R. Tanag, Phys. Lett. A 157, 330 (1991)

[18] R. Tanag, B. K. Murzakhmetov, Ts. Gantsog and A. V. Chizhov. Quantum
Opt., submitted

[19] R. Tanag, Ts. Gantsog, A. Miranowicz, and S. Kielich, J. Opt. Soc. Am. B8,
1576 (1991)

[20] R. Tanag and Ts. Gantsog, to be published



496
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A number of papers devoted to the problem of different
kinds of quantum chains were published last time. The quantum
unclosed nonparametric chain was discussed in Ref./1/. The clo-
sed nonparametric chain is considered in /2-4/. Different kinds
of parametric chains are considered in /3,5,6/, and different
kinds of damped parametric chains are ccnsidered in /7,8/.

In this paper let us consider a chain consisted of N har-
monic coupled parametric oscillators. All oscillators vibrate
with the frequency 0 (t) which depends on time, and linearly
interact with the neighbours. The interaction constant Q(t) de-
pends on time too. When the distance between neighbours approa-
ches zero, and number N tends to infinity, the chain turns into
the parametric string. In order to consider the most simple case
N must be an odd number N=2p+l. The Hamiltonian of this system
is

p 
2

+ Z (t)m q- q n+ m q (2 ( 1

where qn is an operator of a shift from the equilibrium point

of an n-th oscillator, p is a momentum operator of the oscil-

lator, m is a mass of oscillators, and the part Y (t)m q q

describes the interaction between the neighbours.The equations
of motion corresponding to Hamiltonian (1) are /2/

"q "(t)(q +, + qý-, - 2q ) - Q (t)q

Following the procedure suggested in /2,3/, let us introduce
new variables:

2 N~ qo 2Trsm ~ N ~ qx q qcos X - qý
N N N , ,

2 N (217sm
y = -- q sin s=1,2,

N N s 2 p

This variables reduce the system of N coupled harmonic oscilla-
tors to a set of N free oscillators, vibrating independently
according to the equations

x + i22(t)x = 0, x + Q, (t)x 0,
N N

y + 0'(t) y =0

with the time-dependent frequencies

0 (t) = 40'(t) sin"( ns/N ) ± 0'(t). (2)

i ............. .... --. . nI • I [ I
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One can see that the Hamiltonian (1) turns to the sum of the
Hamiltonians of free parametric oscillators, vibrating with
frequencies (2).Following the usual procedure /9/ one can
construct ''annihilation''operators for variable-frequency
chain.

. N 2nsm
A(t) E - - q. Cos

NI/2 '(0 N

L N 2S sm

B(t) p - q sin-

S L N N

AN(t) - - mi= q.- P - - g (3)

(2N)112 I 0 (0)l

Ot)= __= } 3
1= ,0) 1 o (0))

where the functions c (t), c (t) are the solutions of the

equations
.C + 0 (t)C 0, C+ 02(t)C =0

with additional conditions
CC - C*C= 2W (0), C c* - CoC]

One can check that operators (3) and their hermitian conjugate
operators are integrals of motion for the quantum parametric
chain. Operators (3) satisfy the commutation relations of the
boson creation and annihilation operators. The ground state of
the parametric chain can be constructed with the help of the
integrals of motion, so the ground state is as follows,

Le

-N/4 -1/2 - 1/2 p f 0 1 +[

1 C o l exp 1 2c NO (0)1

pLC 1  ~ 2 N '
+g 1C N _ ( O~ 

2 [t ~ q o s N ) + q s i n (2n s m / N )

The Wigner function of the quantum parametric chain is
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W(p,q,t) T1 N (det) /21

N 12 2(1o o1 /u- 2) Io '½/- 1

® exp- N I P{P2 + .q

m,m =l 2 1, I(1 2_ 1) 21 2 1 12 ,1C,, I

+ qfP., + p., qr +

2 •I C I 2 _ -1 ) 1 2 
p

1 12 ( IcC1I/ - 2)

+ 7 cos 2Hs(m-m')/N [ PP,-'+
T 1 ) 2r
s~l L 2,12(1c

I -2 IW I5 qq, + l - 1)"

where a is the matrix of dispersions. The quantum dispersions

and correlations of coordinates and momenta in coherent states
(4) are equal to

0' N-' lU•I?+ ~ •

k ,2•[ ~ qlk ,,

S=1
p

+ _ •:,c• •(• : 2/ -• 1)''' (5)

The squeezing cefcet t -()a 0
-1 2 1"-

k k

and the correlating coefficients r = o (t) (-''t) a-(t)

in coherent states (4) are equal to

-- 1-/ /2-

S=1
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P P 1/

2 2 j 1 ¾ i s1 72 2 2C .1 +
{li J. u+ 2Z is w 12u Z~i~o 2 c'1C 1/

s=l s=I

One can see from (5) that changinQs of the frequencies influen-
ce the squeezing coefficients and one can increase the disper-
sions of the coordinates due to decreasing of the dispersions
of momenta and vice versa.
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Abstract:

We are presenting here an alternative approach 1:o obtain a better
description of the nuclear level density. We are applying methods from
Analytic Number Theory. The obtained results are formally related to other
areas of Mathematical Physics where the estimation of the coefficients of
(formal) Fourier series of partitions functions plays an important role. The
acid test of this approach and the primary reason to develope it is a
comparison of an explicit theoretical calculation with experimental data.

This contribution was motivated by the original work of H.A. Bethe
(1936/37), N. Bohr (1936), C. van Lier and G.E. Uhdenbeck (1937), S.
Goudsmit (1937) and others physicists. These authors obtained a formula
which showed with very simple analytical relations the most important
behaviour of the nuclear level density, parametrized by means of quantitie.
with a clear physical meaning. No parameter was introduced in an ad-hoc way
to reproduce experimental results. The connection to number theoretical
problems was also known. Nevertheless, their results are only a crude
approximation which still today needs to be implemented.

By introducing the shell structure into the single particle spectra, we
obtain here new results expressed with simple fornmulas using as guide
methods from the modern Analytic Number Theory (see for example H.
Rademacher (1973)). In this way it becomes easier to recognize the relevant
mathematical quantities which must be related to the physical parameters.

We succeeded here to obtain a thorough analytical description, so that
only a minimum of numerical computer calculations is needed to carry out
the comparison with experimental results. During the last 30 years. there have
been many extensive numerical works under the title "microscopic
calculations". But of course they are done without the existence of a consistent
fundamental nuclear theory. It is well known since many years that different
spectra lead to the same average results for the level density. There is no
unique way to fix the "correct" nuclear Hamiltonian from these considerations.

Here we adopt a different point of view. We consider classes of single
particle spectra with common analytic properties. We stress the importance to
recognize the most relevant parameters, which must be common to all single
particle spectra, whenever they are to reproduce the experimental data. In this
way, we do not need to limit ourselves to a special kind of Hamiltonian and
it is also not necessary to diagonalize it. We attempt rather to introduce



501

nuclear structure properties in the form of well founded mathematical
quantities with a corresponding physical interpretation. This approach should
conduce to the stuoy of invariants associated with heavy nuolei.

At the same time we introduce as many mathematical devices we feel
reasonable for a serious study of nuclear spectra and to find a common basis
for all analytic studies up to now, as well as for future developments. The
most important criterium we observe is the achievemeni of a method for
explicit numerical calculations ready to be compared with available
experimental data. It is remarkable that many results are formally related with
other branches of theoretical physics as the reader can recognize. But because
of lack of space we will report many results separately.

As usual we follow the Darwin-Fowler method to obtain an analytic
expression for the level density. The density of excited sates of a system of
N neutrons and Z protons with total energy E and total angular momentum
projection M is given by p(N,Z,M,E) in the expression for the grand
partition function:

Z(,13)=f=(l + exp(ocn+ c 3m 3, -i3 eln) )fl(l +exp(xp+ X3m3upL, VP) ) =

xZ xn 3 p(N,Z,M,E)
Z,N,M,E

where xk= exp(ak) and y= exp(-P). The single particle spectrum is given by
the numbers {tVn(P) for neutrons (protons).

Using the saddle point method the level density is given approximately
by:

'NZME'-exp S( 0 ,13o)p(N,Z,M,E)= =x ~(,1
(2tv) 2 V-D

where S(ox,3)= In Z(&,P3)+PE-O(nN-Nop-o 3 M is the entrop, of the system and
D is the determinant of the 4x4 matrix formed with the second order partial
derivatives of In Z(x,6) evaluated at the saddle point gixen by the solution
of.

acns = 0, aS = 0, aE3S = 0, aS = 0,

Our method consists now in the calculation of the entropy S(aOj) using
standard methods of Analytic Number Theory. Although the single particle
energies ec are real numbers, we follow the common practice of substituing
them by integer numbers using a sufficiently small energy unit. Furthemore,
we take Eni= 1,2 ... and describe a general single particle spectrum by an
adequated selection of degeneracy numbers an. Consider now the number of
particles which can be allocated in the given spectrum up to level n starting
on from the lowest level. For this number of particles we assume:

I aj A nm dm > dn for m>n ,dm>0
m dm
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where we have introduced a finite set of parameters {Am,dm}, which for
physical reasons must be real. With this assumption the most important
objects are the following Dirichlet series: the partition function Z(x) and its
Mellin transform D(z):

Z(x)= I anCe-i D(z)= af zfdx xzI- Z(x)
n>o n>o r(z)

We obtain after some effort the following expression:

JA 1-) g - ) (_)j- '2(2 2j-1 _ 1 2j
](,=n a1e j>o (2j)!#3 2 i I B2j g

- _g_-1)(g) atJ 1 t_ lDj(j.,nt)
j- X 3(J 1)(2i)-

where gc=a/0, t=1/63, Di(gi,it)= aj-.Cj(It,nt) + i.rjSj(t,rnt), a2m= 1,
a2m+=0 and with the q-series :

cos(2nnz) S(zt)= sin(2irnz)
C2m+l-zt-=r-- n2m+1 sinh(2nnt) ' S n2m sinh(2nnt)

n>o n>o

and the single particle level density defined by:

SV A IA m t -_(t_) I + Y D(-k) 6 (t)l!
"m- dm k>o

Additionally, an equivalent expression for In Z(o,P) in terms of 0 itself
can be found. It corresponds to the modular transformation 63--01/03, i.e.
relates large and low temperatures. Both relations are very important for
explicit numerical and analytical calculations. Additionally, the transformation
formula establishes a link with other areas of Physics.

We have applied the preceding method to the most simple possible case.
It is the periodic spectrum introduced by P. Kahn and N. Rosenzweig (1969)
&k,j = (k+ v(j)) o$w , kE N , j=l,2 ... , e ; where e gives the degeneracy of a
shell. Our method yields explicitly the energy dependence of the shell effects
not present in the considerations of Kahn and Rosenzweig.

In our calculation we computed the so called a-parameter appearing in
the formula:

p(U) - exp( 2 a(U-Et))
12V2-a a"/4 (U-EI) 5 /4

where U is the excitation energy. The constants a and E1 where adjusted by
T. von Egidy, H. Schmidt and A. Behkami (1988) to reproduce experimental
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data at the neutron binding energy.

For the periodic spectrum the shell width was set equal for all nuclei
belonging to the same shell. Besides the shell widths we did not adjust any
other parameter. In Figure 1, we show the results of the theoretical
calculation in comparison with the experimental data compilated by von Egidy
et al.. The agreement is encouraging. In a forthcoming publication we will
show more details of this calculation as well as many other related results of
mathematical and physical interest.

0.2

MeV
1  a/A vs. A

+ Theory

o Experiment

0 .0 - I i 1
15 50 100 150 200 A

Figure 1 Comparison for a particular set of shell widths

with the experimental data.
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TYPES, OF NUICLEAR REACT ION MECHIAN ISMS

lieIMUt Jahn

F-acult y of Physicus. lini vetsit v of Karl stuhe

liarlIsrnhde, Germanv

Nut lear reactitons show a stat ist ical i1t riltuire as well
as the wave structure it the nucltear pot rot ial size.
But recent lv a transitional b ehavilour caIi led pre( om=
pou nd mec han ism hats been d i sc ivetcit. We t Teat thle pro0=
Hiem of properly distingu ish ing lbet ween thesi methi
nism and definitng them. I-hi s purpose an h, a~iiih-ted
by Using' priiperl v delined average cros-s seit tisn ,het e
we dist inguish between sta)t st ical aver-ages and ave=
rages by means of sum rule,,. This met hod may firm i

step towards a formulation of cro~ss sect ions in terms,

of reaction mechanisms. It also might Provide a hinit
to a Suitable treat-ment iof the non- weak interarting
many- nucleon systems.

Intormat ions about microsysýtems as nutclei itr pairt ii: les, cin iinlv be obý

taineil by means of scatter i ng or reaction experiment s inid their t heoteti

cal interpretation. As an example we may cons ider the- nela-~t ii - Scttorunlt

of neuitrins o itituc lei . I-c the case of 56Fe we obtiittneil the fcullow i nvi re=

sults:

I .Direct Mlechanism.

Fig.] shows the secondary enetg., dependetit inelastimc scat ter incirs

sectioin of 14.6 MoV neutriots. The left anud the r ms~ht end of the curve ire

dominated by twoi different reactiotn mechanisms. The react iotn mechani sm at

the right end has as its characterist ic angular distribut iiit of the iek-

last ically scattered partitle cross section the type shiiwti in tig2.-luois

the typical angular distritiutiiin of a direct reacttion mechainis'm. With its

its relative small rate of energy transfer (only 2 - i MeV (of 14,6 MeV in=

intident energy)it can he described by the DWBA-approath which yieldsý this,

type ot angular distribhut ion. The wave structure is originated by the occit-

rence oi the square of the spherical Besseltunction ij~i1R);- where the ar-

gument qR is the product of the transferedl momentum times the Rladius R of

the nuclear potential size. In the f~igure 2 there is v =2.
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Fi_.: Neutron emission cross-section of 5 6 Fe; j = 14.6 MeV
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2.Compound mechanism.

In contrast to the just described reaction mechanism at the right end

of fig.] we have at the left end of figl a reaction mechanism where a maxi-

mal amount of the incident energy is transferred. This is possible only if

many nucleons are involved into the reaction process, where many impacts

must occur to excite the nucleus to the considered energy before the secon

condary particle will be emitted. Because of the many impacts the correla=

tions of the emitted particle to the incident particle ray have been lost.

Thus the angular distribution of the emitted particle becomes nearly iso=

tropical and the Hauser-Feshbach-Formula is valid with the emission cross-

section proportional to the level-density of the target- nucleus remaining

after the emission of the secondary particle.Anzaldo presents at this mee=

ting for the first time a rigorous consistent and complete formalism for

the calculation of the level densities of nuclei.His method is statistical

corresponding to the statistical nature of the many impacts. But by means

of the use of the methods of analytical numbertheory it takes a priori in=

to account the shell structure of nuclei which is shown by considering the

A - dependence of the level densities of the various nuclei.

3.Precompound mechanism.

Between these two reaction mechanisms at the right and at the left of

fig.] there is a transition region, which firstly has been considered by

Griffin and in particular by Blann who developed the first three models by

name pre-equilibrium or pre-compound to describe this transition region.

Meanwhile there are in total II models:

Those are models by Cline and Blann and by Bunakov describing the for=

mation of the statistical equilibrium at the left end of fig.] by means of

a master equation.Other models are based on reaction formalisms like those

of Weidenmiller andFeshbach.All of these models have free parameters which

have to be fitted like residual interactions or transition strength or am=

plitudes(see review of Hodgson/l/,in/2/and/3/).But the experimental errors

are too large to get a unique fit this way and no unique results can thus

be obtained(see/4/)Only Blanns geometry dependent hybrid model(GDH)(see/3/,

/5/) has no fit-parameters other than those of the usual optical model.Its

results for our example are shown in fig.l.u.3.,where fig.3.shows that the

precompound excitation steps with particle- hole number n-3 mostly remain

much smaller than iu% of the complete cross-section. Thus they can he neg=

lected with regard to the errors of the measured results and merely the on

ly geometry- dependent n=n0 =3- component has to be taken into account of

which it can be proven to be equal to the averaged direct contributions.

This proof has been carried out in /2/ with the result:
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d J, d .d Q
f WBA dj =

and the preceding equations in /2/. It should be pointed out that the ave=

raging interval in (1) must have a minimum of length, which must include a

minimum number of levels. Since this minimum number of levels needs to be

only 3 to 5 with the corresponding minimum length of intervals between 1/2

MeV and 1Mev the averaging in (1) cannot be considered as a statistical a=

veraging. Alternatively we might call it a spectroscopical averaging since

it can be related to the sum rules of Lane /6/.Thus as a result of the pre-

ceding considerations it can be concluded from the figures that in the re=

gion of nuclei around Fe and at incident neutron energies around 14MeV and

below the inelastic neutron cross-section is almost fully composed by thei direct plus the compound reaction. A precondition of this conclusion is,

that the averaged direct component has been fully exhausted throughout the

scale of the secondary energy of the emitted particle. This we have achie=

ved by using the n=3-component of the GDH as a substitute for the averaged

direct component according to (1). As the essential result of our investi=

gation we can conclude, that the direct and the compound component have to

be fully exhaustet before a precompound component must be taken into ac=

count. In our example it even could be neglected in agreement with the se=

mimicroscopical results of /7/and/8/. A proper tool for exhausting the di=

rect component is the n=no=3-component of the GDH, which can be expressed

by the sum rules of Lane /6/, and the exhausting of the compound component

can be achieved by using the level density concept of Anzaldo /9/. Both of

these tools have to be applied before a precompound component has to be

considered.
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First we shall try to explain what the information thermodynamical approach is.
Information thermodynamics is an empirical probability infereme (assessment, fixing)
by means of measurement of mean values of the related observables, and sometimes
also their higher order statistical moments, and maximizing entropy (information) by
these values as constraints. This method was proposed first in 19,57 by E. T. Jaynes
[4] for classical systems, in 1961 by R. S. Ingarden and K. Urbanik [4. 4] for quan-
tum systems, and in 1963 it was generalized by R. S. Ingarden [4. 4] for higher order
moments. The Lagrange indeterminate coefficients occuring by this variational pro-
cedure have been called by the present author temperature coefficients because of
their physical meaning. In particular, one speaks about higher order temperatures as
conjugated with higher order moments.

When higher order moments are taken into account, the method of information
thermodynamics is more general than that of central limit theorem of probability
theory. The latter works only in the limit of large number of components N and their
stochastic independence, in particular, in the case of the so-called thermodynamic
limit (N - oc. volume V --+ oc. but V/N = const.).

Therefore, information thermodynamics (IT) can give essentially new results with
respect to the usual thermodynamics (T) in the following cases:

a) for small systems, e.g., for N in the region 10s-106, where N-2 is of the order
10-2-10-3,

b) for strongly and intermediently interacting particles, as for nuclei, atoms, molecules.
microclusters, etc.,

c) for nonuniforms systems with V/N # const., where surface, size and shape
effects are essential.

d) for integrable systems (solitons) with infinite number of hidden symmetries and
constants of motion which cause that the usual thermization is impossible and
entropy is very low, theoretically zero, but practically small positive.
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To show the meaning of higher order temperatures we shortly discuss the results
concerning two important idealized cases.

1. One real continuous observable, -c < , < +oc, and one higher order

moment
+ 0 0

(x
2
') = J x 2•f(x)dx = 0

2
n = T,' n 1,2....

where a > 0 is a given number and T, > 0 is the conjugated temperature. The

resulting distribution is the generalized Gauss distribution. cf. Fig. 1,

f(x) exp(- ) > 0, f((x)dx = 1.

0 6- , , , , I , , ,

fn(×n

n inf in

0.2-n=
n=1 (Gauss)

0.3

0.2-

0.0 -_______

I

-2.0 -1.0 0.0 1.0 2-0 x

Fig. 1. Generalized Gauss distributions for n = ,2, 5, 10, 50, oc: a = I
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3N2

2. 3-dimensional ideal gas with Hamiltonian H(p) = • p= and two mo-

ments(H)=U 1=I, (H = U2, D = (U2 - Ui).

We obtain the partition function

Z(3 1, 3 2 ) = ! Jexp(-3 1 H(p) - 32H 2 (p))dp

VN (2m7r) 3
N/ 2  32

N!(232)3N/4 exp(83 1 2 32

where D)(x) is the Weber parabolic cylinder function. Now for large, but not infinite
N(1 < N < co) we obtain using Darwin's assymptotic representation of D,(x)

1 U
2  1 `2 3A1

(i = 1,2), with the condition of solubility

U2  3N D 2-- >- or A =-

D 2  2- ruN'

i.e., for N -- o : A -- 0 or 32 -- 0 (T2 -4 xc) which gives the correct cor-
respondence with T. But IT can be applied when, e.g., N = 10' and A is of the
order of 1%, and therefore can be measured. Otherwise. we can go to the 2nd order
thermodynamic limit

V 9
N-- V -- , but --- =const., a= 1+-=3.25,

-b N 4
which shows a vanishing mass density in infinity, but constant entropy density [4].

We see that IT can be applied in mesoscopic domain where surface effects are es-
sential since higher order temperatures are not, in general, intensive and energy is not
extensive. But how to measure thermodynamical parameters of such a small system?
This can be done by means of spectroscopy, especially infrared spectroscopy. We have
in mind polymers, biopolymers. microclusters. quasicristals. To measure thermody-
namical parameters from infrared absorption spectra. it is necessary to distinguish the
constant and the stochastic part of the Hamiltonian: H = Ho+ HL (Ho = the Hamil-
tonian of the polymer, HL = Langevin term = the Hamiltonian of the environment).
Thus we come to the Wigner statistical theory of spectra [4. 4. 4, 41.

At present, three versions of this theory are mainly discussed: GOE (Gaussian
orthogonal ensemble). GUE (Gaussian unitary ensemble) and GSE (Gaussian sym-
plectic ensemble) with distributions of (n x n)-matrice.,

P ({,•,}) =C;3I IA, - A3 I" exp(- -_ E A'),
i<42



512

where /3 = 1,2.4 for GOE, GUE, and GSE, respectively. The multiplicative term is
due to P. Pechukas [4] and should describe energy level repulsions. while the Gaussian
factor stems from Wigner and corresponds to the central limit theorem approximation.
Both factors can be considered as "'ad hoc- and not general enough for our purpose.
We have in mind an IT-generalization of the form

n

P({)•i})= Z-'(31, 32- -..) exp(-31 E Ai -'2(Y E )+..

i=1 t=1

where i3l 32. ... are physically measureable constants extracted from the absorption
spectra. Such a project connected with an experimental work is in a preliminary
stage in Toruii. We report on it already now because of the \Wigner Symposium in
Goslar.
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Abstract: We stiow that the information iniireaseb by applying a d,,'ly stOchs;- rintrix

(DSM ) to the probability distribution vector, while the Boltzmann entropy decreases by

applying a DSM on the spectral vector, provided that the expectation value of the energy is
kept fixed. An algebraic proof of Schiffer's inequality follows as a corollary.

1 Introduction

Consider an experiment with N possible outcomes. These outcomes may have some quan-
titative additive values assigned to them, such as an energy Ei or a money reward, or they
may not have such a value, if say, the outcomes refer to different colours of certain objects.

There are two scalar functions which are commonly associated with such experiments:

(I) If the probability pi of each outcome is known, then we can assign to the probability
(distribution) vector p := (p, ... , PN)T the scalar quantity:

N
I(P W =- pi In pi, (1)

which is known as (Shannon) information. However, in some mathematical books [3) the
expression (1) is called entropy and is denoted by H(p). Note that the information (1) is
well defined, even if no values are assigned to the outcomes.

(II) In contrast, suppose the outcomes have assigned values, e (e1 ,e 2 . .N)r and
suppose that we were given the average value i of the outcomes, without any further details.
Then there are many possiblities (for N > 3) for choosing the probabilities, which would

give the average E :r = - PifE =: (pie). However, there is a well-defined probabilty
density pB which is uniquely defined in terms of e and E:

N

pr(E, e) = e-- I/Z[O, e], with Z[f13,e := CO e-", (2)

where Z is the "partition function" and fi is a parameter which is adjusted to obtain the

average value E. The vector e can be thought of as the set of eigenvalues of a Hermitian

matrix (an observable). Therefore, e will be called the spectral vector. I shall call pi (E, e)
the Boltzmann (probability) density. This density gives the maximum information among
all the probability densities that can reproduce the given average [8,91:

S(E,e) := l(pB(E,e))> 1(q), V prob. vector q with E = (p'je) = (qje), (3)

1 Perma.nent Address: Physics Department, Ben Gurion Univesity of the Negev, Beer Sheba, ISRAEL.
e-n,.: DABOULOBGUVMS.bit.n.t.
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where we use the symbol S(E,e) to denote the information ofpB which will be called the
(Boltzmann) entropy.

In the present talk, I shall explain what happens to information and entropy, when we
apply z, Doubly ztochaztic niatri- (PSM) to lie relevant vectors, p and e , re-pertively.
I recall that a DSM is an N x N square matrix with nonnegative elements, dij > 0, such

that jN dij =-1 dj = 1, V i, j = 1,.., N. A special DSM will be called u-DSM, if

there exists a unitary matrix U, such that di, = lU.•jl, for all components ij. When applied
to a vec+or e , a DSM D produces a kind of averaging of the components of e , which is
manifested as fU]lnws: Let h := De, then [7]
(1) The extreme componc-ts move closer together: (max > h,•, > hmin >_ m•,n

(2) The average "level splitting" bccomes smaller: •Ji, h-- hj P < ,j lei - ejlP for p = 1, 2.
The extreme DSM is the "equalizer" Q, which averages out all the components completely:

Q = (qi), q,3  1/1N, Qe = ci, where z :- (1.1... I)T. (4)

2 Two Inequalities

Theorem 1: The following inequality holds for arbitrary DSM D:

I(Dp) _' r- , (generalized von Neumann Inequality). (5)

The above inequality can be considered as a generalization of the usual von Neumann
inequality on entropies [1,4,5], which can be shown to hold for u-DSM [6]. The proof of (5)
is simple and follows essentially from the convexity of the function -x Inx 6.

As an immediate corollary of (5) , we obtain, by using D = Q, the upper bound on the
information for a system of N levels:

InN =I(z) = I(Qp) > I(p), where z -(1, 1)T (6)

This inequality is usually proved by variation [8].

In contrast to information, the entropy decreases by the application of a DSM to the
spectral vector e :

Theorem 2 (Decrease of Entropy by Averaging of the Spectrum): Given two
spectral vectors h and e , which are related by an arbitrary DSM D. Then their Boltzmann
entropies satisfy the following inequality:

S(E,h) < S(E,e), where h=De, ViEE B(D,e), (7)

where B(D, e) is the common E-domain to both systems, i.e.

N N

B(D, e) := {El if/3 and /3 exist, such that E = Y eipr[/3, el = Y h,pl[", h]} (8)
i=1 i=i
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Proof: The equality in (8) for the average energy E can be written as scalar products
between the spectral vectors and their corresponding Boltzmann probability distribution:

E = (eipB) = (h!pB') = (DelpB') = (elD'pB') = (elq), where pB. := pB[•.,hl,

(9)
Note that q := DrpB" is a probability distribution, but not necessarily a Boltzmann distri-
bution. Since DT is also a DSM , (5) gives

zre. h)-: I(pB(E,h)) < I(DTp"(E,h)) l(q) < S(E,e), (10)

where the second inequality in (10) follows from (3) .

The upper and lower bounds of the E-domain B(D, e) were determined in [6].

The recent inequality by Schiffer [2] can be seen as a special case of (7) for u-DSM
Schiffer compares the entropies obtained by using the spectral vector e of the Hamiltonian
and the entropies obtained by using the diagonal matrix elements h = (hi,._ hN)T, where
hi := (ailHia,) and {Iai)} is any basis, such as the coherent states, which is not the energy
(eigen)-basis. It is easy to show [6] that h = De, where Dj =(aj•)] 2. By calling the
entropy of h information (since it is not the true physical entropy), Schiffer f2] concludes
that the entropy is the upper bound of information: S(E, e) Ž S(E.h).

3 Zeeman Splitting

Theorem 2 is also useful if the spectra h and e of two Hamiltonians, H0 and H = H0 + V,
sre related by a DSM . As a concrete example, we consider the Zeeman level splitting due
to a weak unriorm external magnetic field B. The total Hamiltonian is

ehi
H = Ho -,a h-'LzB with p:= , (11)

2m~c

where H0 is the Hamiltonian of an electron in a spherically symmetric potenlial and where
e and m, are the charge and mass of the electron. We shall neglect the spin of the electroi,
for simplicity [101. Therefore, the eigenvalues h,j of Ho corresponding to a certair. ngular
momentum 1, are (2! 1)-degenerate, where n denotes all the other quantum numbers that
characterize the quantum states.

This field B breaks the degeneracy, and leads to the Zeeman splitting of these levels:

e.,,i,m(B) = h,,, - mktB, for - 1 < m < l. (12)

We note that the above perturbation keeps the "center of energy" for every I invariant, i.e.

hj, = 2 1 - 1 e,6,.,. (13)

Therefore, for each n and I the (21 + 1) degenerate levels hnj are related to the corresponding
split levels of the multiplet e,j,^(B), by the (21 + 1) x (21 + 1) equalizer matrix Q(2"+l) which

i,. - -. L,• m = .. " mmlm m m mm m lm
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is defined in (4) . Therefore, the spectral vector h of HO is related to the spectral vector e
of H by a DSM D, which is a direct sum of equalizers, one for each n and 1:

D = -.,1, Q(21+1). (14)

Similarly, any breaking of the degenerate levels, which keeps, as in (13) , the "center of
energy" invariant, can be described by a DSM similar to (14) . Eq. (7) tells us that the
entropy of the system is increased (!) by the symmetry breaking, provided that the average
energy E is kept the same:

S(E, Ho) = S(E,h = De) < S(E,e) = S(E,H). (15)

Note that in many books [11], (Ho)H ý Tr(HopB(/3)) is called "internal energy", while
our average energy E := (H)H = Tr(Hps(fl)) = (Ho)H - M(B) B is called the "enthalpy",
where pB( 1 3 ) := e-OH/Tr(e-t3 H) is the density matrix of the total system H. The inequality
(15) seems to surprise many people, since they expect the external field to align the spins and
thus to produce more order and consequently less entropy. But the condition of comparing
the entropies at the same average energy Tr(pB(3")Ho) = Tr(pB(/3)H) plays a crucial role.
The inequality (15) can also be proved by using thermodynamical arguments [6]. Here, we
shall illustrate the inequality (15) by a numerical calculation for a simple 3-level system:

e = (0, 2, 2)T and h = De = (1, 1, 2 )T, where D = Q(2) Q(1). (16)

For these spectral vectors, we readily obtain the partition functions:

Z(O) = 1 + 2e-21, Z"()3) = 2e- " + e-23. (17)

Using E(13) - ) and S(,3) = 37E(,6) + 'nZ(,3), we obtain the results in Table 1.

. 3 Z (13.) Z(/1) E S'(g*) S(ý3)
In "2 0 2 1 In 2 In2

25 .3466 0.0000 2.0000 1.0000 .6931 1.0397
1.5 i .2459 0.4960 2.2231 1.1004 .9495 1.0695

.6931 .1438 1.2500 2.5000 1.2000 1.0549 1.0889
0 0 3 3 4/3 In 3 In 3

Table 1 : Comparison of the partition functions Z, and entropies S of the two systems
defined in (16) , at the same values of the average energy E*(p') = E(,3); The quantities
belonging to h are denoted by *

References: [1] J. von Neumann, Mathematical Foundations of Quantum Mechanics,
Princeton,1955, p. 387. (2] M. Schiffer, Phys. Lett. 154 A(1991)361. [3] N.F.G. Martin
and J.W. England, Mathematical Theory of Entropy, Addison-Wesley, 1981. p. 102. [4] B.
Leaf, J. Math. Phys. 26 (1985) 1337. [5] C.S. Sharma, Phys. Lett. 114A(1986) 352. 6] J.
Daboul, " Entropy, Information and Doubly Stochastic Matrices", to be published in Phys.
Lett. (7] J. Daboul, " Inequalities, Irreversability And Doubly-Stochastic Matrices", The 33
Brasilian Seminar on Analysis, Rio de Janiero, 1989, p 303-329. (8) A. Katz, Principles of
Statistical Mechanics, Freeman, San Francisco and London, 1967. [9] R. Kubo, Statistical
Mechanics, North Holland, Amsterdam and London, 1971, p 60. (10] G. Baym, Lectures
on Quantum Mechanics, Benjamin, 1969, p. 312. [11] R. Becker, Theory of Heat, Springer,
Berlin, 1967, 2. ed.(See, in particular, sect. 3b and Table 3 ).
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QUANTUM THERMODYNAMICS IN CLASSICAL PHASE-SPACE

A. Cuccolio, M. Neumann", A. Macchia, V. Tognettia, R. Vaia'

a Dipartimento di Fisica dell'Universiti di Firenze, Largo E. Fermi 2, 1-50125 Firenze. Italy.

6 Institut far Experimentalphysik, Universitit Wien, Strudlhofgasse 4, A-1090 Wien, Austria.
c Ist~tuto di Elettronica Quantistica del C.N.R., Via Panciatichi 56/30, 1-50127 Firenze, Italy.

The path-integral formulation of quantum statistical mechanics [1] constitutes an
useful tool in order to reduce quantum statistical mechanics to classical-like calculations,
based on an effective phase-space distribution which, in the classical limit, bears the
usual form e-61(p'q), where H(p,q) is the classical hamiltonian function. Indeed, the
classical distribution is recovered by considering the only paths with minimal action, so
it is expected that an expansion accounting for the neighboring paths gives the main
modifications due to quanticity. In this way it turns out to be possible to define effective
hamiltonians (more often, effective potentials) in terms of which the thermodynamic
quantities of anharmonic systems can be expressed, and calculated by any classical
technique, overcoming the strong difficulties of direct quantum mechanical approaches.

With this aim, Feynman [11 introduced a free-particle-like trial action So with
variational parameters to be determined b. the so-called Feyman-Jenser inequality:
F < F0 + •-P(S - S 0}- , where F and F 0 are the free energies associated with the
actions S and So. respectively. This method, however, is limited to almost classical
systems, since it lacks the very desirable property of exactly accounting for the behavior
of harmonic systems.

This shortcoming has been overcome a few years ago, when a variational approach
using the same basic inequality and a quadratic trial action, was proposed and imple-
mented in the calculation of the quantum specific heat of the sine-Gordon field [2]. The
results for the case of one particle in an anharmonic ( 4 potential were idependently
recovered also by Feynman and Kleinert [3]. Afterwards, a number of successful appli-
cations has been made to various model systems [4-7]. Among them, single particles
in different potentials [4,5], nonlinear Klein-Gordon models in one space dimension [6],

a unidimensional solid with Lennard-Jones (LJ) interaction [7]. In the last case it has
been shown that the heavy quantum Monte Carlo calculations by McGurn et al. [8] on
the same model could be reproduced within just a few seconds on a personal computer.
It has also been shown that the method correctly reproduces the results of the self-
consistent quantum harmonic approximation at lowest temperatures [6], and the results
of the Wigner effective potential [9] in the high temperature limit up to order ýI'bV [4].

Further improvements regarded the calculation of quantum static correlation func-
tions [10] and the extension of the formalism to the general hamiltonian case [11]
(whereas previously only hamiltonians with a separated quadratic kinetic dependence
on the conjugated momenta were considered), thus using the full phase-space forrnu-
lation and opening the way to the treatment of complicated systems like spin chains
[12].

Recently the method was used to obtain results for realistic nonlinear solid state
systems [13,14], and because of the limited space in this paper we will shortly report
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about this topic. We consider solid argon, a rare gas solid whose interaction potential
is reasonably well understood [15], represented by a LJ-model. The full hamiltonian is

H fI2 +.V(X) *12+ L ()Xl+d, (1)
I I -I r d,.

u(r) = [) - , (2)

The N atoms are labeled by their equilibrium position 1; xi is the position of the atom at
lattice site 1; and the sum over n = 1, 2, ... accounts for the successive shells of neighbors
of atom I which, in equilibrium, are at relative positions dn.

It turns out as a result of the variational approach 17,14[ that the quantum partition
function is at best approximated by the configurational integral

)I= (2  2 -)3V'ff (X)dX (3)

where 1 ~1 Z nsinh fk, 4
Veff (X) 2 I U$n~ (jXI~d - xi]) + 3 In finh (4)

I n dk fkk(

is the effective potential expressed in terms of an effective pairwise interaction

u•W)(r) =u(r) + [u"(r) - u"(d4)]Dn + ]Dn . (5)

The logarithmic term in Eq. (4) contains the quantities fk, !3hwk,, and Wk, are
the phonon frequencies of the fcc lattice:

Cj= E%"(k) w,,0 ej(k)

i.3

M = 2 Z ui (dn) 2sin
2 k (6

k9
n dn

where the subscripts ij denote the derivatives of u([xj) and e,(k) = {cMi(k)} are the
polarization vectors of the phonon modes. In Eq. (5) DL and DT are the longitudinal
and transverse (with respect to dn = d./d.) "pure quantum" square fluctuations of
the relative position X1+dn -x:

n= (Akn+dý - AkM) 2 (1 e ak, ,

D 2( ) (7)
DT = (Akj+d - AkM) 2 (1 - a.. e(k)) &kp ,

ku

where Akl is the orthogonal matrix which realizes the Fourier transformation to k-space
and

adkp 2 wk(cotfk - I) . (8)

I"Lkf
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Figure 1. - Temperature dependence of tht &umber density p for solid argon
at zero pressure. Dashed line and solid line: classical MC and EPMC simulations
urith the U-model; circles: ezperimental dal. from Ref. [17].

By means of the above defined effective potential, the very long procedure needed to
perform the path integral quantum Monte Carlo simulations (PIMC) can be shortened
by a factor corresponding to the required Trotter number. Indeed the effective potential
can be inserted in classical Monte Carlo sinmlations (EPMC) in order to calculate the
partition function (3) and the related thermodynamic quantities. This has been done
for a sample consisting of an fcc lattice of N = 108 atoms enclosed in a cubical box to
which periodik boundary conditions were applied. In these simulations the dynamical

interaction beyond ti,, nearest neighbor distance has been cut off and accounted for
in a static approximation, appropriate f,)r an infinite static fcc lattice. This cutoff
c,.rrection allowed us to use the well-established LU potential parameters for argon
(e/kB -- 119.8 K and a = 3.405 A), which were determined from gas phase data
[16) and give a reasonable representation of the true pair potential. With this simple
proc,'dnre, exci Ilent agreement with the experiiitntal equation of state of solid argon is
obtained, and the use of unphysical parameter values is avoided 113). The results for the
density at zero pressure and for the specific heat at constant volunie are reported and
Compared with the corresponding experimental data 1171 in the figiires. In addition. the

EPMC results are in excellent agreement with those obtained by PIMC [141. However,
taking the difficulties in obtaining "exact" PIMC results into account, the performance
of the EPMC approach is impressive indeed [14).
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EPMC simulations with the U-model; circles: experimental data from Ref. [17].
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Magnetization of a Charged Particle
Interacting with Reservoir

A. B. Klimov
Lebedev Physical Institute. Moscow. USSR

The problem of investigation of the dissipation processes in quantum mechan-
ical systems has a long history [1]-[5]. But in most of the papers the irreversible
behaviour of the simplest one-dimensional system - an oscillator coupled with ther-
mal bath corsisting of a number of harmonic oscillators - has been studied. One
purpose is to investigate the simple two-dimensional system - charged oscillator in
a magnetic I eld in the presence of dissipation - in the framework of the WVigner
function desription of quantum systems [6]. According to [6] we assume that for
the quadratic Hamiltonian H = qBq all mean values are expressed through matrix
R which is a solution of the following equation [6]

[ R2 l R122 ]it = -E BR , S •,3 = ih-1 [qoq31R = Ri, R 22

R(O) = I(1)

Besides that the bath to be presumed is at the equilibrium state at the initial
moment.

We suppose the magnetic field to be directed perpendicular to the plane of motion
of the oscillator. We assume that the oscillator is connected to the bath via the
canonical mc(menta:

Q2 V( 2 + y2 ) ± 7Tý 2____ -I 2+r + ±H =_(:2+ 2 + 2r + E pkx +2 "vz-kX P4 . vg

k k

+ •a ok ( 7rxpkr + 7ryPky) (2)
k

where r = p--A is a canonical momentum. A is the vector ,otential. The covariance
matrix can f:,e expressed in terms of matrix R12 as follows

M,, fk n ( R12 R1 + R12 t R 1 2

±RA2N+k V2,+k + q3 R +k Rp3N+k]

wherefk=-.coth -• ,k= 1,... ,
'bk 2T

The main pt.blem is to calculate magnetic moment at tlbe steady state (t X)
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2 c(M 2 3 -- M 1 4 )

Solving equations (1) with the help of the Laplace transformation. we obtain at the
end of rather complicated calculations the following expression

eh a- 2 ,,;2fk 'f d 7-dr7' COS :k (r7 - 7')
M(t - 0C) = : - Z 4fkjj, d'co wk rSk

X [k, (T) (i4.i +Q2 (i- k)) (3)

(i jý ±,2 Q1) + (K, K') 94 + I-A2) ( 1 3?
where the Laplace transforms K(s) = £ [K(t)] (,) are as follows:

K• 1 (s) = _2 [P(F - 1)(Q 4 + '0,s2) + S4[

+ (S4 +s 2 (w2 +2Q 2 )+Q 4) (1-F)]

K2 (s) = K 1(s)F() .
,2 2 "

F(s) = 2 k=k -2

ýk +S2 o c

R is a magnetic field. Let us consider the inverse Laplace transformation of the
kernel K(s)

K(t) = - dy K(s = iy6eiyt. 6 > 0. (4)

where the int ýgration contour lies in the lower half-plane. If the number of oscillators
of the bath is finite then the integral (4) equals the sum of iesidues at the poles lying

at the real axis. In the continual limit all poles merge and form a cut in the complex
plane along t lie real axis, so that the integration contour turns into the path around
the cut from -oc to oc along the down shore and then from oc to -oc along the
up shore. Fo' this reason in the continual limit the single function F(,,) gives birth
to two functions r+ and F- differing in the meanings of the variable y on the down

or up sides ,f the cut F+ = -k yki")
2 . Accordingly we obtain two functions

K- = K(F±) Formula (4) takes the form

KI.2(t) - 1f dy,,"" [' Laiy)- KL.+(iy)] (5)

The charactt r of the approach to the equilibrium state is determined completely
by the function [±. If we suppose that the spectrum of the bath oscillators is
very dense and makes the continual limit by substitution k = fd,,;((.) with the
density function c(,j) satisfying the relation

()a2(-;)7- •+ =const
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then F+(iy) =---The positivity condition of the Hamiltonian (2) puts the fol-
lowing limitation on the constants -y and A: -, < A. Then only the K_(iy) function
contains poles lying in the upper half plane. By evaluating integral (5) we obtain
(in dimensionless form)

KIM [A-,]eP 
[A (6)(,n - ;i)n=l n=l

where . =y/iw•. o =/. = A/-,, b ý Q/. and the values ;. n 1.... bare
solutions of the algebraic equation

"0'[b4 +.pnj -2a[A -, I[b' + ,;,(b 2 + 1)1
-[";+;n'(b 2b 1)+b 4 [---n 2  --[ 0 w

Substiituting expressions (6) into the formula (3) we obtain

6 6M = - -e h 0 ý " 2 Am .,) n
2M ,ý + L 2A.3 (9,p + A) (gi + A)

n= -(I

7r (+;2 A2) 72,--8

where 3 = •, '(r) - In n(,r). Expression (8) is the exact formula for the
magnetic moment of the charged oscillator in the magnetic field in the presence of
an arbitrarili strong dissipation. In the weak coupling case " \< I1it is possible to
solve equation (7) in analytic form. In this limit we obtain the following corrections
to Landau fcrnmula for the magnetic moment of a free charged particle (b 0) in
the magnetic field:
a) in the high temperature limit (3 <K 1)

M "-_ec 1 0 {3) (9)

where C(xjl = Z= 1/n,.
b) in the low temperature limit (3 >> 1)

M eh I + A(2-A 2 ) + I -A 2 In I +A 1 0)
2c I~ llA'+ I 2(1 +A') r I + '\2 2A) 2 4A3)J i

All presented calculations of the magnetic moment are directly applicable to the
system obeying Boltzmann statistics. But it is possible to obtain a generalization
to Fermi statistics case if we make use of the Rumer method [7. 81. According to
this method for the single particle density matrix exists integral representation:

a'=~~~~~~~ exp[yi q) 1= .. .e' 0 < (T<•, (
_j, sin

~~~~~~ex ... . .. --- q)iui a l ] +ir i aiD in li II
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where p is a chemical potential, H is the Hamiltonian of the system I = 1/kT.
Using representation (11) and formula (9) in the case of strongly degenerated gas in
a weak magnetic field p >> T >> p- -1, << A, p = eh/2mc we obtain (after rather
complicated calculations) the following expression for the Fermi-gas magnetization
(M)F = (M)F + (M)F

(M')F - I _ 1+ __

S p23r I , -(-1)scos sin( h• 4 + -n2hT
M -3/2 ý =21,h sinh 2  

v iJ

We see that in the case of weak interaction between Fermi gas and thermal bath the
total paramagnetic moment (both its regular part and its amplitude of oscillations)
increases. Perhaps. this effect can be explained by a suppression of the Landau
diamagnetism (9). This suppression results in the increase of a total magnetic
moment. Besides, we have assumed that coupling with thermal bath does not affect
to the spin slate of a gas.

References

[1] P. Ullersuma: Physica 32 (1966) 27.

[2] A. 0. Caldeira, A. I. Leggett: Ann. Phys. 149 (1983) 374.

[3] F. Haake, R. Reibold: Phys. Rev. A 32 (1985) 2462.

[4] M. Razavy: Phys. Rev. A 41 (1990) 1211.

[5] G. W. Ford. S. T. Lewis. R. F. O'Connel: J. Stat. Phys. 53 (1988) 439.

[6] V. V. Dodonov: article in this volume

[7] Yu. Ruiner: Zhurn. Exsp. Teor. Fis. 18 (1948) 1081.

[8] V. V. I)odonov, V. I. Man'ko: Proceedings Lebedev Physics Institute 183
(1989) 263.



525

[ Wigner Crystallisation in One Comoonent Coulomb Plasmas

Some rigorous Estimates

Manfred Requardt§)
1.Introduction

In the regime of statistical mechanics of classical particles

interacting via short range potentials, crystallisation in one

and two dimensions is ruled out by the original Mermin argument.

Matters are, however, far less transparent in the case of long

* range interactions (e.g. Coulomb), as most of the technical ma-

chinery is not directly applicable in this context. There exists

in fact an old conjecture of Wigner, that electron systems may

crystallize at sufficiently low temperatures.

Unfortunately, calculations for e.g. Coulomb systems turn out

to be rather tedious and one has to develop a variety of relatively

ingenious methods in order to arrive at really reliable results.

In the following we want to treat, as a case in point, the so

called one component Coulomb plasma (jellium), i.e. electrons

being immersed in a positive neutralizing background.

In order to get quantitative results (and as tne mere existence

of the infinite volume limit is far from being trivial, cf. e.g.

/1/), we start with the system being confined to a finite volume

V and perform the limit V in the end. Furthermore we impose

periodic boundary conditions and an exterior field whic.h fixes

the position of the crystal (if it exists at all) and which is

switched off in the end.

Remark: N1ote that this makes the Coulomb potential non-trivially

dependent on the volume V (see below)!

2.The Model

With the kinetic energy integrated out the Hamiltonian reads:

Hv(rI ...... rN) = q2 . V(rir) - q5 3 fdx DV(rilx) +
i<J i (1)

I/252fdxdy ¢(DVx,y) + XE (be,,. (ri)

i

We choose the canonical ensemble, -q denotes the charge of the

electron, 5 the neutralizing positive background charge density.

(D the adjusted (!) Coulomb pctential.

5)Institut f'r Theoretische Physik der Universitit 06ttingen
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In the following we want to treat the whole class of possi-

ble scenarios, both with respect to space dimension d and 'type'

of Coulomb potential, i.e:

potential: ordinary plasma surface plasma

d = 1 % -Ixi "' +inlrl

2 % +lnjrj n 1/jrj

3 - 1/Ir! etc.

Remark: Some special cases have been studied e.g. in /2/ to /4/.

On a broader scale and improving the various known estimates con-

siderably (presumably optimizing them) the problem was attacked

by ourselves in /5/.

3. General Ideas about Breaking of Translation Invariance in

the Classical Regime

As to the general strategy applied by us cf. e.g. /6/ and

further references given there.(in particular concerning the sys-

tematic use of Poisson brackets). We employ the following crite-

rion of crystallinity: In the expansion of the one particle densi-

ty, p(r) = Z exp(iKr)-6(K), K the vectors of the reciprocal lattice,
K

occurs at least one K with 6(K) 1 0.

The onset of crystallisation is signalled by a specific singu-

larity structure of the Fourier transform of the pair correlation
(2)

function P( (r,r') resp. descendants thereof, e.g. the so called

structure factor, S(K~k), near some K, i.e. for k, taken from the

first Brillouin zone, to zero.

In our case this will be employed with the help of the following

(Mermin-type) inequality:

S(K+k) 2 l(K+k)-et] 2 .L1(K)1 2 /[k'et) 2 + Dtt(k)] (2)

with et an arbitrary unit vector, in the direction of which the

overall momentum is taken, Dtt being related to a 'double commu-

tator'between momentum P and Hamiltonian H. The main task consists

in fact in estimating effectively this relatively complicated

quantity.
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4. Some Calculaticnal Intermediate Steps

In a first step one has to determine the 'effective' Coulomb

potential of a given configuration of electrons and compensating

background under periodic boundary conditions. The strategy is

to solve the corresponding Poisson equation in the volume V under

periodic b.c:

A(r) = -const.-q-[E 6
(r-ri) - N/V] (3)

i

by Fourier methods. This leads, in the end, to the potential

energy of the microscopic configuration (ordinary jelium, m=2;

surface jellium, m=1):

U = U0 + 1/2.const.- Z Z q2/V-1km-'exP(ik(r i-r) (4)

i~j k#i1o

with U a self-energy counter term; 0V(r) = Z q
2
/Vjkj-m-eikr may be

v~ewed as the effective (Coulcmb) pair potenýNl.

In a next step we have to estimate in a subtle way (as most of

the occurring expressions are at the border of being almost ill-

defined due to the long range of the Coulomb interaction) the

intricate behavior of Dtt(k) for k-O as V-. It turns out thst

D tt (k) •-Jdr 5 (r)(l-coskr)'(e t-.7)$V)2 (5)

V

with 5h(r) = N 1. dr p(2) (r',r'-r) a certain descendant of the

pair correlation Yunction.

As h(r) does not (!) decay at infinity one has to split it into

an asymptotically oscillating and a decaying part which will then

be estimated separately in Fourier reasp. position space. In doing

this we use the theory of harmonic functions, elliptic regularity,

asymptotic Fourier analysis. In a last step we develop a (new)

recursive optimisation procedure with a variant of the 'Mermin

inequality' as input.

5. Results and Conclusions

We briefly describe our results, the details of which can be

found in /5/.
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i) For ordinary Coulomb plasma crystallisation is incompatible

with a decay 3f pair correlaticn

(d=2): jrj-(1+E) , >(6)
(d=3): IrK-(312+E) , F>0

ii) For surface Coulomb plasma the same holds with

(d=2): Irl-( 1 / 2 + 1) , >O

rT r (d=1): Irl0

Our conclusion is that, in contrast to short range interactions,

crystallisation is not (!) a priori ruled out for Coulomb systems

in lower dimensions (apart from the surface plasma in d=1, as
_(2)2 has to deoay in a pure phase on a priori grounds), but is

accompanied by a very slow decay of the pair correlation function.

This slow decay may then be critical for certain integral expres-

sions which contain pT2) as e.g. mean free energy density etc.

Therefore a fine tuning will then be necessary in order that vari-

ous quantities remain well defined in the thermodynamic limit.

References

1) E. Lieb, H. Narnhofer: Joirn. Stat. Phys. 12, 291 (1975)

2) H. Kunz: Ann. Phys.(N.Y.) 85, 303 (1974)

3) A. Alastuey, 3. Jancovici: Journ. Stat. Phys. 24, 443 (1981);

S. Chakravarty. C. Dasgupta: Phys. Rev. B 22, 369 (1980)

4) F. Martinelli, D. Merlini: Journ. Stat. Phys. 34, 313 (1984)

5) M. Requardt, H.J. Wagner: Journ. Stat. Phys. 58, 1165 (1990)

6) M. Requardt, H.J. Wagner: Journ. Stat. Phys. 45, 815 (1986);

Physica A 154, 183 (1988)



F- - -. I _ _ _ __I

529

DYNAMIC DEPINNING OF 2D ELECTRON WIGNER CRYSTAL
AT A SOLID STATE HETEROJUNCTION

Yurij A. Kosevich

All-Union Surface and Vacuum Research Centre, 117334 Moscow, USSR

Wigner [1] predicted the phase transition from a liquid (dis-

ordered) state to a solid (crystalline) one in an electron
Coulomb plasma. Such a transition was experimentally observed in

a 2D case - in a low density nondegenerate 2D electron system at
a liquid helium surface [21 and in a high density degenerate 2D
electron system at a high-quality solid state GaAs/AlGaAs
heterojunction in a strong magnetic field at low temperature

[3,4]. In both cases a shear mode can propagate in 2D electron
system, which is a defining property of a solid (crystalline)

state. In the absence of magnetic field the shear mode in the

system is dispersionless ( w('(k) = (i./mns )'/2k E ctk ), but in
a strong perpendicular magnetic field a gapless 1-iw-frequency
magnetophonon branch has a characteristic dispersion

(o)(k

w(k) = wt )k)w (k)/jc= c(2,,,) k'2k , ,2,H w>> , (1)

where p, m and n are the shear modulus, effective mass and
char e concentration of 2D electron solid, wc= eH/mc and k) =
[2,reKnsk/fm] 1 / 2  are the cyclotron and 2D plasnon frequencies.

The pinning of 2D electron Wigner crystal in a random poten-
tial of a solid state heterojuncti-n breaks translational

periodicity and creates a restoring force with respect to the
host milieu [5]. In such a way the pinning has the effect of
introducing a gap into the nominally gapless excitation branches.
The recent experiments 16] reveal a sharp insulator-conductor
threshold at the same boundary at which radio-frequency (rf)

resonances signal the onset of transverse elasticity. These
experiments -stablished a quantitative relation between threshold
conduction field and rf resonance frequency which is well

accounted for by a model of pinned 2D electron Wigner crystal.

Thus the effect of pinning on the magnetophcnon frequencies was
established in the experiments.
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The dynamic equations of 2D Wigner crystal in external
magnetic field have the following form, which in general case

takes into account an effect of pinning on its dynamics:

m t = eEt + (e/c)[vtH] + f (2)

where vt and Et are the tangential components of electron
velocity and electric field (the Greek indices a,fi 1,2),

f : - (i /.)[C v6 , + A, v 1, vo = 1/2( v v

are the elastic forces due to the lateral electron-electron

interaction (the elastic tensor C ) and due to the
electron-substrate interaction ( the tensor A of the pinning

forces A' and of the electron-substrate friction At -

-iwG ', GC = m6,/ r, 7 is a characteristic momentum-relaxation
time of electrons in 2D crystal). The explicit form of the
dynamic matrix C,, of 2D Wigner crystal was derived by Bonsall

and Maradudin [7].
For the plane wave (propagating in the x direction) we can

exclude the elastic and the relaxation terms from the dynamic
equations (2) by introducing the anisotropic effective electron

mass
mxxyy m [1 (2 + c2 k2 )/.2 + i/(w,)], (3)

x' 0 1, t

2where w = Axx/(nsm) A yy/(n m) is the square of the bare (for E

- 0, k = 0) gaps in both longitudinal and transverse branches
of Wigner crystal oscillations due to the pinning in a
solid state heterojunction. The anisotropic effective mass
tensor (3) enters the tensor of 2D magnetoconductivity of the

electron layer oc = C (w,H): j, en v, a T9E
If the 2D electron Wigner crystal is placed between t.vo

semiconductor layers (fI,d1 and c2 ,d 2 ) with metallized external
surfaces (a solid state heterojunction), then we have to satisfy
the boundary conditions (BC) of zero tangential electric field
at metal surfaces (Et = 0 at z = -di and z = d 2 ) and the BC on
the jump of the tangential magnetic field at the 2D electron
layer due to the surface current jt ([H1 -H2 n) =(4,r/c)jt at z
-0).
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In the collisionless regime wr>>I the dispersion equation
(DE) of the coupled magneto-phonon modes may be written in the
following form:

U) ± (n/cQ)) _ ý,2 [(, + (O/cQ))(cpn + c2k + uj2) + w2+
ctk2 +-W2]+ (w + c~k2)(cPn +- c~k2 w2 0 = 0C, (4)

where
= (4,rne 2 )/'(mc), ql, 2  f [k 2  1 2 w21c2)]I12

P =[(fi/ql)cthqldl + (E2 /d2)cthq 2 d2 ' I
Q qlcthqldl + q2 cthq2 d 2 ,

In Eq.(4) the parameters cP, cQ and a are the
characteristic frequencies of a bounded and a screened 2D
electron system (with the finite thicknesses d1, 2 of
metallized semiconductor cladding). In the case of nonzero
shear rigidity, when (ct, 0) > 0, the Eq (4) describes tw1n
branches of the coupled magnetophonon oscillations: a (quasi;
longitudinal w (k) and a (qoai) transverse w2(k) ones.

In the case of a weak collective Coulomb forces, when a
Wc' the both branches have the gaps (for k = 0) and their spectra
also posses the dispersionless domains:

Wl Wo > >2 W (w2 1w )(

In the case of a strong collective Coulomb forces, when n
ic, the both branches are gapless and a transverse one possesses
a characteristic dispersion (for kd>> I)

(u)/4c)(CPn) 1 12  k1/ 2 , H . (,"
Thus due to the collective Coulomb forces it happens the

dynamic depinning of 2D electron Wigner crystal in a solid state
heterojunction: the gaps in the coupled magneto-phonon branches
disappear. It is worth mention that the frequencies w1 and
(5) are the characteristic frequencies of a charged oscillatcr
in an external magnetic field. The screening of a 2D electron
system ( in the case kd << 1 ) suppresses in general case tne
influence of the collective Coulomb forces on the coupled
magnetophonon oscillations.

According to the available experimental data [6] in a
GaAs/AlGaAs heterojunction one deals wiLth a weak collective
Coulomb forces in so far as n w n' (I 0 i° - 10") -, -

12 0

10is-i (for H = 5T). In this case a coupled magneto-phoncn
spectrum has to present the finite gaps for k = 0.
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Relativistic generalization of the Breit-Wigner formula

Marcos Moshinsky*I Instituto de Fisica, UNAM
Aparlado postal 20-364, 01000 Mixico, D.P., M6xico

Abstract. We discuss the interaction of two Klein-Gordon or two Dirac parti-
cles, not as a problem of QCD, but of relativistic quantum mechanics. To keep
the problem invariant under the lPoincare group we restrict the interaction to
the space-time point of coincidence of the two particles, and assume that there
a single compound particle is formed. From considerations of conservation of
probability we derive the boundary condition which connects the two particle
wave function, at the point where the two particles coincide, with the compound
particle. In this way we derive cross-sections of scatteriag that can be associated
with the one-level Breit-Wigner formula.

1. Introduction

The history behind this paper may be more interesting than the paper itself,

particularly in a Conference that bears the name of Wigner. Thus I will take a

few lines to tell it.

In 1946-1949 I was a graduate student in Princeton and my advisor was Eugene

P. Wigner. In our weekly discussions Wigner used to touch on many subjects as his

versatility is known to many of you.

One subject to which he returned many times was the one of interactions

between particles, two of them to begin with, that was relativistically invariant.

Wigner was of course familiar with the quantum electrodynamics of his time and

I assume that later he also learned of at least the group theoretical background of

quantum chromodynamics. Yet it was clear that he wanted a simpler representation

of the interaction of particles.

When he mentioned his idea of interaction only at a space-time point of coinci-

dence of two particles, it brought to me a responsive chord. As an undergraduate I

" Member of El Colegio Nacional



535

got interested in vibrating systems of different dimensions, like the vibrating string

(one dimension) with a point mass (0 dimension) or as the drum, where the air in

the cylinder is three dimensional while the membrane at the end is two dimensional.

I thus thought that here I had to deal with the eight dimensional space time

of two particles, while the interaction took place only in the four dimensional

subspace-time where the particles coincide.

How to take into account this interaction? First of course pass to the center

of mass and relative space-time coordinates. The former give rise to a plane wave
and, in the center of mass frame, to just an irrelevant phase factor. The later then

represent free relative motion so long as the relative coordinate does not vanish,

but at the point of coincidence of the two particles one must impose a boundary

condition.

I developed the appropriate relativistic formalism and the paper was accepted

as a Ph.D. thesis. Unfortunately, the interaction I managed to introduce in all cases:

Two Klein-Gordon, one Klein-Gordon and one Dirac, or two Dirac particles, did not

actually include the resonance term that is so relevant for the Breit-Wigner formula,
already known from the 1936 paper'), and applied to non-relativistic interactions
of neutrons with nuclei.

Due to this defect a paper on my Ph.D. thesis was never published. On my

return to Mexico I realized though how a resonance effect could be introduced in a

non-relativistic version of my formalism, and developed what, in M~xico, is known

as the schematic theory of nuclear reactions.

At that time I was already engaged in other problems and did not have the

interest to extend the ideas mentioned in the previous paragraph to the relativistic

problem.

It was not until the second half of last year when giving a course on "Relativistic

quantum mechanics from a different point view" that I reread my Ph.D. thesis and

with a student, Guadalupe L6pez Laurrabaquio, achieved what would actually could
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have been my objective in 1949, a Relativistic Generalization of the Breit-Wigner

formula.

This will be the subject of my paper and I will only give you the simplest

examples, starting with the non-relativistic case and then the case of two Klein-

Gordon particles. For the more interesting situation of two Dirac particles I will
only present results for the R matrix and the scattering cross section.

2. A non relativistic point interaction model for deriving the one level
Breit-Wigner formula

We want in this section to discuss a non-relativistic model in which two particles

of masses rn1 , M2 interact at the point of coincidence forming a compound particle

of mass M. This model, introduced long ago, 2) will be generalized in the next

section to discuss the interaction of two relativistic Klein-Gordon particles at their

point of coincidence, again forming a compound particle.

Our first step will be to consider, in the frame of reference where the center of

mass is at rest, a state having two components

[0(rt) r = r - r221)

where the first one i(r,t) represents the two particles with r being the relative

coordinate, while the second one 0(t) will correspond to the compound particle.

Note that in the frame of reference we chose, neither component depends on the

center of mass coordinate.

The equation satisfied by 0(r, t) is

Z a = - 1 V20, r $ 0 (2.2)

where we took units in which h,c and some given mass, say of the electron, are

given by 1. The p appearing in (2.2) is the reduced mass

p = mlm 2(mI + m 2 )-1 (2.3)
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How can we get the interaction between O(r, t) at r = 0 and 0(t). We shall use

for this purpose the argument of conservation of probability for our full state 'I of

(2.1). Considering t-Ao differenit statcs 'I','I' their scalar product can be defined by

('., %P) =f I P(r,t)4(r,t)d x + '*(t)O(t) (2.4)

The derivative of (%D, 'I) with respect to time should be 0 and thus we get the

1 d(¢P,•) _

I dt

- (,. [-,1 -.+ =0 (2-5)It p Or/J + z T• t 2

where we restricted ourselves to s-waves, used the time dependent Schr6dinger

equation (2.2) and Gauss theorem on a sphere surrounding r = 0 2).

As we are interested in states of definite energy we can write

) = f(r)exp(-iEkt), t =f(r)exp(-iEkt) (2.6a, b)

4' = exp(-iEkt), o = 'Pexp(-iEkt) (2.6c, d)

where E carries the index k to indicate that it is only the kinetic energy. The

equation (2.5) becomes then

X1X 3 - Z3 X + X 2 4 - -xtiX? 0 (2.7)

where

X I [l ( L --• - ) -] 0 ,1 X 2 = W o ( 2 .8 a , b )

X3 = (rf(r)]o,x 4 = -EksP (2.8c, d)

The bilinear form (2.7) can be satisfied by the linear equations2)

X3 = c1IxI + c12x2, X4 • c21lI + C22x2 (2.9a, b)

where c =l jc~jII is a constant 2 x 2 hermitian matrix.
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The stationary problem satisfies then the equation

-(2-)-'V'f = Ekf, r 9 0 (2.10)

together with the boundary conditions at r = 0 given by

(rf)o = ci1(2ir/p)(orf/Or)o + C12V (2.11a)

-Ekp = c21(2ir/p)(Orf/ar)o + c22W (2.11b)

If there is only coupling through the formation of a compound particle c1l = 0.

If besides also c12 = 0, then from (2.11b) c22 should be the negative of the energy

associated with the mass of the compound particle at rest from which we subtract

the masses of the two initial particles. Denoting this energy by E0 we have

C2 2 = -E0 =- -[M - (-I 1 + -M 2 )]. (2.12)

Eliminating .p between equations (2.11a) and (2.11b) we get

(rf)o = R(Ek)(Qrf/Or)o, R(Ek) = (27rIc1212 /p)(Eo - Ek)- (2.13a. b)

that gives the explicit value of what is called the R matrix3) (in this case just 1 x 1)

of the problem.

As we are dealing only with an s-wave, the radial functiou f(r) multiplied by

r is given by

rf(r) = e-kr - S(k)eiT, (2.14)

where S(k) is the S matrix3 ) (also 1 x 1 in this case) of the problem which from

(2.13a) takes the value

S(k) 1 + ikR(Ek) (2.15)
1 - ikR(Ek)
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As the cross section a is given for s-waves in terms of the S(k) by

ir -11 - S(k)12 , (2.16)

then we see that it takes the value

4irr2
= (Eo - Ek) 2 + r2k2  (2.17)

where Fo is the reduced width defined by

o = (27rIcx21 2/ t) (2.1S)

and the kinetic Ek is related with the wave number k by the usual non-relativistic

expression

Ek = (k2 /2p) (2.19)

We derived then the standard one level Breit-Wigner formula,') by considering

only interactions at the point of coincidence of the two initial particles, expressed

by boundary conditions derived from arguments of conservation of probability. We

shall now extend this type analysis to relativistic interactions.

3. Breit-Wigner formula for the scattering of two Klein-Gordon particles

Again we start with a wave function with two components, one for the two

initial particles of masses mI, m2 and one for the compound particle of mass M, but

now the former depends explicitly on the space time coordinates of the two particles

x, 1, X, = 0, 1, 2,3, while the latter is a function of one space time coordinate Xi,

which we will later identify with the center of mass coordinates of the two initial

particles.

Our state can then be written as

T .(X ) ' , x= 0,1,2,3. (3.1)

• m,__ • rm l mmnmmmmmmlmmllm m • m mm l m Om W )
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So long as x" j4 x" the Ob(x~Ix) satisfies the equations

0_m1_V - mN = 0, gPV -2V = 0, (3.2a, b)

On the other hand in the absence of interaction with the compound particle €

satisfies

g 9 - M 2
0 = 0, (3.3)

where in this paper we use the metric

gUA'=0 if p 0 v,-goo=g11 9 22_-g933 (3.4)

a) Relative and center of mass space-time coordinates

We first note that the total four momentum

P•u = pol + PP2. (3.5)

is an integral of motion even in the presence of an interaction. This will hold also

for the scalar product of P, with itself i.e.

p 2 _pp, = _W2 (3.6)

which we denote as -w2 as from the metric (3.4) P 2 is negative

Now following Crater and van Alstine 4) we define first ell c2 by

2, ,C2 2 ,el +C2 = w. (3.7a, b,c)•1= 2w 2w

so the relativistic relative and center of mass coordinates become

0 = ii• -- A X" = w( EI X' + i2Xm)m (3.8a, b)
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Because momenta are related to the derivative of the coordinates i.e. p,= -io/ax

we see from (3.8) that

PA = (C2/w)p,,l - (61/w)p2,,, P;, = P.. + PIZ" (3.9a, b)

In terms of x, X"' the equations (3.2) for 7P will be

2i g"P-,--90 = 0 (3.10a)

2 gVa--02 + [w_2 + (m2 - m-) _ (m2 +,], 0 (3.10b)

where P, can be interpreted as the operator (-ia/8XA) or as a number as the

dependence of k on XA is exp(i PIXA) even in presence of interactions.

If we pass now to the frame where the center of mass is at rest i.e. Pi = 0,i =

1,2,3, then w2 = (Pg) and the two equations (3.10) becomes

- 2iPo(O&/Ox0 ) = 0 (3.11a)

S+ 1(1/2)(P0)2 + (2P2) 1 (m2 - m2)2 - (m2 + m2)]V = 0 (3.11b)

where in the second we already made use of the fact that (atp/&x°) = 0 that follows

from the first.

As -V 2 is the square ordinary relative momentum, whose value we may denote

by k2 , and Po is the total energy which we may call E, we get from (3.11b) the

following relation between the two

k 2 = (E 2 /4) + (m2 - m2) 2 (4E 2 )- - (1/2)(m2 + m2) = )(E2

1 2 1 24E2

(3.12)

where

m+ I ±l •M2 (3.13)
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If we invert (3.12) to get E in terms of k, we obtain for the positive value of E

the expected relation

E=(V k2 + M+ 2
2m2) (3.14)

b) Currents associated with the one and two particle systems

As in the non-relativistic case2) we want to con! ler two states 'P, Ts. The

compound particle part of these states is represented by the second component i. e

€, €, with which we can associate the current

=.1 '& _5
z aXA OX's

L_2-i-M 6 Xa1 0--• ýi_) 1€ (3.15)

where on the right hand side we wrote it as an operator between the states €*, €,

with arrows indicating when it acts on the right and when on the left.

For a single non interacting particle where 0, # S'atisfy the Klein-Gordon equa-

tion (3.3), the current (3.15) satisfies the continuity equation

O-- = 0 (3.16)

The factor (2iM)-1 is introduced in (3.15) to have the same form for the spatial

part ji as in the non-relativistic case.

Clearly for two Klein-Gordon particles jP must be replaced by a tensor TP'

with two indices given by

T, (3.17)

which from (3.2) satisfies the corresponding continuity equations

I9TPV 8'TP&V
S= 0, - = 0. (3.18a, b)

h.,n..,d mNnninnU mmme nnnnnimi m iNn n .. ...
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c) Scalar product

With the help of the vector and tensor currents discussed above we can define

the scalar product of the two component states 'P, if

('P , P)= JJTood3xd3X2 + f j,0d X (3.19)

which is a concept invariant under the Lorentz group as discussed in another

publication5 ).

Is possible to express the scalar product (3.19) purely in terms of the relative

and center of mass coordinates as from (3.8) we see that

X, = X" + (e'x"-/w)X' = x" - (jai'/w) (3.20a, b)

where we note that Jacobian of (xj, x2) with respect to (x, X) is 1 so that d3xld3 x 2 =

d3xd 3X.

For the derivatives we have from (3.9) the relations

0 0 el 0 0 0 •2 0
= + - + = (3.21a, b)ax x W O)XA' 09•J O.' +, W aXA

where we m st be careful to note that they can be applied to 7(x', x') as they

appear in (3.21) but when applied to C(xIx•') the e1, C2 must be replaced by a1, 62

i.e. w by iD in which the first is associated with total energy E and the second with

E.

d) Basic argument

If we choose the frame of reference where the center of mass is at rest, the

conservation of probability argument for the states can then be expressed as5)

9[If Tood3 xd3X + jOd3XJ = 0, (3.22)
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where now as P A = p2 =0 we can write the two body wave functions , as

P = f(r) exp(-iEX°), k = f(r) exp(-ikX0 ) (3.23a, b)

while the compound particle ¢, € take the form

= pexp(-iEX°), 0 - sexp(-i.PX0 ) (3.24a, b)

with ý,, q5 depending only on the energies E, E.

The equation (3.22) by an analysis entirely similar to the one leading to (2.5)
in the non-relativistic case, can be written as

d - i(E + E) exp[-i(E - P)X°] d3 X•--- (• = 2M ep-(

{iJ P~ - fVf)]d 3X + [0,'(-Eý,) -(E )*} 0 (3.25)

where we already replaced iO/OX0 by E as follows from (3.23), (3.24).

As only the curly bracket in (3.25) can vanish we get, again using Gauss theorem
on a sphere surrounding r = 0, the equation

:' t f 0(rf)° - ("/); 0,E :
p 49r ILa

+ *(-E,) - (-!'P)* = 0 (3.26)

which differs from the non-relativistic case 2,5 ) only in that the reduced mass/ =rnIm 2(rnl + 712 )-l is replaced by k = MJn12 M-1.

e) Linear relations

The linear relations which guarantee that the bilinear form (3.26) vanishes
identically are then given by2,5)

(rf)o = C12V (3 .2 7 a)

-EV = C2, 'r i ,3 0 - Mqp (3.27b)

•~ ~ ~ ~ ~ ~ ~ ~~~~9 o -,liiII iIl[ I I I I IIIi
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where c 1 2 = c21 is the coupling constant relating the two particle system 4'(xA, x J)

when x= x0 with O(XP) both in the frame where the center of mass is at rest.

Eliminating • between the equations (3.27a) and (3.27b) we get a relation

between (r f)0 and its derivative (Orf/Or)o given by

(rf)o = R(E)Earf /arjo (3.28)

where the R matrix (in this case only 1 x 1) is given by

R(E) = (27r c 1 2 12 /j2)(M - E)-' (3.291

As only s-waves are involved in this analysis, because of the interaction takes

place only at the point of coincidence of the two particles, the total scattering cross

section is given by5 )

4r20 - 47r 0 (3.30)
(M - E) 2 + r0k2

with the reduced width i' rclated tc the coupling constant IC1212 by

ro = (2,r(eC12
2 /1), (3.31)

The expression (3.30) for the cross section is then entirely equivalent to the

non-relativistic one2 ) with the basic change that the relation between energy and

momentum is not given by Ek - (k2 /2y) but by the relation (3.12) i.e.

k2 = (E 2 - rnm)(E
2 - mr)

4E 2  ,m+ = mn ±m 2  (3.32)

The boundary conditions (3.27), expressed only in terms of rf can be given

a dynamical form if E is replaced by i/8OXO. By using the transversal relative

coordinates P defined by

P = x" - (PrPt)-I(XVP,)PA (3.33)
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as well as the Poincar6 invariant expression

p2 •(3.34)

we then get that the problem leading to the relativistic Breit-Wigner formula (3.30)

is described by the two equations (3.2a,b) satisfied by O44,x" ) when 2 1 4,
together with the boundaxy condition

[M(PV,) - i(-PPy)-1/2Pp(Dp /OXM)] _=° = Fo(apol/p)P=0 (3.35)

Thus the Breit-Wigner formula (3.30) is a consequence of a fully relativistic

analysis for two Klein-Gordon particles.

4. Breit-Wigner formula for the scattering of two Dirac particles

The analysis is entirely parallel to the one of the previous section, with the

wave function given by (3.1) but now with (,(x,') satisfying two free particle

Dirac equations when x4 y- x4. We assume that the compound particle is a scalar

one satisfying, in the absence of interaction, the Klein-Gordon equation (3.3)
L

As shown in reference 5, a conservation of probability argument leaJs to a

bilinear form equal to 0, though, different in form from (3.26). The corresponding

linear relations that satisfy it now give an R matrix of the form5)

?(E) (14AIrF
I?(E) (M 2 - E 2 )(E 2 - n 2_)

where the reduced width F is related with the coupling constant c12 by

F = 4rIc12 12  (4.2)

The differential cross section da for scattering is now given by )

dr = (1/2)Jsin 2(i - 62) 16M 2 F2 E 2 dQ(
(A1 2 _ E 2 )2(E 2 __ m2 )2 + 16AI 2F2E 2k2 (4.3)



547

where df( is the differential of solid angle, and 6t1, C2 are the angles that the spins of

the two Dirac particles form with the direction of propagation.

Thus we have in (4.3) a generalized form of the Breit-Wigner scattering cross

section for a single level for a system of two Dirac particles forming a scalar Klein-

Gordon one at the point of coincidence.

If we assume, for example, that E is of the order of Al and A! >> 70] or ,

then

(E 2 
- m2) E2 (E + Al) -- 2M1, 0-- E2•/1 (.1A)

and the cro~ss section takes the form

1a sin"'(61 - 4F2) (4-.))
d 2 - K)(M - E)2 + r2E2

close to the standard Brcit-Wigner fornmila.

5. Conclusions

\\'c 1hIv d,.veloped a relativistic forinalismi for tiltn interactlion. at their point of

coinciletlxc, of ýwo Il\inilI-Gordon or two Dirac partichls. These interactions implied

the formatin of a sitngle Compound particle of the IKlei n-Gordot type.

In this way e obtw iiticd a single-levcl Breit-Wigner type of cross section f,,r

the two problems lie,1ttionl,-dl in which the only Iara;ittrs ac tlhe ma.'s M! of

the comnpound partileo and the reduced with F, where the latter is related to tIc

"strength of the cottpiig l ,t We n the two particle co:ilponent v,(.r ,', ) at x1 =,

alld ]I(. sigl ompoulli p)article o,(xl').

Ill t ilc yi prSsinttd htere, as well as in reference 5, the relative orhlttil

t;ilar- tt ,lolttiulii of the two particIlcs is taken as 0 ilptlying that lie Colomponld

,i, as at lii tota! ime'llInr l lt tio ttultl 0 i '. i, *a stlar onea'.
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It is possible though to generalize our reasoning to arbitrary relative orbital
angular momentum of the two particles and thus, for example, consider +h,.- ntcrac

tion of an electron with a neutrino with mass, in which they form a W- compound

particle which has total angular momentum 1 and parity -. In that case in our
formula (4.3) M, r could be determined from the experimental measurement of the

energy and width associated with the W- particle which are respectively 80 and

2.5 GeV.

A more interesting example is the scattering of electrons by positron at very

high energies where we can disregard the effects of the Coulomb interaction. In that
case M, F will be determined by the energy and width of Z° particle. We plan to

discuss this problem in a future paper.

Finally we note that our analysis is restricted to scattering with a single

resonant level. We can though introduce many levels by taking several functions
0 in (3.1) instead of one. To have many channels we take several functions 0

in (3.1). Both of these generalizations were already considered in reference 2 for
the non-relativistic case and there is no essential change in the relativistic analysis

presented in this paper, whc" ý,:e ct,.- liler several 0 or ¢k, or both.
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ON THE SYMMETRY OF LATTICE FERMIONS

H.Joos, Deutsches Elektronen-Synchrotron DESY, Hamburg.

The Dirac-Kihler equation [1] (DKE): (d - 6 + m),k = 0 is a generalization of the
Dirac equation which allows a straightforward lattice approximation leading to a
geometric interpretation of staggered lattice fermions X(x) 121. We embed in R4 a
cubical lattice with lattice points y, lattice vectors e,, h-dim, lattice cubes [y, H!
spanned at V by (,,, p k H. DeRham mapping p(y, H) = , = '-e

U= e. leads to the DKE on the lattice: (A + ± m)( = 0. A, ? are
the boundary and coboundary opertors acting on cochains 1= Ey, Ho(y, H)d 5',.
By DeRham mapping the DK-action gets transformed into the action of staggered
fermions: S, = f(!,(d - 6 + m)ýI)o -' S,(Xx).

It is the aim of this talk to report on the group theoretical treatment of the
symmetry problems posed by this scheme [3[. This includes: (1) the description of
the symmetry group G of the DKE; (2) the determination of the symmetry group

GL of the lattice action which is determined as a sub-group of G by the geometry of
DeRham mapping; (3) the classification of the irreducible unitary representations
("irreps") of g and GL; (4) the decomposition of the irreps of G into the irreps of
GL- We mention some applications at the end.

1. For the understanding of the meaning of the DKE it is essential to know
that the DKE is equivalent to four simultaneous Dirac equations. It follows that
its symmetry group 9 is generated by the transformations of the Dirac components
under the 4-dim. Euclidean group SE and by the SU(4) "flavour" transformations
of the four degenerate Dirac fields. In addition there is a global U(1)-phabe trans-
formation. For mass m = 0, the SU(4) x U(1) gets enlarged to U(4) x U(4) by
chiral transformations.

The extension of the calculus of differential forms by a Clifford product:
dx' V dx" = 9g" + dxM A dx', (generally:dxK V dx L = OKLdxhKiL, PKL = ±1)

allows the derivation of these facts. The transformations of the flavour symmetry
group are generated by Clifford right multiplication with constant forms: , v c(u).
The spinor rotations of the Dirac components (t•(x)) 0 (x, H)( H)6 can be
expressed as operations on the forms: 6,,, = (x,,&ý - x,•,,)4 4- !S, V P,

2 '

S"P dx,, ,. dx,. The Cartesian components transform as O(4)- tensors like:
,q' 4, X,- 0,), - !(S,. V 4D - 4• V S,,,). These 'geometric' rotations differ

from spinor rotations by flavour transformations. A general element of G: (fa, s)
is composed by a flavour transformation (f), a translation Ia), and a spinorial rota-
tion (s). Alternatively it may be composed by a geometric rotation R(s), another
flavour transformation if] and a translation [a]: [f,a, R(s)]. With these notions
and concepts we can describe the structure of the symmetry group of the DKE:
PROPOSITION 1. The symmetry group Q = {(f,a,s)} = {[],a,R(s)]} •_
SE x U(4)/Z 2 is defined by (f, a, s) o (f', a', s') = (ff', R(s)a' + a, ss'), or
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[f. a, R(s)] c If', a', R(s')] = [fsf's-',R(s)a' + a, R(s)R(s')].
The relation between the two notations is given by g = (f) o (s, a, s) - (fs, a, s)
If, a, R(s)]. The second form of the group multiplication is essential for the under-
standing of the lattice symmetry group.

2. DeRham mapping defines the symmetry group GL of the lattice DKE as
"lattice restriction" of the continuous symmetry group G [4]. This is obvious
for the translation group: T D TL = {a I a = b(n'),ni E Z} = {[a]}. The
geometric rotation group must be restricted to the symmetry group W4 of the
4-dim. cube. A similar geometric approach to the lattice restriction of the flavour
transformations makes use of a definition of a V- product on the lattice: edK' =
eo V (dK)-1, 6 = ±1. The lattice flavour transformations edK E FTL generate
translations: (dK)2 = [-eK]. The factor group FL = "FTL/TL • K4 is isomorphic
to the multiplicative group KC4 of the Dirac matrices {f±-y}. However FTL is not

a semi-direct product TL (yKK4. but a non-symmorphous extension of the lattice
translation group. We may summarize these facts on the group GL in the following
PROPOSITION 2. The lattice restriction of G is

[L = fledK,-- -eKx + a, R} ý a e TL, R E W4} with the composition law

eK 1 1•K4aRoe dL_ / a,, = [dARoL 1
[ed K,-1eK-aRIo[d,-1eL+a',R'] =[dK , -1(eK+ReL)+Ra'+a, RR'.

2 2 2

= [eep(RR o L)OK,RoL = ±-1. It is a symmetry group of the free DKE if it
acts on staggered fermion fields according to:([a]x)(x) = x(x - al'e.), ([R]))(x) =
p(R,H(x))X(R-lx),R E W 4, (ed'x)(x) = CpH(.),KX(X + -eK). The sign p(R,H)

is the same as in the transformation of the basis differentials of the continuum:
RdxH = p(R, H)dXR-',H.

3. The problem of the classification of the irreps of a group with a normal
subgroup is greatly simplified by the induction procedure. This was illustrated for
semi-direct products with abelian normal subgroup by E.P.Wigner [5) in a classical
paper on the Poincar6 group. The structure of the group GL is somewhat more

complicated. Therefore the construction of the irreps of GL must be guided by a
more general procedure which is due to G.W. Mackey [6].
MACKEY'S MAIN THEOREM states: All irreducible unitary representations of
a group G with normal subgroup N are characterized by the G-orbits O' in N7,
and the irreducible projective representations of the related little groups of second
kind S')I/N S 3 s --* D(s) with multiplier of a certain equivalence class. The
little group of first kind Sf1) is the stability griip of 0.

The iterated application of the Wigner-Mackey procedure leads to a complete
classification of the irreps of GL [71.(See also [81,[9}). In a first step we consider the
translation group TL as a normal subgroup of GIL. The 1-dim. irreps of TL : aj
eip. are labelled by 'momenta' p varying in the Brillouin zone: - p . The

star St, is the orbit of the rotations R E W 4 applied to the momenta, p -. Rp, i.e.
Stj = {Rpj[R E W4}. There are 17 qualitatively different "momentum stars"St,
characterized by reference momenta p,. In the applications the irreps with a
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"momentum at rest"pj = (0,0,0,p) are used mostly. 5•I) is generated by the
translations, flavour transformations, and the rotations of Sj = {R(Rp, = pj}.

The little group of the second kind S 2') S-'/TL is generated by Sj and the

elements of C4 . It is not a subgroup of GL. The Sti and the irreps of S 21

determine the irreps of 9L.
In order to determine the irreps of S(2) we apply the Wigner-Mackey construc-

tion a second time. The group S(2 ) contains k 4 as a normal subgroup. Therefore
we consider first the irreps of K 4. These are the 4-dim. representation by Dirac
matrices ('L = 0'), and the 16 one dimensional representations EdK _ E-yK, EdK -

em(ý(L,eK) -FL(,dK). The transformations of the irreps of K 4 under the rotations of
Sj are: FL( R-1(edK )R) rF R°L. For L=0, this is an equivalence transformation for
all R: R o (L = 0) = (L 0). The set of 1-dimensional representations decomposes

under the rotations of Sj in 'flavour orbits' Oj.F S. is a semidirect product of

Sj,F with K/4 as normal subgroup: SjF {RIRLF = LF; R C Sj} C Sj, LF refer-

ence point Of iF*, and Sj 1/'* 4 :- Sj,F. We call Sj,F the "reduced spin group",
the character of its irreps "reduced spin". The result is
PROPOSITION 3. The irreducible, unitary representations of the symmetry
group 9L of staggered fermions are determined by a 'momentum star', a 'flavour
orbit', and the 'reduced spin'.

4. The decomposition of the irreps of the symmetry group G of the DKE in the
continuum into those of the lattice restriction GL plays an important role in the
calculations of the hadron spectrum by a lattice approximation of QCD. In the
framework of Mackey's theory this problem is solved by the 'Subgroup Theorem',
and 'Frobenius' Theorem'. We shall deal with our problem along this line [10].

First we make some remarks on the irreps of the continuum symmetry group
9 2 SE x SU(4) . The irreps of 9 can be constructed as products of the irreps of
the spinorial Euclidean group SE with the irreps of SU(4). According to Wigner's
construction, the irreps of SE are characterized by an 'Euclidean mass shell':
p2 = M 2 , and by a spin o- determined by an irrep of the 'little group' SU(2) D s -
Do(s). The irreps of SU(4) : DF,(f) relevant for quark model considerations are
for the qq- system: (4)®(4) = (D) (15), and for the qqq-system: (4)&(4)®(4) =
(20) e 2 . (20') ® (4).

The 'Subgroup Theorem' deals with the decomposition of 0 4Ltu') J 2 , the re-
striction to a subgroup H2 of a representation GLU(H') of a group G induced by a
representation L(HI ) of the little group of first kind H1 . It states that G UL(H,)IH,

Zk W'*. Here G 3 xk denote representatives of the HxkH2 double cosets, IV" is
the representation of H 2 induced by L"A : x-iHi' k H2  k y-L(xayzjj). In our

case we have to identify G with G, •L with H 2, and the little group of first kind
of the continuum group S' _• 0(3) x SU(4) with H1 . The double cosets might be
represented by boosts xA, -- A(pj) E g with p, ý A(p•)p, p reference momentum
on the mass shell, pj the independent reference momenta of Stf.

I(L 1 , Li2 G) Trace(LI(g -)Tracc(L 2 (g)) defines the intertwining
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number between two representations Li, L 2 of a group G If L1 is irreducible it

gives the multiplicity with which L1 is contained in L2 . For induced representations
Frobenius' theorem states: I(GULIH), L 2 U{G) = I(L, L 2 IIIIH). This formula allows

the calculation of the multiplicity of the irreps of 9L contained in W". Adding
up we get the final result:
PROPOSITION 4. The lattice restriction of the irrep Ux, X = (M, F,o,,) of the
continuum symmetry group 9 contains the irrep UXL, XL = (j, F, a) of 9L with
the multiplicity:

(U×L' 119L) -FTraceDaý(A(pj)pA-l(*j))Trace(D'(p))

lSj,F l
, FS2,

with r 1 Trace(D•edKp))Trace(PF(ed ,p), andp2 = M2.

We made the physical assumption M < otherwise the case gets too involved.
Extensive tables cover most of the physical interesting cases [101.

5. QCD with DK fermions is supposed to describe a quark model with four
flavours. Therefore it is a major problem for the calculation of the hadron spectrum

in the framework of lattice QCD with staggered fermions to relate lattice states of
a given lattice symmetry XL to physical particles with quantum numbers X defined
by the continuum symmetry. A natural condition is: I(UX]L, U"-) j 0. On the

otherhand, one believes that lattice calculations approach the continuum, if they

produce energy degenerate states with all the lattice quantum numbers making up
for a complete continuum particle multiplet. There are very few dynamical lattice
calculation which include a complete consideration of these symmetry aspects. We
want to mention strong coupling approximations of the meson spectrum 111!, and
of the baryon spectrum [121, and some recent Monte Carlo calculations [13]. Of
course the real physical signirl4cance of our considerations depends on the under-
standing of a possible physical meaning of the flavour structure of Dirac-Kiihler

fermions, a problem about which to speculate goes far beyond the scope of this
report.
REFERENCES: f1] E. Kaehler:Rend.Mat.Ser. V, 21(1962)425. [2] P.Becher, H.Joos:

Z.Phys. C15(1982)343. [3] H.Joos, in 'Gauge Theories of Fundamental Interactions',p.199,
World Scientifique 1990. [4] M.Gockeler, H.Joos: 'Progress in Gauge Field Theory,. (Cargese
83)p.24 7 . 1984 Plenum Press New York. [51 E.P.Wigner:Ann..Mlath.40(1939}149. ý61

G.W.Mackev:Acta Math. 99(1958)365, 'The Theory of Group Representations. (Chicago

Lecture Notes). ý7ý HlJoos, M.Schifer: Z.Phys.C 34(1987)465. 8i M.F'.L,.Golterman:
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LATTICE FERMIONS WITHOUT SPECIES DOUBLING
AND WITH AXIAL ANOMALY

MIGUEL LORENTE, Departamento de Fisica. Universidad de Oviedo, Spain. Arnold Sommerfeld Institut
Universitit Clausthal, Germany.

Using the method of finite differences for the Dirac field equations on the lattice, a new
scheme is proposed that gives exact solutions at any time step. The hamiltonian of the Dirac
field is translational invariant, hermitian, avoids fermion doubling, and, for the massless case,
preserves global chiral symmetry. Coupling the fermion field to the electromagnetic vector
potential we construct a gauge invariant vector current leading to the correct axial anomaly.

1. QUANTIZATION OF THE DIRAC FIELD

The discrete analog of the equal time anticommutation relations for the Dirac field J'n and
its hermitian adjoint Výn read as follows:

n t?1 3 1

V , 4i3 V i .I([1.1)t
+ ' V']) 0 (1.2)

where V". Ur , nr) , V Etc, nf) are defined on the lattice, E,r being space and

time intervals, andj,n integer numbers.
As in the Klein Gordon field, we introduce the method of finite differences in the

Heisenberg picture of the equations of motion

- int + 2,t,, + -•+,-int, - ,,= l,+2 " ++,.tH (1.3)

The time independent Hamiltonian can be constructed in the (1+1) dimensional lattice as
follows:

V•,+ o r + r t y 1 + , V n n ) + M • • ( V + Y 4 + 2 + , + V " ,)l. I( .;

with

Inserting (1.4) in (1.3) we find:

tV.V Rn=0 (1.6)J njI
where

n n

Ij , I n- r n n)

and A). ()are the difference (average) operators with respect to the space index:

As f,-+ -If- (A f, =- (fj, + f,)) . Similarly for the time index.

The general solution of (1.6) forR n is:

R n I = A i + B n)(- 1 . (1.7)

with Aj and Bn arbitrary functions. Applying the operator
Y, 1 Vt• 4 1- V.-' .y 1 V-,A V1 Vn

E f n r Ij J

to both sides of (1.7), we obtain the wave equation for 4, if A, and B, are const. Conservation

of current (2.1) requires const = 0. Thus we obtain the discrete analog of Dirac equation



554

R•'= 0 (1.8)

The same result was obtained by Bender. Milton and Sharp [Ref. I, formula 181 applying
the methode of finite elements to the action.

Let us construct solutions to (1.8) of the form

I±I + •rk I - 1- irE \
Vn=w(k,E)fý(k,E)=- w(k ,E)If 2

The four component spinors w (k, E) must satisfy

(i , k - y4 E+ AM)w (k, E) = 0 (1.10)

Multiplying this equation from the left by (i y, k - y4 E- M) we obtain the "dispersion
relation" for the Dirac equation

E 2 -k 2 = (1.11)

Imposing boundary conditions, f = we can construct a complete set of Dirac wave

functions of the form
-u f n(kE (k. (1.12.13)

V E m f j mI1 •E- mM

where

E =+" + M
2  k i=

2 tanN (1.14)

and the spinors u,n and v. are defined as usual:

U. =w,, (kmE) ,+= E- , + k (.-
2,V Em+ M

' -I% - X~ A~uf = (kw (-k+ .d,, ,E(k, Em)) (1+7M

-' Ji2~ Pm ,Af (km Em)+ •',•mf,2(k, E)) 1.s

where n • .$. Inverting this expressions. with the help of the orthogonality conditions

N, C ,(k , jE , (k, , E +

we derive the anticommnutation relations
!c,,.] tj 3. [dmdtj = • (I. 1,._0),

with other anticommutation relations vanishing.
Finally the Hamiltonian can be written in terms of these operators

,, = -- ,.-,, += I-F,

*jn = n/•

m+ E m Cm m m I

Notice that the zero point energy is finite due to the lattice:

Inm • •mn• nndmumum - IIIRNII IU • lnll~mmlllnnlll~m A lln ~ mn n
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"/2-• E
E0  Y + 2 '21 (1.22)

4 m

Our model for the fermion field satisfies the following conditions:

i) the hamiltonian is traslational invariant with respect to the space indices.
ii) the hamiltonian is hermitian (1.4).
iii) for M = 0, the wave equation (1.7) is invariant under global chiral transformations.
iv) there is no "fermion doubling" as it can be seen in (1.14). In fact, Em takes the value M

at m = 0 and nowhere else.
v) the hamiltonian is non local. Using the finite Fourier transform the hamiltonian

H (km) = i y4 71 k. + y4 M, given by (1.10), and consequently the dispersion relations
(1. 11) are smooth functions of kin, except for m = N/2. Therefore our model escapes the

no-go theorem by Nielsen and Ninomiya 2.

2. ANOMALIES IN AXIAL VECTOR CURRENT

In order to construct vector and axial currents in terms of the fermions fields in the presence
of external electromagnetic vector potential, we multiply (1,8) from the left by A. ,A -V and"J " J

then we multiply the adjoint equation of (1.8) from the right by A I 4/. Adding together
both results we find:

A K -n i (A Y, 2i =0 (2.1)

This equation can be considered the discrete version of the "conservation law" for the vector
current .7 = , (AK j4 = 2i *1 1) (N 1 (2.2)

The same equation (6.1) can be applied to the axial current
.5n

""ude(rn c)Yt Ya (k(•¾ ) ./ = i(S'j P Y4ri (A S ) (2.3)

Both currents are invariant under global chiral transformations but they are not invariant
Linder U(1)-gauge transformations:

I _ (2.4)

with Qn some unitary function of discrete variables. In order to have gauge invariance we
define a gauge field on the lattice

S + i-r A o + (A j ' - I - (A ,) + n
4_ + = I " (2.5.6)j l i_ ( )) + (A , ) I "i '( A + , ,(,A , ) j
4 1 4 1 )

where (A1 , iAo) are the two component electromagnetic vector potential, each of them satisfving

the wave equation with M = 0 namely,

(.VA X V - f1 1 (2.7)

and similarly for (A0))

'[he gauge fields U"I are associated with the link between the points U. n) --. n') in

the positive direction, and they transform under the gauge group as follows:

U"" -S 2, Um," U". -) f2l" U" / n (2.8,91 I I I II J I I
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-.7,-'1:ng these fields in the vector and axial currents between fermion fields at separated
points, we get

•_[..n n • U~ n~l n~l t~l u n+,.n n+ - I •.n l lI )? V'~n~ n+ ý+. yU. (2.10)

and similarly for j5 and j5 . Using (2.8) and (2.)) we can prove that all these expresions for
the vector and axial currents are invariant under the gauge transformations (2.4).

Now we want to calculate the vacuum expectation value of the divergence of the vector and
axial current. We assume that this vacuum expectation value approches the corresponding non
interacting fields for vanishing spacial separation of the fields 3. Thus we u.e sclution of the free
massless fermion field (1.7) with M--O, namely,

U.= C. 2 u f (k , 0rn) + vd k -o
Vij M N mmj M (',)~2.12)

with urn (JI and vm= (_i), and the operators cm and dm satisfying:

LcC',]+ [dd] = 8 , (2.13)

Applying these operators to the vacuum of the Fock space, we get

dt i0) = c I0) = 0 for m->0 (2.14)

d 10) = cm 10) = 0 for m<0- (2.15)

Collecting these properties we obtain for the axial current

(01 'A j.- 5  0 )j ' t - znJ4 10) =

I -. +iC.CN-I k-A~,1A(Ao4 + e~/ "rJAf(Al}r + c.c.

2N tg - i£( 2 2N senA2,N1-i Aj "n (Ao0)• - - A (a0) 2 N I1 cA JI -- i(,Z
J a

which in the limit, N --4 --- 0 ,---0, becomes
( O [ l jA 5 + ý4 j ý ' 1 0 ) = - I ( a lA O - o A 1) F l ( 2 .1 6ir Fro2.6

We come to the conclusion that our model leads to an interaction which is U( 1)-gauge
invariant, but the divergence of the axial current gives in the continuc -. 'imnit a photon mass, as
expected by the axial anomaly. (For schemes in one dimension see Ret.4).

This work has been partially supported by the Vicerrectorado de Investigaci6n of the University of
Oviedo, and by Volkswagen Foundation.
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Abstract

An extension of the standard model of eiectroweak interactions which incor-

porates the usual gauge fields and the Higgs fields in one generalized

Yang-Mills field (or superconnection) is discussed. It is shown that both this

Yang-Mills field and the corresponding field strength (supercurvature) take

their values in the real graded Lie algebra (SU(211)). The model is character-

ized by a constant background supercurvature which is invariant under arti-

trary, constant SU(211) gauge transformations. The Higgs mechanLsm receives a

new and geometrical interprotetion.

I would like to discuss a model which is inspired by ncncommutative geome-

try, see e.g. /1/, ano its connection to the standard model (SM) in elementary

particle physics. It is also connected to the model we nave seen in the taLk

of Y. Ne'eman in this conference. But the point of view here is ditterent. It

contains no ghosts and non other particles but those which we have in tle S.'1

and the realization of supersymmetry in it is very oifterent from the usual

realizations. In particular, I would like to review some aspects of the worK

contained in /2-5/.

Our aim is to attain a better understanding and improvement of the SM whicn

ha:, as is well known, a lot of parameters and some isatisfactory aspects.

The usual way to reduce the number of parameters is to introduce more syn-

metry. Up to the present, the theoretical efforts to incicise the symmetry in-

crease also the degrees of freedom and contain therefore de facto more parame-

ters than before. This is the case with supersymmetry, Kaluza-Klein theory,

grand unified theories and superstring theory. The model I am going to discuss

introducem more symmetry without intoducing new particles. Therefore it oro-
mises to reduce the number of parameters and certainly to give a deeper under-

standing of the SM. The essential ingredients of the model are

1) a certain Kaluza-Klein ansatz without additional nonexisting fields,

ii) a certain supersymmetry SU(211) without additional nonexisting fields,

iii) all this in a noncommutative way.
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This leads to a superconnection LA with values in Lie (SU(2 1)) witn a speci-

fic Z2 grading, so that the even (odd) part of A takes values in the even

(odd) part of Lie (SU(211)) and contains an additional derivative aM which

acts on the values of 1A. In what follows we shall discuss shortly 1. the

superconnection, 2. the real SU(211) superalgebra, 3. the superderivative "d =

dc + dM' and the supercurvature, 4. the bosonic Lagrangian and Higgs mechanism

(geometrical) and 5. comment on the realization of supersymmetry.

1. The Superconnection

We may start heuristically as in the Kaluza-Klein approach by splitting the

connection in two parts AM = (A p,A) which take their values on some subspace

N(n) of a matrix space M(n). The new ansatz is to consider the "j-direction"

discrete which leads to a specific Z2 grading /2/: AM = (A p,) so that intro-

ducing also a Z2 grading in the matrix space M(n), the Ap (ý) takes its values

on the even part M0 (n) (odd part M1 (n)) of M(n). The superconnection takes the

form of a 2x2 block matrix which may be represented by

.•2 1 A 2 2 i/p$ B 1

A and B are 1-forms, gauge fields and the (,$ are 0-forms, Higgs fields. p is

a mass scale which we may put equal 1. Superconnections were recently studied

also in /6/.

2. The Supersymmetry SU(21)

For N(n) we take the graded Lie algebra SU(2 1) /7/ the even part of which,

SU(2)xU(l), corresponds to the electroweak part of the SM. The Lie (SU(2 1))

with supercommutator <,> is given by

Lie(SU(2 1)= {m F M(3)m + = -m, str m = 0}. (2)

With the grading matrix f = diag (1,1,-1) we have for the even and odd projec-

tions of m,m i/ 1 = 1/2(m ± mfm). For the reasons explained in /4/ we take the

graded associative product in M(n):

m • n = m0n 0 + mon, + m1 n0 + im1rn 1 (3)

The graded commutator is given by

<m,n> = [m0n0 ] + ýmO,n 1 ] + (m1 ,n0] + iiml,nl , (4)

where e.g. monI corresponds to the usual matrix multiplication and I,] (1,})

to the commutator (anticommutator). The generators of SU(2ý1) in the Cartan
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basis is given by /3,4,8/ J = diag 112(1,-1,0), Y = diag (1,1,2) and

1 0 10 00 0 0 0 0 0

J+nd 1/v/2 (0 0O) Q+ =(0 0) = (0 0 ) (5)
S0 0 0 0 0 0 0 0 0

and

, + +

The superconnection can be expressed in this basis /3/ as:

=i(62 i* + l/v' Y + (+2 + (2• + - 6 , o+' 2,+) (6)

It can also be represented by the block matrix (1) with 1 := , .

3. Superderivative and Supercurvature

A new ansatz which has far-reaching consequences (Higgs mechanism) is the

adjoined derivative dM which acts on N(n) < M(n) /21. In our case it can be

constructed by use of the odd element n c Nl(n):

dMm := <n,m> = 7,m ] + iin,m (7)

with
c 1

n i(c Q2 + c + hc) = i ( 0 C ) and C ) . (8)
1 2 0 C 2

C can be chosen c1 = 1, c2 = 0. So we have in the space ot matrices M(n) the

graded associative algebra (multiplication as in eq.(3)) with the derivative

dM: GOAl = (M(n),.,dM). Together with the De Rham algebra on the space-time X,

with the usual Cartan differential dc, GOA2 = (A*(X),,d c). By use of the gra-

ded tensor product we may construct the space of matrix valued forms on X:

GDA3 := GOAl i GDA2 = (M(n) @ %*(X), e,d). (0)

This leads immediately for the elements M,N of GDA3 (M = m @ f, N = n a g) to

the total grading a(m a f) (3m + 3f) mod 2, to the total associative pro-

duct: On~f
m a f e n a g m (.) m n a f -g , (10)

to the total derivative

am
d(m (a f) = (dMm) a f +(-) m a dc f (11)

and to the graded commutator

[M,N]g := M a N -(-) N a M @ (12)g(2
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Since there is no danter of confusion we use <M,N> M,Nr Tr- superconnec-

tion A may be recognized as an element of Lie (SU(2 1)) m .7(X) with 7 Aý1.

The supercurvature is given canonically by the qeneiaizzed structure eqSjation

d~A +1/2 K.A,A >

F is an element of Lie(SU(2'1)) a .*(X) and has of course the same Olock

structure as the supercunnection . It turns out that the fcll myo,- sp"ittuno

is relevant /4,5/

,4 -4 : + A4 o 04 . .. : ,0

It corresponds to defining the backshifted fiseld : C ant leasts oi

to a splitting of -A given by

+ F with =1 i 2 sna nc

d dA. 1/2 6
it is remarkable that A° its invaruant under constant SU(2 1ý transfo:r-acicns.

A ando are "aosolute elements" in the theory.* Is prooort orna: to te

electric charge 1 i 2 (13 + 1/2 Y) , and may be consicered as aci-1 3s a

constant magnetic field on a spherically symmetric atom /a,5/. T' e fi -a-

greagian has only the (U(1))1 symmetry. We may add a constant C

xY) and ve have + = + CF -. -Y', with (a = 12 r , erms It

(the backshifted field', the Lagrangian has the symmetry 3U12) x J1 7 ths

SM.

4. The Bosonic Lagrangian and Higgs Mechanism igeometrb-cal)

Given the supercurvature , the Lagrangian may be constructec c~Or7cnijV

by the trace /2/:

-= -Tr gY >

),king the trace leads immediately, as expected, to the bruarkinq or tne sofe'--

symmetry which is both theoretically and exoerimentaily inevitable. Tnots 7eac-s

to /2-5i
2 (Z) z8ý, •2 2

g -1/4 2 / ( 2 2 D ' 1 -

with

Z)p 3 := D' , AC - CB D: d + Al -8c
and

an 2 2,2 2 4
2g V(.) 4 - 3/2 a 7 3a , C• . (20

Isospin transformation leans to the special choice c. . c 2 -
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V is characterized by the center -C and the radius of the minimum in the

C-space. These results are directly visible in the supercurvature T , too: In

its block matrix structure, we have for the essential terms:

FA + F 12 =-i Z . (21)

FA leads via (17) to the kinetic term in A, and F , given by

F =-i (ýC + C< + o) (22)

leads via (17) to the potential (V(() - Tr(F ) 2).

It is important to note that the vacuum degeneracy arises from the term

tC + C = dModd in F and the W- and Z-mass from the term AC - C 8=

d Meven in ý) T. We realize that the adjoined matrix derivative dM is respon-

sible for the spontaneous symmetry breaking and the Higgs mechanism. This con-

stitutes a new and geometrical derivation of the Higgs mechanism. We have fur-

thermore obtained in (18) the Lagrangian of the standard electroweak model,

with some parameters fixed by the above construction of - and f- . This may

fix the value of the Weinberg angle to % = 7/6 and lead to the ratio MH/MW.

/2 /3/. There are however doubts whether this fixing is legitimate.

5. On the Realization of Supersymmetry

I would like to terminate with a few remarks which at the moment reflect

more my own feelings than imperturbable theorems. Phenomenologzcally, the fact

that leptons and quarks ((vL,eL,eR), (UL'dL,uRdR)) fit into irreducible re-

presentations of SU(211) is a most important observation /3,7,9/. If we try to

interpret SU(211) as an inner symmetry, and if we are not willing to accept

additional particles beside the experimental, existing ones, we are forced to

interpret the odd transition, e.g. Q_: eR - eL (uR - UL), not as corresponding

to the usual vector current induced by victorlike particles, but as "scalar

currents", corresponding to ¥ukawa couplings and .nduced by spin zero par-

ticles like the D. This leads us again back to the SM. We have a model which

contains in an unusual way the SU(211) supersymmetry and it is not in contra-

diction to the experiments. The prize for this achievement is that only a few

not very strong predictions (e.g. the Cabibbo-Kobayashi-Maskawa matrix) beyond

the SM are possible /3/. Theoretically this model may contain a new mathemati-

cal structure, corresponding to a graded connection with adjoined derivative.
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ON THE SOLUTION

OF THE

RELATIVISTIC Two BODY EQUATION
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1 The Radial Equation

RccPnt\lv thp-c '-v ',-en much interest in the relativistic dynamics of two (or more)

interacting particles. In fact the dynamics of interacting fermions via the electromag-

netic field is the basic problem for tests of Quantum Electrodynamics (QED) in low

energy bound state problems.

A relativistic two body equation. for two matter fields Lrj und L-2 interacting via

the electromagnetic field, has been derived from first principles of QED:

- ,17) C .0 + .•o C (pi0, - in2) + Vo(.r.y) =0 (1)

where x° # Iý. - 91, 6(x.y) = L1'1(x) ":) t'2(Y) is a 16-component composed field. The

relativistic potential V contains terms coming from minimal and pauli coupling, for

the minimal coupling:

V = 0 / y' (2)

r

In the tensor product 12 we shall always mean particle I first and particle 2 second.

Equation (1) has many remarkable properties, among them the exact separability

of the center of mass and relativistic coordinates. One then sees that it is a one-time

equation. Moreover. equation (1) can be full\y separated into angular and radial parts.

The radial part consists of 16 radial equations which separates into two sets of eight.

In each set four of the eight equations are algebraic. The algebraic equations are

used to eliminate four component functions. Thus we arrive for the first set at four

coupled first order differential equations:

E2+0' 4J1 2I" , -2, ,__m20d0

\rJ [r Err(A (- (E - + (3)

(E + - m"] yo +2 (E + 0(iy - 1-- + i 0
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where E is the total energy in the Center of mass trame (M = m1 + ?1 2 ), Am=
-711 -l 2  =- , J2 = j(j+ 1) and j is the total angular momentum. The indices

of the function u1 ,yO, z2 and r 00 denote the spin components. For the other set, we
obtain identical equations to (3) with the replacement A.m M and changing sign of
some component functions.

Due to the (1/r 2 ) singularities equations(3) do not possess simple power series
solutions. In fact substitution into (3) with:

,il = F o:, ... ,voo = Zbrnr (4)

leds to 3-term and 4-term recurrence relations which are difficult to solve for an. b,,.
One may try to eliminate more component functions by forming O.D.E. of the

second order out of the set (3). We still obtain four equations in two sets. The first
set is the one of two coupled equations:

du d + 5 E(E+L---Aý][(EL)-f'
d~

3
r
2 
+2E(E+L' -Am21 dý e2r2aArn2•

3[E(E+?*)_Am,21 ='0 0
41' + 2oAM, 2 ,dv.Qa
dr

2  
r2 (E L') [E(E+ )-a~m2 dý 5

+- )(+!- p 3E+~ t-00+
+ (E-•'ý)(E+Z*) r2 '(E+ L'[E(E+•)•: >°-

13[E(E+L-)_,,n2],00 0 .

The second set consists of another one of two coupled second order equations in
the two functions yo and z2 but with more complex structures. It is clear that these
equations are more singular than (3) and simple power series solutions do not exists.
In the following, functional series solutions are suggested and this seems to work. The
basic idea is to replace the set, {r'} in (4) by an apropriate set of complete functions
{f,} and hope that such series terminate, in the next two sections we shall illustrate
the method but with some limiting cases. These limits are obtained be expanding
the potential terms as power series of (a/r). In the power counting (1/r) is counted
as a.

2 The free System (a• = 0)

For the first set of the radial equations we obtain:

Jd, +(1-4-'jio 2~ i + ) (1 -0
d2

z2  2J2  d [ 3JZ 2 2 a.1 (6J
+ L (-

dp p p 12'2(2 Y = 0, #

d4,, Yo. + t ---- 2- -0
Pa• do PT 7F 7• 2 2E I. Sa
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where p =kr, 4k2 E2  anda -Y'2
E4E

2 
Am2' ada E

The first two equations have the well known regular (at p 0) solutions ul =
pj.(p) and v~o = pJj(p), where j,(p) is the spherical Bessel function. The form of the
other two coupled equations suggest the solutions Z2 = Fn=0 Apjn+,(p) and yo =
E=0 B,,pj,+,(p). Substituting into (6), it can be shown that the inicial equations
imply s = j - I. Moreover, if A1 = 0 = b1 , then A, = 0 = B. for odd N. For even n
(put n + 2 = 2m) we obtain the recurrence relations:

_ {2 (2m + - 3)(22m +j - 4) 2,-2 J2 (2+1 + + 2)2 + +3) - 22(2,. +j) -5}2., +j) -31} J"{2(2n +j) + I}{2(2,, +j) +-}3""

[t (1n +j)(2n + - I J2) 2 12 1 (2m + 1)(2m +-) _ J
2 + 31+1 {•{(2,,, + j)(2,u i+j -1)--.j2} - 2J{2 (, . A•,

{2(2ni + j) + 1112(2m -4j) - :1
-2aJB2,, =0 (7)

-j2 (2r? j- 3)(2m+ j-4) (2+j +2)(2w +-j + 3)-Pf{2(2,, i- j) - )} 12( 2m, 4 j) - 3) B ., - "{2(2m, + 1 ) + I ) {2(2,,, j ) + 3} 1 :,
S(21n +9 I •)t2, +) •:.12+3

(2,m +j)(21n +j - 1) (2 -J)- -J-2
+~(2)21,N + -j + I I J2 +~~ j - :11

-2aJ,,, 0_

Notice that for m = 2 the coefficients of A2 in (7) and B2 in (8) vanish. Hence. if
we assume that A4 = 0 = B4 . then A2,,= 0 = B2. for m > 2. For (A-, = 0 = B_)
(7) and (8) lead to four equations, only two of them are independent in the coefficients

A0 . B0 . A 2. B2 . ('hosing ,40 = 0, then B0 ý 0. we obtain the two solutions:

z• = A2pj,+1 (p). yo = Bopjj.- + B 2Pj,- 2 and Z2 = ,4opjj-i + 42pjj+,. Yo = B2pj3 +:.

which can be checked by direct substitution in (6).

3 The Interacting System (a # 0)

Due to space limitation, we consider only two limiting cases for the set (5).
(i) Up to a2, for the set (5) we obtain:

~( 1 i)÷ F~ilij (~ =0(9)
where we put p = 2kr, 4k 2 = t,•-Er)tE

2
-z,'

2
) and A = 4-E(2E

2 -. 2 - An 2 ).

The regular solutions (at p = 0) of (9) are given by the hydrogenic wave functions
ul =- Rl,(p) and 0oo = R, 1 (p) provide that A = n (integer) and n > j + 1. This
implies the energy mass relation:

E• M2+ Ajn2 M1-m ( 2)-}
E2  

+ + m2 + 2 (10)
2 2 7,2j
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(ii) Up to 04, for the set (5) we obtain:2_• + .- + l- + 1 !L7-02 -a-• l.0o = 0
- -- 1 atl - o•

d_2 P2 dp [_ P J _l (11)
dp

2 + E2P + - -- p2 E2p3 too E3p u1 0
4EkE dnd4% p p

where we put A. p and k as before, a = and 6
E = 

2  
2

Again by comparison with (9) one may try the series solutions: ul = ET= 0 Aiwi+.(p)
and sumn=oBwti+3 (p), where we have put R, 1(p) = wj(np). The following recurrence
relations (written for first time) are needed:

,= (1- L2 _
2 1'~dp 2(12)

(I + 1) d-ut = (a - )w+- Vn 2 -(2 + 1) 2wi.

Again, following the same steps of section 2, we show that (11) have

n--j- 1 n--j--1

u= l Ajtw+j and voo = Bu, l+,.
1=0 1=0

as solutions.
It is to be noted that to have these (regular at p = 0) solutions, the same energy

mass relation (10) is obtained.
Details of these considerations and their physical interpretations will be listed

elsewhere. It is worth mentioning that for positronium (Am = 0) the radial equations

and their solution simplify.
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VACUUM FLUCTUATIONS IN PRISMATIC CAVITIES
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INTRODUCTION.

Spectral features and energy level statistics of semiclassical and

quantum systems have been a subject of growing interest. It is commonly

accepted that a chaotic behavior is described by a Wigner statistics, while

Poisson statistics is related to a completely random behavior'. Nevertheless,

it has been shown that such a sharp distinction may be misleading

In this work, we calculate the energy spectrum of vacuum fluctuations for

a massless scalar field which satisfies boundary conditions inside a

rectangular box. The spectrum is similar to that of a quantum particle in a

billiard, with the difference that all the energy levels are 'occupied'. The

fluctuations do not obey a strictly Poisson distribution, and thus we

conjecture that a realistic detector would not observe quantum vacuum as

'white noise', except in the unrealistic limit of infinite high frequency.

This kind of study is important due to recent results, both theoretical and

experimental, of quantum field effects on atomic systems in cavities.

SPECTRAL DENSITY OF VACUUM FLUCTUATIONS.

Consider a prismatic rectangular cavity with infinite axis along the x

direction and transverse lengths b and c along x and x , respectively. The

Wightman correlation functions for a scalar field D4(x,x') (010(xhO(x')10>,
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and D-(x,x') = <0OI(x')O(x)IO> that satisfy Dirichlet boundary conditions at

xz = O,b and x 3 = 0,c are found using the metlod of images in a

straightforward way:

D-(x,x') = -- W W 1 _
xZn=-+(x -x'-zbm) +(x -x, Z2an)Z(t-tTic

I I z 2 3 3

I

(x -x')z+(x +x'-zbm)2+(x -x'-2an) Z-(t-t';tc)z
I 2 2 3 3()

I+

(x -x') +(x -x'-zbm)Z+(x +x'-zan) - (t-t'Tic)z
1 1 2 z 3 3

S+ I tt' ie

(x -x')Z+(N +x'-zbm)2 +(x +x'-zan) Z-(t-t,!c)2
I 1 2 2 3 3

Following the procedure outlined in Ref.7, we calculate the energy

spectrum at a given point x = (x,y,z) inside the cavity. This is achieved by

taking the static observer limit x' - x, t-t'=o-, of the Wightman functions,

and Fourier transforming with respect to the proper time a. The double series

may be evaluated in closed form with the aid of Poisson summation formula (for

details of the calculation see Ref.7). The final result for the energy

spectrum de/dw is:

de W 2 e 2Trikzy/b 2Trik 3 z/c(
dey i e (1I-e

dw 2r-ab A 2_ / k•/c j (2)
2 3

In this formula, the integers k and k take all the values such that2 3

2 , 2 2 2
W -- W2 = TZ (kl/b+k /).

k z 3

The resulting spectrum is highly irregular, with a series of resonances

located at w = Ak' They can be determined by drawing a rectangular grid with
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spacings b anL, the resonances are then given by all the possible values of

the distance from the origin to each of the crossing points in the grid. In

practice, this method permits to calculate a great number of resonances in

order to perform a statistical analysis.

The distribution of resonance fluctuations may be formally identified

once the distribution has been 'unfolded' , with those of a particle in a

two-dimensional rectangular box. According to Berry', the energy levels for

those systems should exhibit a Poisson uncorrelated statistics in the

semiclassical limit. However, this particular spectrum has interesting

properties which have been the subject of exhaustive statistical study in the

2-5
last few years . First of all, when the ratio b/c is a rational, the

distribution cannot be Poissonian because the energy levels become infinitely

degenerate. Oa ttne other had, when the parameter b/c is taken to be

irrational, unexpected fluctuations in the nearest neighbour spacing

distribution occur. This result was discovered by Casati, Chirikov, and

Guarnieri
2

, who found that the level spacing distribution exhibits a

significant deviation from a Poisson distribution, and that the long-term

correlations characterized by a A3  Dyson-Metha statistics differed

considerably from the expected linear behavior. They also argued that this

result should hold in the multidimensional case. These results gave rise to

further studies: Berry
3  

calculated the semiclassical limit of the A

statistics, clarifying the meaning of the deviations from the Poisson

statistics. Feingold
4 

found that a slow and irregular decay of the excessive

fluctuations was obtained when millions of states were included.

What we want to stress in this work is that the scalar vacuum field

spectrum is a definite physical example for which the above results apply, and

that vacuum fluctuations inside a cavity are not strictly uncorrelated. The
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point is that, although the deviations from Poisson statistics may decrease

for large quantum numbers, in practice there is always a cutoff frequency

above which the aproximation of impenetrable walls fails to be reliable-

Furthermore, a physical detector is susceptible only in a narrow frequency

windows around its own resonant frequency, and thus measures L in practice.

As pointed out above, the detector does not observe a Poissonian distribution.

The conclusion is that the spectrum of vacuum fluctuations in a cavity is

Poissonian only for high frequencies and in the limit of ideal conducting

boundaries, but that less idealized conditions may open the way to chaos in

quantum field theory.

A detailed analysis of the vacuum fluctuations and Casimir energy in

rectangular closed cavities, both for a scalar and an electromagnetic field,

will be considered in forthcoming articles.9 o

The authors are grateful to T. Seligman and F.Leyvras for many valuables

discussions.
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Abstract

QED is considered in the presence of delta shaped extornal gauge poten-

tials with support on one or two planes. Using the propagators determined
in these special field c.)nfigurations the parameter (dependence of the vacuum
energy (similar to the Casimir effect) is calculated. Thereby. it turns out
that also in the case of massive fields nonrelativistic field theory is unable
to approximate tile results of relativistic field theory. Surprisinglyv, a parallel
calculation using the zeta function method leads to a wrong result if one does
not investigate the nonleading terms carefully. First loop calculations exhibit
an unexpected renormalization behaviour which may be typical for certain
singular background fields.

"INTRODUCTION
6-functions are broadly used idealized elements of theoretical physics. Wit h its help
it is possible to formulate models which in marly cases can be solved explicitly.
lp quantum mechanics quite a number of such investigations exists [I] whereas in
quantum field theory investigations of this kind are just at the beginning. Here,
we consider the case of 6-functions with support on (parallel) planes so that they
effectively depericd on one coordinate only:

eA =O , cAo Y>a, 6(x3 -d,) (1)
t=1

With such a procedure we in fact introduce a more general type of boundary condi-
tions in field theory which generalizes the mostly used Dirichlet boundary condition.

In physical terms, such ,t 6-function may be seen as a model of a penetrable bound-
ary. From another point of view, it can be considered as a generahl,,d potential pot
which contains at most one bound state for each degree of freedom.
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QUANTIZED FIELDS IN EXTERNAL DELTA POTENTIALS
"[he most simple case seems to be the charg'-d scalar field, described by tile Klein-
Gordon equation [(O=-ieA5 ) 2+r 2]e(.r) 0. Inserting (1) for th<- potential A,, there
a difficulty connected with the product of two 6-functions appears. One possible
solution consists in the choice of

[0 + mn2 
- 2ZEb,6(.r3 - d,)]O(x) =0 (2)

as new field equation. The drawback of this equation is that due to the simple
coupling 2b'6(X3 - d,)O(x) (resulting from the term (cA0 )2 ) the charge sensitivity
has been lost. Nevertheless, we will study this equation because it is much simpler
than the Dirac equalion which will be considered later. The 6 -potential leads to the
additional boun(idry condition for the scalar field at the position of the 6-functioii

-030j,,=,-, = -Aoj,~=dj,. (3)

The positive (negative) energy solutions of this field equation consist of one bound
state, symmetric, and antisviymetric scattering states. The quantum field can be
constructed with the help of a mode decomposition containing creation a+, V+ and
dest ruct ion operators a-, b.

For later calculations we need the Feynlnan propagator. It call be written as

follows:

",D(,r,y) DC(x - y) + D(x.y) ,

if'( d3Y ) 1iI2P- Imi )k 0+ iFIra_. 3[ (5 1
t)•x "q = 2 (27r) r

by) d,3pI, + + !Y(• • +g'l, ,l+ q ) (6)
)(.r~) = 72 (27)3 1' - ibl I

(the unusual notationz, are = (Po, ptpP2), 1r = (xo, rl, X2) anld V = V/t - u- 2 + It).
where D[(x - y) is 'he standard propagator of free field theoty and [(.r. y) an addL
tional term containing the correction due to the 6-function potential. This unusual
representation is quite appropriate for a!l further calculations. The second part of
the propagator explicitly contains the bound state I = ib for b > 0 as pole in the
physical sheet Irn F > 0. For b - -oo the propagator satisfies the Dirichlet bound-
ary condition.

G EN ERA LIZATIONS

If we want to discuss ('asimiir-like configurations with two planes represented 1)
6-functions then we have to repeat the saume construction like above for thlie field
equation with .' = 1,2 and bi = b2. Ilere, the field modes are much more complicated.
Again, they contain bound states, symmetric, and antisymmetric scattering states.
Without going into (letail [21,[3] we quote the result for the propagator only

1 (2d3r) ( - 1

P' i b) 2 _ _c2, F4



573

{1l1,,- I +-!O-d, 1) + ibe'I'(Ir,-d+I y13 -d 21+d) + (di +-4 d 2 )} (7)

Note that also here the discrete eigenstates (bound states) appear as zeros of thie
denomiinator. In addition, there zeros of the denominator exist which do not lie oil
the real axis in the p0 -plane (so that they do not belong to the spectrum) and which
could be interpreted as resonance states.

Let us now turn to the more interesting case of the Dirac equation which looks
for the special potential as follows

jiý"o, - 7)2 + %a'b(X3 - d,)j],(x) = 0 (8)

The substitution of the 6-function by a boundary condition for the Dirac spinor
is also nontrivial. We have to take into account that the field itself cannot be
continuous at the position of the b-function. So, the following boundary condition
canl be derived [2],[3]:

... ,+, = !'• =_ , R = exp(i ) I (1 +2/.) (9)

Again, the energy eigenstates are found. In opposition to the approximated Klein-
Gordon equation the charge sensitivity is preserved. As it should be, there are either
bound states for the particle or for the antiparticle. For simplicity, we write down
the propagator y(, ,j) = S.(x - y) + S(x, y) corresponding to one 6-function only
where

Xf d/) (ap(x - !I) + iF( IX31 + 1Y.3()

, (27r)3 i'2 (t ± r -

(-/r (ia/2)(jj -o'1) ( + ni + ((Y: 3)-r) 3 (10)
- IF - iap()

The energy eigenfunctions as well as the propagators for one or two delta functions
can be found in [2].[3].

VACUUM ENERGY

As the simplest quantity of physical interest we calculate the vacuum energy per unit
area corresponding to two 6-potentials separated by the distance d. This is a slight
generalization of the classical Casimir problem where the plates are now idealized
by 6-functions. W,- illustrate the procedure for the scalar field. The vacuum energy
per unit area is given by

.. = J dx,3 < OIT0,10 >, 7•o = Iih(O, (.)0(,)l•_ (|1)

where T., is the energy moment urn tensor for the scalar field writ ten here in a sym-
bolic notation containing a point splitting procedure (useful for the regularizat ion
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process) and the differentiation operator P. So, by formally taking the vacuum
expectation value we arrive at an expression containing the Feynrnan propagator as
an essential element.

+or,E,,c iJI d- 3 -9.y [D'(x - y) + D(x, y)] Ix-~(12)

The aim of our calculation is to determine the distance dependent part of the vac-
uum energy, therefore all other distance independent contributions will be omitted.
Obviously, this concerns the contribution from the free field propagator Dc as well
as further parameter independent contributions. After some algebra we obtain an
expression which for large distances leads to

E___8(m-b -- , rn$O, b<m
-2m 1 

(13)

720 d3 =0

The spinor case which corresponds to the field equation

[i-yoa - y + -°a((X 3 - di) + (X3 -d 2 ))],'(r) = 0 (14)

can be treated in the same manner but the algebra is much more involved. The
result is

a 2 (rn- 312 -2md a 2  
_n0

4X.~) 1 a2 '(15)

6 •r2 d3 'M = 0

The conclusions following from these calculations are: for large distances (which is
the physically interesting limit in any case) the contributions of massive fields to the
Casimir effect (electrons contained in metallic plates etc.) are exponentially sup-
pressed. For massless scalar fields, the well-known Casimir result is recovered. In
the spinor case, opposite to the scalar theory the resulting Casimir force is repulsive.
One further interesting point concerns a corresponding nonrelativistic calculation.
Usually one believes that the essential impact of metallic plates is to change the
low energy spectrum of the fluctuations of the electromagnetic field, therefore the
Casimir effect is considered as an infrared effect. If this would be true for the case
of massive fields in the presence of delta functions then a nonrelativistic calculation
should be possible. An explicit nonrelativistic calculation [3I shows that this is not
the case, the distance dependent part of the vacuum energy (at least for a < 0)
vanishes. This means that the deformation of the energy spectrum caused by a
nonrelativistic approximation is so serious that it leads to a wrong approximation
for the Casimir energy.
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ZETA FUNCTION METHOD
The (-function method is a very powerful method for calculating effective actions
and vacuum energies. The mathematical background is as follows: Let K be a self-
adjoint operator with a discrete spectrum K0., = A.0. and nonzero eigenvalues A,
corresponding to the normalized eigenfunctions f dx &,d(x),,(x) = 6 n,. Then, we
define the (-function of the operator K as

(K(s) = Tr[K]-'= Jdxdyb(x -y) A-'&(x)d.(y) (16)
J n=l

= YA-'<oo for Rcs>so (17)

In physics, however, discrete eigenvalues of operators are not the rule. As an exam-
ple, we study a complex scalar field under the influence of two 6-potentials. First
we have to turn to Euclidean field theory. The operator is K = -(8k + A) +
rn2 - 2b(6(x 3 - di) + 6(x3 - d2 )) where with the help of the generalized boundary
conditions the 6-functions determine a self-adjoint operator. If we choose b < 0
then this operator possesses a continuous spectrum with no discrete eigenvalue.
So, we cannot expect to obtain a physically meaningful result using the (-function
method. To have discrete eigenvalues we introduce one further boundary condition
in x3-direction namely we are considering a finite interval of lenght L with Dirichlet
boundary conditions at its ends. It turns out that this is sufficient, for a successful
application of the (-function method in the present case. In [4] we obtained the
following result for the (-function:

(K (s) = V2 (3/2)r(s- 1/2)1 [ dc( 2 + m
2 )(3/2-) 2L ( b

27r' ~ ) 7 (b2 + K2)J

2b2  2)(3/2) (d + I)b_• e-2d
+- d, ,(2 ( - b)2 - b2 e_2d: (18)

The vacuum energy can be extracted using the formula

dV.2TF E,•a = Tr lg K = -•s(K(s)[I=0. (19)

where the infinite quantities V2 (volume of a two-dimensional Euclidean space) and
TE (volume of a one-dimensional Euclidean space, imaginary time) reflecting the
symmetries of the problem will drop out for the vacuum energy per unit area by
definition. However, the first term in the curly bracket which contains one further
infinite contribution (2L -+ o) is unexpected. This is an untypical contribution
for (4-function calculations and it can be omitted by hand because it is parameter
independent. This first term would be the result of a naive calculation without
imposing additional boundary conditions. The second term describes the depen-
dence of the vacuum energy on the coupling constant and the third term leads to
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the distance dependent contribution to the vacuum energy already calculated earlier.

INTERACTING QED
Here we discuss quantum electrodynamics at the one loop level containing a 6-
function as an external potential (a, = a) [5]. In perturbation theory the standard
Feynman rules are valid with the one exception that we have to use the more com-
plicated spinor propagator 'SC. Let us calculate the mass operator for this configu-
ration. Because -S' is a summed up propagator we expect that besides the standard
divergences of free field theory the self-energy diagram also contains contributions
from the triangle diagram (with one external field insertion) which exhibit infinities.
According to conventional wisdom that the inclusion of electromagnetic background
fields does not change the divergences of QED we would expect no further diver-
gences. This however is not the case here. A direct calculation of the divergent part
of the mass operator (using Feynman gauge and a UV cut-off A) yields the result
that the self-energy part containing the second part S of the spinor propagator leads
to the expected structure of the divergency however with an unexpected complicated
coefficient function of the dimensionless coupling constant a

E(x, Y)Idm. = -i-ýyof (a) 6(X 3) 6(4)(x - y) In A2  (20)

i (A a _ a 3 (A, a ,
f(a) [ 3 arctan - 1 - arctan + 1) , A±

a a ~ A- 4 \a A- ,/
Such a function can appear only if each insertion of the 6-function in this diagram

produces an additional divergent term. Loosely speaking, the reason is that the
6-function fixes external lines (corresponding to the external field) onto tile same
point x 3 = 0. However, the theory remains renormalizable but one has to use some
complicated nonlinear parameter renormalization.
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1 Introduction

So far the theoretical description of hadronic scattering processes within the frame-
work of QCD is by no means complete since the phenomenon of confinement is
not understood up to now. However, for processes at large momentum transfer
q(q 2 = -Q' < 0) the scattering amplitude may be split into a perturbatively calcu-
lable hard scattering (short distance) part and a phenomenological determined soft
(long range) part.

In the light-cone dominated cases of deep inelastic lepton-hadron scattering and
(virtual) photoproduction of a meson the corresponding soft parts are the "parton
distribution functions" and the (meson) "wave functions-. respectively. Both func-
tions, however, fulfil well known evolution equations with respect to Q2, namely the
Altarelli-Parisi (AP) and the Brodsky-Lepage (BL) equation, whose kernels are also
perturbatively calculable. Furthermore, these kernels are shown to be related to the
anomalous dimensions of some nonlocal light-ray operators [1].

Here, we consider another light-cone dominated process, the virtual exclusive
Compton scattering, which - as could be presumed - shows the same general be-
haviour, but - what is unexpected - whose corresponding evolution kernel K(T. T')
contains the AP- and BL-kernels as limiting cases. Thereby, it is interesting to note
that this new kernel may be obtained from the BL-kernel by an analytic continuation
procedure; therefore, it may be denoted as "extended BL-kernel" [2].

2 Distribution amplitudes for exclusive virtual
Compton scattering

The exclusive virtual Compton scattering will be considered in the generalized Bjorken
region: Q 2 = _q2 _, o with -= q2 /Pq and q7 = Aq/Pq fix (Here, the following



Tm

578

variables have been used: q (q, + q2)/ 2 , P = P1 + P2 , A = P1 - P, where q, or q2
and P1 or P2 are the in- or outgoing photon and hadron momenta. respectively, with
the restrictions q2 < O,q2 > 0 ). It may be shown that in this region the helicity
amplitudes T(A', A) = (A')T,. 1 (A) asymptotically are given by (1/2)J 2(A')Ei (A) T,

for the transverse helicities, and vanish otherwise. Therefore, only the trace of the
scattering amplitude

T., (P, A, q) = i fd'x d"' < P2 IRT(J,( 2)J,(-2 )SIP1 >

has to be considered; here J.(x) = (1/2) : v(x)., 3 - As/V'')ý(x) : is the elec-
tromagnetic current of the hadrons (for flavour SU( 3 )), R the usual renormalization
procedure, and S the renormalized S-matrix.

As usual, the product of the composite current operators will be expanded near the
light-cone (xA 2 0) with respect to an appropriate operator basis. For the following
consideration it is esspntial to use the nonlocal light-cone expansion due to Anikin
and Zavialov [3]. In our special case it reads (in leading order):

R(TJ (-)J,(2IS)= ;z d' ,•F(x',,_K; p) (Wroa(•., K)S)(wm

with the light-ray operators

where

U(Ki.i, K 2 ,i) = Pexp (-_igj• dr~iAi( rl))

is the path ordered phase factor due to the gluon field A.(x) projected onto a light-ray
which is determined by some ii- 2 = 0, related to x. Here. R is a new well-defined
renormalization procedure. The singular coefficient functions Fa may be determined

perturbatively; in the Born approximation they are given by

Fa(x2
,•) • ifa (27r2(X

2 
- if)

2 )-' 6(-K+) (6(K_ - 1/2) - 6(K- + 1/2))

with K± = (K2 ± Kl)/2 and e. = (2/9)6bo + (1/6)3 + (16f3).
Putting all terms together we finally obtain after some integrations and change of

variables:

T'(P,A,q) :2 dt ( 't t- qt %qa(t'l = Q2 ).

where the distribution amplitudes

q*(t, r; )= J d(K -iP) ,,a-pt < P2I-TO a("ý.-)SIPl >1,1=,1P

i,
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contain the long range behaviour of the process (which is related to the hadron states
IP, >.

It is quite remarkable that, contrary to the well known distributions for the hadron
wave functions and the deep inelastic scattering, the above amplitudes depend on two
independent parameters, t and r, the latter being related to the hadron momenta P1
and P2 . In fact, taking the limits r --+ 0 (i.e. P, = P2 ) and 7 -- -1 (i.e. Pi = 0) we
(formally) obtain the usual meson wave function 6(x = 1±. Q') = lim,--i q0(t. r. Q2 )
and also the quark distribution function q'(t, Q2 ) = lim--o q'(t, 7. Q2 ). respectively.

3 Evolution kernel of the distribution amplitude
and its relation to the AP- and the BL-kernel

The generalized distribution amplitudes qa(t, -r, It2 ) contain some perturbative aspects
which are determined by the renormalization group equation of the corresponding
light-ray operators,

d -- 2 q =
dy- (RTO (i,_)) S 2) d" -S)

where the anomalous dimension -(K. K) is determined perturbatively. Using the a-
representation for the Feynman diagrams the following behaviour has been obtained
[1]:

"= (11/ )--(w+ = (,' - K+)1I. ,_W_ =_ K'-I,_).,

with the support of the (new) function -,(w+, w-) restricted with respect to the new
parameters according to

IV*+ - 1. w.+ ± w-I < 1.

This gives rise to a corresponding renormalization group equation for the distri-
bution amplitudes which, if the renormalization point is choosen as P2 = Q2 , can be
expressed as an evolution equation,

Q2 d q'(t, r: Q')= .2 -AK ( ,i) q'(ti 7:Q2),

with the evolution kernel (t/r1 T)

K(T,T') = )i I_(it+ = tv_ T'-- T.w).

This kernel is nothing else but the (partly integrated) anomalous dimension of the
light-ray operators, and therefore does not depend on the hadron states IP, > explic-
itly. (For physical states JP3 > the support of the amplitudes q0 (t. r; Q2) is restricted
to Irl _< 1 and ItI 1).
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So far, evolution equations of the above form have not been considered in the
literature. However, the AP- and the BL-equations may be obtained as limiting
cases. The corresponding kernels are

P(z/Z') = imII
2 7-0 171(7

and
V((x,y) = K(2x - 1,2y - 1)10<r,_<,.

respectively. It is necessary to remark that, contrary to the limiting preocedure for
the distribution functions itself, the limits for the evolution kernel K(T, T') are well
defined; for V(x, y) this is quite trivial.

As it is evident from the last equation, the BL-kernel coincides with K(tt') in
the restricted region -1 < t, t' < 1 of the (t,t')-plane. Therefore, the question arises
if it contains enough information to extend it into the whole (t, t')-plane. In fact.,
using again the a--representation we have shown that, in every order of perturbation
theory, this can be done by analytic continuation. From this it is obvious, that it is also
possible to determine the AP-kernel via the "extended BL-kernel" K(t, t') from the
usual BL-kernel. This result is new and somewhat surprising since both kernels are
related to kinematical quite different physical processes; on the other hand, this shows
the virtues of the nonlocal light-cone expansions. In addition, using this nontrivial
relation we were able to show that the already computed 2-loop approximations of
the AP- and the BL-kernels are consistent with each other.

A more detailed version of these results, indicating also the proofs, will be given
elsewhere [4].
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THE PERSISTENCE OF INTERACTIONS IN QUANTUM FIELD THEORIES

Philip B. Burt
Clemson University

The separation of observer and observations is one of
the most perplexing problems to confront the Copenhagen
interpretation of quantum mechanics. As is well known,
several paradoxes arise from this question including that
of the famous friend of Professor Wigner. Ultimately, the
pursuit of these paradoxes leads to a discussion of the
applicability of quantum mechanics to living organisms(l).

In a more immediate sense this putative dichotomy is
encountered in the supposition that interactions can arise
from the dynamics of a theory. By "arise" is meant here
that there is a period when a system doesn't interact with
a second system, then a period when interactions occur,
then subsequently a period when no interactions are
present. The second period is, somehow, supposed to
develop or evolve through the field equations. For a very
important class of field theories including quantum
electrodynamics of spin 1/2 systems this supposition is
false. In particular, the fine structure constant
appearing in the field equations must also enter the
boundary conditions. This fact can be established quite
generally without recourse to specific assumptions about
methods of solution of the field equations. Similar
behavior is also exhibited in exact solutions of self
interacting systems(2,3).

The basic field equations of quantum electrodynamics
of spin 1/2 particles are:

(iy• -m ) P -eA 1Y -0 (1)

3"3AV = eqty t (2)
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The commutation relations of the electromagnetic vector
potential are:

Dt A (x,t)A (y,t) - A (y,t)3 A W(x,t) = P (x,t)6(x-y) (3)

The anti-commutation relations of the spinor field and its
hermitian adjoint are:

U(x't) 8 (y,t) + V(y,t)a(x't)= 6(x-y,)6 (4)

P (x,t) is chosen to be consistent with the gauge conditions on A,,

Mutiply equations (1) and (2) on both sides by e. The
results are:

(iyP3 - m )ei - eAPy ei = 0 (5)

Y •eAv = etkYVep (6)

Rename the quantities eAi = B- and ei = X These
new named fields satisfy equations which do not contain
e. Therefore, either (I) the fields B" and X are
independent of e or (II) e must enter the boundary
conditions. In either case, as asserted, the interaction
in the original fieldsAP and ip will be persistent
since in case (I) they will have the form:

A =e- B (7)

-1 (8)p=e X

with X ana B independent of e and in case (II), if e
enters the boundary conditions the field interactions are,
by definition, persistent.
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Next, case (I) is inconsistent with the cancnica!
commutation relations. To see this multiply equations (3)

2and (4) on both sides by e to get

a teAP1(X, t) eA V(y,t) - e-A,(;,t) 3 teA4 (x,t) = e P 1v(X,t)6(X-Y)(9)

- 1- t ~ -- 2
e•a(x,t)eiG(y,t) + eýP((y,t)e a(x,t) =6 (X-,y)6 e (10)

On the left side of equations (9) and fij one has the new
named fields B and X which, as has been shown in
equations (5 ) and (6), are independent of e, while on the
right side one has factors e2 . The result is
inconsistent, therefore case (I) is eliminated by the
canonical commutation relations. The conclusion is that
only case (II) is acceptable on the basis of the field
equations and the canonical commutation relations. The
charge e must enter the boundary conditions.

This is not an empty conclusion. The dynamics
as defined by the field equations and the commutation and
anti commutation relations does not determine the coupling
constant.This proof is complete and self-contained. It
can be generalized to other theories including guage
theories. The arguments depend only upon the field
equations and the canonical commutation relations(4). A
more complete discussion will be given elsewhere.
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Relativistic Quantum Mechanics on Fock Space

W. H. Klink
Department of Physics and Astronomy and Department of Mlathematics

The University of Iowa. Iowa City. Iowa 52242. USA

Quantum field theory does not offer the only friamework for describing hadronic
interactions (including production reactions) in terms of underlying constituents. It is
also possible to describe hadronic processes using a relativistic quantum mechanics in
which the mass operator acts on a Fock space of underlying constituents. Using the
Lie algebra of the Poincar6 group, Dirac [1] showed that a relativistic dynamics could
be formulated in terms of the so-called instant, front, or point forms. Although the
instant and front forms have received considerable attention because of their relation to
quantum field theory [2]. the goal of this note is to show that the point form lends itself
rather naturally to a Fock space formulation, making it possible to deal with phenomena
such as production reactions in a relatively straightforward way.

We begin by quickly reviewing some relativistic kinematics, first for one and theii
n-particles. Let lpja) be a relativistic state of four-momentumn p, spin j. and 'piln

projection a. Under Lorentz transformations A Ez SO(1.3) and four-translations a.
such states transform as

+J

(.Alpia) - J " ''= D-j R,,ltpj

UClpja) - ('[pj ' ) .r1)

where p. a := pTga, p= (Epi), g = diag(l. -1. -1) and R,., is the Wigner rotation.

R&. = B-'(.\A)AB(r) , (2)

with B(v) a canonical boost [31 (coset representative) satisfying p = B( ' )p .,t). p(.st) =
(mn ). p. p = rm2 (ni is the mass of the constituent particle) and c = p/in the four
velocity.

The four-momentum operator POO and Lorentz generators J"' which result from
infinitesimal transformations of Eq. (1) give rise to the following operators:

MI := Po • Po (fre mina.'s opcrator)

"'" := POIAIo' (four-velocity operator)

2 := j ½ a3.P (Pauli-Lubanski operator)

2 := ,,.1°3 J "V (modified Pauli-Lubanski operator) . (3)

Acting on the states in Eq. (1). M0 gives the mass rn of the constituent. "U the four
velocity, W '" the spin j, and n - Wi" the spin projection (n a c-number four vector) [31.
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All of this is readily generalized to n-particle states, which are n-fold tensor prod-
ucts of one-particle states. To prepare for the point form of relativistic dynamics, define

(n-particle) velocity states as

I v 'k ,p .) : = U B ( v ,) l t 'jk j j , . . .k , ',ý j j , , )

= l Y [pijia,... pj,,aý)Dl'' (k,. B(v,)) (4)

wvith, = (E,,k, T k, = 0, E, I'n t kk, and p, = B(,')k,. Then

Uakp,) = v. Rj,.i,,)D',,(R

where in, = EE, = , 2. + k. . is the n-particle invariant mass and (k,. B(c,) is
a Wigner rotation. What is striking about Eq. (5) is that under Lorentz transforma-

tions the internal variables (¼. p,) transform exactly as nonrelativistic variables, with
Wigner rotations replacing ordinary rotations. This means that orbital and spin angu-
lar momentum can be coupled to give the total angular mom, wunim. exactly as is done
in nonrelativistic quantum mechanics, even though the total angular momentum is an
eigenvalue of the relativistic invariant 11' IV.

In the point forma of dynamics. the free mass operator A1o is modified to become
the interacting mass operator Ml. so that the four-momentum operator becomes

PO := "'1 : k6)

unlike the other forms of dynamics the Lorentz generators remain unchanged. P" and
J'• will satisfy the Poincar6 group commutation relations provided

[A1, V1'I = 0 , [Al. U,) = 0 (or [.A1. J.31 = 0) (7)

a simple way of satisfying Eq. (7) is to require that the kernel of M acting on velocity
states, Eq. (4), be rotationally invariant and independent of the four velocity. Fi, .a
Eq. (6) P follows that the Hamiltonian is 111'0 and the generator of spatial translations

is 1,IV. Further, the Lorentz covariance of P" follows from th,' covariance of the velocity

operator VI.
A Fock space of constituent particles can now be introduced as the direct sum of

(antisymmetrized) n-particle spaces, which, when written as velocity states gives the

following correspondence (suppressing the spin and mass variables j. in):
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vacuumn 1 0)
I particle : IP}) . icro) (degenerate) vacuum

2 particle :IPIap 2 a 2 ) ! tokipi) 1 particle

n + 1 particle : P1o'i ... p,,+n± n+l) "--, ]ký0J, ... 'nil) ri-particle
(8)

Thus, by extracting the overall velocity and spin component lir. an ordinary (n + 1)
particle state becomes an n-particle velocity Late. Creation operators are defined on
these velocity states by writing

i t,'-,oki,) := ,t(T~r.p,)l••,) :(9)

since at( k,) acts only on internal variables, it is sufficient to require that (it transform
as

ta Z t(R 4 .I,)Dý'(R). R E SO(3) (10)

and, with the commutation relation {a( kp ). t(P -'p' )} = EO( A- -' . it is possible
to build up the entire "internal" Fock space (from which the overall velocity has been
extracted).

Since .l must commute with VP and J". a general mass operator can be written
in terms of creation and annihilation operators. A simple example is

.I =•.M(k•,. k'p' )at(ku.)a(k,',,) .(

where the kernel M(kp. kp') must be rotationally invariant. An algebra of mass oper-
ators can be formed by requiring that the kernels satisfv the commutation relations of
SL(2, R): the resulting relativistic harmonic osciiiator eigenfunctions are then specified
purely algebraically on the Fock space [43. It is clear that more general mass operators.
involving products like atota.atataa.... call also be given and these in turn can be
used to generate interactions such as relativistic spin orbit or tensor forces [5]. Because
of the fermionic nature of the creation and annihilation operators, it is also possible
to generate superalgebras of mass operators. Finally. for some separable potentials. it
is possible to solve exactly the relativistic Lippmann-Schwinger equations for particle
production processes [61,

Though internal symmetries such as flavor SU(3) have not been discussed. it is
worthwhile noting that the generators of internal symmetries-- since they commute with
VP and Jo' -can also be thought of as mass operators. s- that it is straightforward to
construct mass operators that give the Gell-iianii, Okubo mass formula [5]. And since
the velocity "vacuum" state transforms under rotations (see Eq. (8)). introducing an
SU(3) internal symmetry label makes it possible to enlarge the spin-internal symmetry
transformations to SU(6) and thus build a fully relativistic SU(6) structure on the
(internal) Fock space 153.

Finailly, it is possible to give a point form formulation of hadronic current operators.
in which the current operator transforms as an irreducible tensor operator under the
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interacting Poincar6 group. depending on whether tile photon momentum transfer is

time-like, light-like, or space-like. Write

JO(W = _•/d4Q ,,Q-D" b(B(Q))Jb(Q) (12)

b

where
b=1,2.3 Q 2 >0

= 1.2 Q 2 =0

=0,1.2 Q 2 <0

and DP6(.\) - .Vbgbb. with B(Q) a boost. Then if Jb(Q) transforms as

UAJb(Q).- Z DS'b(Q. A)Jb,(AQ)
b'

-P", JbQ)= Q'AMQ) (13)

the hadronic current operator will automatically satisfy current conservation and trans-

form as

jJ"(.r)[n J"(x + (1) (14)

Moreover. it is possible-using the operator Jb(Q)-to formulate a relativistic impulse
approximation. wherein the form factors of the constituents fix the form factors of the
bound states of the mass operator [51.

We have sketched the framework of a relativistic quantum mechanics of constituent
particles on Fock space. using Dirac's point form of relativistic dynamics. A number

of issues remain to be investigated, such as under what circumstances a given mass

operator .11 has the correct cluster properties on the Fock space, but the approach

seems to be a promising alternative to quantum field theoretic approaches.
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INTERNAL DYNAMIC .- OF MAJORANA AND DIRAC INFINITE
COMPONENT WAVE EQUATIONS AND MAGNETIC BOUND STATES

A. 0. Barut

Department of Physics, The University of Colorado, Boulder, CO 80309

Abstract

The connection between the internal dynamics of the Majorana's (and Dirac's)
infinite component wave equation, and the new exact tightly bound solutions of the
two-body problem of electrodynarnics due to magnetic interactions is established.

I. Introduction

In 1932 Majorana' established a wave equation based on a unitary infinite-dimension-
al representation of the Lorentz group in contrast to the Dirac equation which was based
on the 4-dimensional non-unitary representation ot the Lorentz group. As a result, Ma-
jorana equation does not have negative energy solutions, but albeit infinitely many
excited states. Dirac, 2 in 1971, gave another wave equation without negative energy
solutions. It turned out that Dirac's new equation is a projection to the ground state of
the Majorana equation.' Both equations describe a composite system which in its rest
frame is a two-dimensional oscillator, or a two-dimensional Kepler motion, depending
on the choice of the internal coordinates.', 4 The wave equation boosts this oscillator
and makes a covariant description of the moving composite system possible. Later on
more general infinite-component covariant wave equations with three-dimensional in-
ternal dynamics have been developed' and applied to account for many properties of
hadrons as composite systems.*

II. Infinite Component Wave Equations

The infinite component wave equations we are considering are of the form

(r"P, - K)V, = 0(1

where rI is a vector operator in a unitary representation of the Lorentz group (or a
more general dynamical group G containing the Lorentz group), and K is a constant or
a scalar operator in that unitary representation. Dirac's new equation is obtained by
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adding to (1) consistently the subsidiary condition Et,,XSý'PO'O = 0. Now in the rest
frame of the particle, eq.(1) becomes

(r°m - K)iP = 0 (2)

The operator r' can be written as a differential operator in a two-dimensional space
and has two simple realizations in terms of the coordinates related to each other by
a conformed transformation. Equation (2) can then be written in two different ways 3

(K = const)
2h +A2 + I JLw 2 q 2 - E) = 0 (3)

or

- -h -• - 4E 0=0 (3')_2p r r

where q = (q9, q2), and r = V/-
2 + y2 are two-dimensional coordinates. Thus although

eq.(1) is covariant, the rest frame equations look like nonrelativistic two-body equations,
due to the choice of the internal coordinates.

The next problem naturally is to find the physical meaning and realization of the
internal dynamics of the Majorana "particle". Because infinite component wave equa-
tions account in a simple way many characteristic properties of hadrons (e.g. dipole
form factors, mass spectra, decay rates of excited states, structure functions, polariz-
abilities and scattering amplitudes), it is important to connect the internal dynamics of
these equations with constitutive models of hadrons.

II. Internal Dynamics

We show here that the two-dimensional internal dynamics of the Majorana equa-
tion, eq.(3), can be connected precisely to a relativistic two-body problem of electrody-
namics. The system is described by the relativistic Lagrangian of Clausius 7 (c 1)

L = - -- -v2 - -(C -Dvi .t 2 ) (4)

where C, = D = I but we introduce these parameters to see the effect of the Coulomb

(C) and magnetic (D) terms separately. Equation (4) can be derived as an exact
equation of classical electrodynamics from an action principle, if an invariant center of

mass time r is properly chosen (rather than proper times of individual particles).'
A remarkable special exact solution of the equations of motion resulting from (4)

have been found recently.' This is obtained by putting the constraints

m1 D M2 Da
+ D =0 and + D-=0, (5)V/1_1 r Vr -

whence the center of mass momentum P = p, + p2 is automatically zero. The equations

of motion of the relative coordinates are then

E= + .- ' 2(C - D), i- = ;-rp (6)
r.2 r3 D
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where E is the conserved energy. These equations can be solved exactly in two ways9,
directly, or by going over to a new time T with dT/dr = r, in which case we get an
equivalent 2-dimensional Coulomb motion (because angular momentum conservation)

Ir (7)
r = ý;- E- + 2(D - -), (7)

The orbits are ellipses. The system can now be quantized leading again to an effective
Schr6dinger equation of the form (3), although the theory is fully relativistic.

IV. The Mass Spectrum

The mass spectrum. in ýhe attractive case, is

M (i+ -2)1 nr/ + 1/2+ e2 + 2Da20 - C

_ kID ID( D )

where nr and I are the angular and radial quantum numbers.
The important feature of this solution is that it is nonperturbative (a is in the

denominator) and non-analytic in D, i.e. in the magnetic term in the Lagrangian (1).
There is no Coulomb or nonrelativistic limit; it exists even if C = 0. For C D = D
(physical case) we have the simpler form

M - (in + m•)1/ 2 (n + f + 1/2).

The linearly rising mass spectrum is also a property of a generalization of Majorana
equation (1) when K is a scalar operator.'

The existence of this surprising new solution is due to both relativity and to mag-
netic interactions. Although the Coulomb force has been studied for centuries the
magnetic force v- v 2/r has been somehow neglected.

The magnetic term is even very important at macroscopic electrodynamics, and
determines magnetic units in terms of the electric ones. In atomic physics it gives rise
to small spin-orbit contributions. But now we see that at much shorter distances it
dominates and gives rise to new states of matter. That the magnetic interactions can
lead at short distances to new tightly bound states has been suggested earlier1 ,'11"12

and studied in a number of explicit models.1 3 It is significant therefore that an exact
solution exists in a fully relativistic realistic two-body system. The more so, if we look
at the numerical values of the size and energies of the system after quantization. When
applied to the electron-positron system, m, = Mn2 = m,, we get the mass spectrum

M= e(n+t+1/2)

a

coprdwthemsf, 0 of2n hc asteqatmnubr f(,j
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The magnetic system has a number of other, one could say, revolutionary, features.
It shows a new phase of electrodynamics from the Coulomb (electric) dominated long-

distance phase, to the magnetic dominated short distance phase."3 It also shows how
to obtain large hadronic masses from almost massless leptonic constituents (the mass

geneation mechamsm"4 ). la the usual potential models the mass of the bound states
is always less than the sum of the masses of the constituents. Here we have to have

a new intuition about velocity dependent forces. The mass created comes from the
tremendous kinetic energies of the constituents. It would be interesting to generalize
the preceeding theory to spinning particles.
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Particles with Fractional Spin
in (2+1)-Relativistic Quantum Theory

Y. Ohnuki
Department of Physics, Nagoya University, Nagoya 464-01, Japan

Abstract

Starting from unitary irreducible representations of the (2+1)-Poincar4
group we construct a covariant wave equation for fractional spin particle with
finite mass. The amplitude is shown to be of infinite-component with the
frequency of definite sign. The second quantization is carried out by using
the relation of the covariant amplitude to the original one that belongs to an
irreducible representation of the Poincar6 group. It is shown that no consistent
set of commutation relations exists to describe free fractional spin particles in
the framework of (2+1)-relativistic quantum field theory.

I

Let 0b(*)(k) be one-particle amplitudes belonging to those unitary irreducible
representations (UIRs) of the (2+1)-Poincar6 group * which are characterized by
ki k," = m2 and sgn(k°) = ± . Then following Wigner[1] we see that under the
(2+-1)-Poincar6 group the amplitudes 0(*)(k) submit to transformations such that

0('()(k) = expi(ak :Fawk) . 0:)(k) for translation a", (1.1)

1't+)(k) = Q(±)(A)k)O(+)(A-1k) for (2+1)-Lorentz transformation A, (1.2)

where wA = j/I k j2 +m 2, and the factor Q(")(A, k) (called Wigner rotation) is given

by representing the transformation (ak ) )1A -() . in terms of a UIR of the little
group [1] SO(2), which in the present case is the set of Lorentz transformations leav-

ing the 3-vector 1() = (+m, 0, 0) invariant. Here a(*) are the boost transformations

defined by k" = (ca•()
To obtain an explicit form of Q(')(A, k) we shall use an infinitesimal Lorentz

transformation
A%• = 61 - wo•, (1.3)

where w-"(= w-w'-') = are infinitesimal parameters. Then it can be shown

that the transformation (e 1 )`Aot_,( is just a rotation through the infinitesimal

*Throughout this paper we use the Lorentz metric 7,7" (,, v = 0, 1,2) defined by ' =
-7722
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angle 0 T- 9(7k'k-2 -r2 k')(Wk + M). Here we have used the notations r' l1  r
w 2 0 and 6 = w"2. Then the Wigner rotation is found to be of the form

Q(:)(A, k) = I + i(O :: "k2 S) (1.4)
v WA; + m

with an arbitrary real constant S, whc uniquely specifies a JIR of the little group.
Thus on account of (1.2) we are led to the Lorentz transformation of the following
form:

0 -::)k (I - iT1 K' - ir2K 2 + i6J)ef$:)(k), (1.5)

where 00(~(k) are of single component and the generators are given by

and (1.6)

-i N 2  a9k'

with ko = ±wk. Defining G"~(= -G~") by G'O = K1 , G"0 K 2 and G"2 = J, we see
that they form the Lie algebra of the (2+1)-Poincar6 group together with k". We
may call the constant S the spin angular momentum in (2+1)-dimension.

The Casimir operators of the (2+1)-Poincari group are seen to be k,.k" and
11/2c,xk$Gv", the latter of which may be called the Pauli-Lubansky scalar by
analogy with the (3+1)-dimensional case. By virtue of (1.6), in the UIR under

consideration they are written as

2 1
kkV mkW = in2 , WA~v= sgn(k 0) inS.(1)

We shall now rewrite the formalism given in the preceding section into a covariant
form, in which we shall denote the amplitude by Vp(k) and the generators acting on
it by

=ý i(k'-a/8ký - V/k-la) + E-- (2.1)

where EXY "(Y'~) are numerical matrices satisfying the Lie algebra of S0(1, 2).
The Pauli-Lubansky scalar in this case is written as W=l/2.EA,xk"G"A = sk,k
with s,' =/.,.i~ which obey the algebra

[s,, 529 = -is 0 , [SO, s1] = iS2, [SO, S21 -is 1  (2.2)

Since the covariant amplitude H(k) linearly depends on the original amplitudes
0(a)(k), it must submit to the relation Wis(k) = W obe(k), that is,

S,.k'b(k) =sgn(k=)mSVb(k), together with k,=k+=(k) = M 2 14k). (2.3)
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The set of these equations for Vk(k) provide us with conditions for the particle under
consideration to have the squared mass m 2 and the spin angular momentum S.
Eq.(2.3) shows P and T violations for mS 6 0.

In the rest system the first equation of (2.3) reduces to so0P = SVr, so that
the spin S must be an eigenvalue of the matrix so. For massive particles with
I S J= n/2 (n; nonnegative integer) we can obtain a covariant description in x-
space in a similar manner to that in (3+l)-dimension [2], and through the second
quantization procedure we can arrive at the ordinary spin-statistics relation [3].

In the following, however, we shall concentrate our arguments upon the fractional
spin case. Since S is an eigenvalue of so, no finite dimensional representation is
applicable to s,,. Furthermore it can be shown that for a fractional S the set of
covariant equations s,PkIO(k) = A),(k) and k,,k;'O(k) = m2 O(k) with a suitable
constant A has only solutions with k' of definite sign. Thus, as for such s, we

employ, corresponding to S < 0, the hermitian generators of the UIRs D(')(i:S)
of SO(1, 2), in which the j-j' element of so is given by (so),,, = (S + 3 T 1)6,,,
(j, j' = 1, 2, ... , oc), and examine the case of k' > 0 starting with 0(+)(k).

Now let us introduce an amplitude X(k) with infinite components, in which the
j-th component is defined by

x,(k) = 6,,( +)(k) (j = 1,2,...,oo). (2.4)

On account of the above definition of so, Eq.(2.4) is seen to be equivalent to the set
of equations [3]

sox(k) = sgn(k°) Sx(k) and kk"x(k) = m 2X(k). (2.5)

It is obvious that transformations of x(k) are

X' (k) = exp i(ak - a~wk) - X(k) for translation,

X' (k) = (1 - irK + iOS)X(k) for Lorentz transformation, (2.6)

where the generators K', K' and J are given by (1.6) with k' = wk and with the
replacement of S by so. Thus we are able to use this X(k) in place of the original
amplitude O(÷)(k). With these preparations we define the covariant amplitude 0(k)
by the relation

0(k) = U(k)x(k), (2.7)

where U(k) stands for a unitary operator such that

U(k) = exp[itanh-'(IkI/k°) . (sik2 - s2k')/ Ikl]. (2.8)

Then after some lengthy calculations we obtain, from (2.5) and (2.6), the following
equations for V(k)[3]:

(sUkM - mS)V€(k) = 0, (k~kA - m2 )0(k) = 0, (2.9)

V'(k) = (1 + 2w,3)4(A'k) = 0 for Lorentz transformation, (2.10)
2
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where E'U = •-• sA. Hence we are led to

(s•," + illeS)€(x) =0 O, (W,,&" + n2 )V)(X) = 0, (2.11)

,()= (1 + 2u). JyEl)ýb(A-'x) (2,12)

2

with 1 _ (2,13)

Thus we have arrived at a covariant description of fractional spin particles.*

Now we shall regard V)(x) in the above as a field operator. Since 0(+)(k)'s

are seen to describe a system consisting of independent harmonic oscillators, we

may assume the commutation relations [0(+)(k), 0(+)t(k')]:F = Wk6
2 (k - k') and

[0(+)(k), 0(+)(k')]:_ = 0 among them [2], where the indices - and + attached to

the commutators correspond to Bose and Fermi statistics, respectively. Then us-

ing (2.4), (2.7) and (2.13) we can derive the following commutation relations in

x-space [3]:
[V,,(x) Vt(y)]F = F,,.(isiA9/m - S)A()(x- y),

[0x), 0,(y)04 = 0, (2.14)

where F(z) stands for a function such that F(O) = I and F(n) = 0 for non-vanishing

integer n, and A(+)(z) is the positive frequency part of the A-function in (2+1)-

dimension:dimenion:A(+)(x) fd~k e-tkpxP2w ika,, (2.15)
(21r) 2 J _2 e'~~k~h.(.5

Here it is noted that the right hand side of the first line of (2.14) does not vanish

for space-like z"-y", since we can actually show the relation

ooF, (isut9'/m - S)A(+)(x) Io=o,xo 6 0. (2.16)

Thus it is concluded that the commutation relations for the fractional spin fields

lead to the violation of microcausality in any case of Bose and Fermi statistics. It

is shown that the situation is unchanged for parastatistics.

Details of this article will be published elsewhere together with related topics [3].
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The connection between charge conjugation, unitarity and statistics

M. V. Cougo-Pinto
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Abstract

Algebras of quantum field oscillators recently proposed to describe possible
small violations of Pauli exclusion principle exhibit a connection between charge
conjugation, unitarity and statistics; the connection can be seen in the correspond-

ing quantum field theory through the appearance of ill-defined norm states and,
at the level of current algebra, is suggested by the value of the Schwinger term in
some related representations of Kac-Moodv and Virasoro algebras.

New attempts have recently been made to formulate a quantum field theory
in which small violations of Pauli exclusion principle are possible1' 2. The usual
theory of parafermions3 describes possible violations of the principle but runs into
difficulties4'5, 6 that are circunvented in the recently proposed theories which, after
Grenberg and Mohapatra', we call paronic. However, these paronic theories are
also plagued by difficulties 7-1 0 and we here report some investigations confirming
the rigidity of Pauli principle against any kind of violations-8 °. These investiga-
tions point to an interesting connection between charge conjugation, unitarity and
statistics in quantum field theory.

In quantum field theory we must have a unitary space cyclicly generated from
a unique vacuum state 10) which obeys the so called zero-particle and one-particle
conditions given, respectively, by

ai 10) = 0, aia, 10) = p6 10), (1)
t

where ai represents an annihilation operator, at a creation operator. each index
is used to represent particle variables, such as momentum, spin and flavor (the
delta stands accordingly for products of deltas of Dirac and Kroenecker) and p is a
number which is characteristic of the theory. The unitary structure of the theory
is given by the products of bras and kets and its statistical signature is determined
by algebraic relations among anihilation and creation operators.

Here we consider a paronic theory with trilinear relations', based on a model
due to Ignat'ev and Kuz'min"l, and another one with some bilinear relations 2
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recently studied in the literature in conection with quantum groups12 (for a review

on quantum groups see reference 13). The paronic trilinear relations are given by1 :

3

[caja + C2aia!, ak] - 6 ,kaj, al 0. (2)

where ci = (2 32 - 1)/(34 - 32 + 1). (32 - 2)/(.3 - 32 ± 1) and 3 is a real

parameter that fixes the point of interpolation of the paronic statistics between
the parafermionic statistics of order one and two, these two limiting cases being

realized by the values zero and one of the parameter, respectively; a small 3

accounts for the smallness of the possible violation of Pauli principle. The value

p = 1 in the one-particle condition in (1) is determined, from the fundamental
relations (2), by following a method devised by Greenberg and Messiah5 . For

ý3 different of zero and one, as pointed out by Greenberg and Mohapatra 7, a

theorem due to Govorkov' 4 implies that this paronic theory is plagued by states

of negative squared norms, the simplest of them being a four-particle state of the

form aata 2 10) (i 3# j)). Govorkov's theorem does not rule out a theory which

has no maximal occupancy number, as the occupancy number two given by the
second trilinear relation in (2), and an example of such a theory was proposed by
Mohapatra 2 ; it is a paronic theory based on the bilinear relation:

aiat + (1 - 3 2)t = 6. (3)

For 3 = 0 it obviously reduces to a fermionic relation and a small 3 is again

supposed to describe small violations of Pauli principle.
Now we want to consider the relativistic version of those paronic theories by

imposing their fundamental relations (2) or (3) to a relativistic half-spin field 1°.

From the relation obeyed by the field it is easy to derive, by using the orthogonality

of the Dirac spinors, the corresponding relations for the particle and antiparticle

oscillators. From the paronic theory with trilinear relations (2) we obtain:

[cib'bj + c 2bjbt, bkI = - b,,b, [c2 d'dj + c,ddd, ddI] = +6ikdj. (4)

where we are using the notation of Bjorken and Drell'5 . As a consequence of the

paronic statistics these relations are manifestly not invariant under charge conjuga-

tion. It is easy to calculate in this relativistic theory the following squared norms: 11

bb b, 0) 2I2 232(1 - 32),

d, djd' 10) 112= 232(32 - 1) (i $ j). Obviously, they cannot be both non-

negative, except at the trivial limits 3 0 and 3 = 1 in which the usual statistics

and the charge symmetry are restored. If we consider the paronic theory with

bilinear relations (3), which is not ruled out by Govorkov's theorem, a similar

analysis starting with relations (3) leads to the squared norms: I1 b 2b' 10) (2= 2

(/32 - )4 j 10) 112= -3' (i # j). For 3 small but not zero the negative

squared norm of the three antiparticle state leads again to the connection between
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charge conjugation, unitarity and statistics. Going back to the relativistic version
of the paronic theory with trilinear relations (2), we can construct 8 9 from them
(and some other relations) a module with cyclic vector 10). It is them possible to
construct 9 representations of Kac-Moody and Virasoro algebras 16 on a 1 + 1 dimen-
sional version of this module. Since the theory of Kac-Moody algebras provides
an unitary structure for integrable representations with positive integer level1" our
construction can teach us something about the paronic theory itself. The result is
that the central charge in the representations is the positive integer c r32 -- C2 = 2,
but since it is independent of 3 the possibility of gaining a unitary structure (at
the level of current algebra) leads to the absence of paronic features, a fact also
pointing to the relation between charge conjugation, unitarity and statistics.

10. W. Greenberg and R. N. Mohapatra, Phys. Rev. Lett. 59 (1987) 2507.
2R. N. Mohapatra, Phys. Lett. B242 (1990) 407.
3H. S. Green, Phys. Rev. 90 (1953) 270, further informations and references on
parastatistics, including the earliest ones, can be found, e.g., in Y. Ohnuki and
S. Kamefuchi, Quantum Field Theory and Parastatistics (Springer-Verlag, Berlin,
1982).
"A. M. L. Messiah and 0. W. Greenberg, Phys. Rev. 136 (1964) B248.
'O. W. Greenberg and A. M. L. Messiah, Phys. Rev. 138 (1965) B115.
'R. D. Amado and H. Primakoff, Phys. Rev. C22 (1980) 1338.
'O. W. Greenberg and R. N. Mohapatra, Phys. Rev. Lett. 62 (1989) 712.
SM. V. Cougo-Pinto, preprint IF/UFRJ/91/24.
9 M. V. Cougo-Pinto, preprint IF/UFRJ/91/25.
"0 M. V. Cougo-Pinto, preprint IF/UFRJ/91/26.
"A. Yu. Ignat'ev and V. A. Kuz'min, Soy. J. Nucl. Phys. 42 (1987) 444.
12 L. Biedenharn, J. Phys. A22 (1989) L873; A. J. Macfarlane, J. Phys. A22
(1989) 4581.
"3 H.-D. Doebner and J.-D. Hennig (Eds.), Quantum Groups, (Springer-Verlag,
Berlin, 1990).
"'A. B. Govorkov, Theor. Math. Phys. 54 (1983) 234.
"15J. D. Bjorken and S. D. Drell, Relativistic Quantum Mechanic.5 and Relativistic
Quantum Fields, (McGraw-Hill, New York, 1964, 1965).
16V. G. Kac, Infinite dimensional Lie algebras, 2 d edition (Cambridge University
Press, Cambridge, 1985).
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ON KINEMATICAL ACAUSALITY IN WEINBERG'S
EQUATIONS FOR ARBITRARY SPIN-
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Abstract: It is shown that Weinberg's equations for arbitrary spin contain not
only 2(2j + 1) physical solutions, but also kinematically acausal solutions. Despite
the existence of these physically unacceptable solutions we are able to construct a
fully relativistic and causal Feynman propagator for arbitrary spin.

Despite the fact that there remain fundamental difficultiesI with quantum field
theories of high-spin particles, an internally consistent relativistic phenomenology
of these particles is urgently needed. This is due to the advent of higher energy
nuclear facilities which will make possible the study of the mutual interactions
of hadrons with high spin. Following Wigner 2, Weinberg 3 and Ryder 4 we have
recently proposed5 such a relativistic framework.

While the dynamical acausality' in relativistc equations for spin j , I are
well known, there is a general belief that high-spin relativistic wav;e equations are

free from difficulties at the free particle level. In this contribution to the "Second
International Wigner Symposium" we report that the Weinberg equations satisfied
by the (j, 0) 9 (0, j) covariant spinors suffer from kinematical acausality.

Weinberg's equations 3.5 for arbitrary spin can be conveniently written in the

following general form

where {fp} is a set of 2j Lorentz indices and p[l is a product of 2j contravariant
energy-momentum vectors, i.e. for j = 1I/2, "yj,) pH)] = 1pu; for j -- I -',I p[;. =
yA ,P ApZ', and so on. For one time and three space dimensional spacetime, there are

[4(4 4- 1)... (4 4-2j - 1)]/(2j)! gamma matrices (of dimensioa 2(2j - 1) x 2(2j - 1))
which are symmetric in the Lorentz indices. To be be more specific we present as
an example the case j = 3/2. For this case Eq. (1) becomes

(_Y"1 A pp~p,* - m
3 !v, w) =j ) 0 . (2)

This work relates to Department of Navy Grant N00014-91-J-1679 issued by tite Office of
Naval Research. The United States Government has a royalty-free license throughout the
world in all copyrightable material contained herein.
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with the 8 x 8 chiral representation 1,,,A given by

0 qVP. p (p° 2f.,ý -

•{(2f. 1) 2 - 1 2}{2. • 3po}]
SV,,- * P =' P' P\ =f.0(3)

S [1,7 p, p" P(pO 2f .I;)-

1(f j; 
2  }{2112 15- 3p0}]

Eq. (1) is a set of homogenous coupled equations.

In order for a solution to exist a necessary condition is

Determinant ({} p _ m2
j I) = 0 . (4)

For a given j this equation is a 2j[2(2j . 1)Ith order equation in E. Solving this
gives the dispersion relations E(ff,m) for the 2j{2(2j - I)} solutions. Of these
solutions there are Nc(j) = 2(2j + 1) solutions which satisfy E -.\ p 2 

-_ M2.

There remain, however, NA(j) = 2j{2(2j -t- 1)} - 2(2j t- 1) = 2(2j -)(2j - 1)
solutions which do not satisfy the correct dispersion relation for E(g'. i). In our
example case of j = 3/2, these results are given explicitly in Table I. Explicit
resulLs for the wave equations satisfied by the (1,0) L (0.1) and (2.0) (0,2)
covariant spinors can be found in Ref. 151.

Table I Dispersion relations E = E(,ý, m) associated with Eq. (2). N ) N 8,
and NA (2) = 16. Herep =P2 1;.

(Multiplicity) Dispersion Relation Interpretati(,n

(4) E = + Vp2 
- m 2  Causal, "particle"

(4) E = - /p 2 +m 2  Causal, "antiparticle"

(4) E = +(2p2+itl/3-mzm)1/2 Kinematicallv \causal

(4) E = 2P2 i,/3m'_m )1/2 Kinematically \causal

(4) E 2Kinematically \causal

(4) E = (2p'-irm-m2' 1/2  Kinematicallv Acausal

_ - _° j2
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The solutions termed "kinematically acausal" do not satisfy the correct dis-

persion relation E 2 = p2 + m 2. A similar study of the Weinberg's equations

satisfied by the (1,0) -(0, 1) and (2, 0)eD(0,2) covariant spinors reveals existence
of "tachyonic" solutions with E = ±•Fp2 _ in

2 .

As a consequence of this kinematical acausality the Green function

(i2) 1ý.} 0f'ý - .," 2)1) G(,°)V(°'•) (X - X') = P4(x - X'), (5

associated with the Weinberg's equations, propagates not only the physically ac-
ceptable causal solutions but also the physically undesirable (at least in the context
of our present understanding) acausali'tachyonic solutions.

However, the object which most naturally enters the calculations of the scat-
tering amplitudes, via canonical perturbation theory, is

' i - ,'° () S' 'y) (y)o)( (6)

with the matter field operator defined by

,l:01÷0,3• 1(27)3 2 w15

(7)
where Q is a normalization factor which can be chosen for convenience. In addition
q1(x) = y(x) CA>..., with the canonical representation " as a diagonal matrix

with (2j - 1) x (2j - 1) identity matrix I in the upper left corner, and -I in the

lower right corner.

The 2(2j - 1) particle-antiparticle covariant spinors u,(,ý) and ( a- =

j,j -- 1, -.- -j, associated with the kinematically causal solutions of the Weinberg's
equations can be obtained via the action of the 2(2j - 1) - 2(2j - 1) boost matrix
(in "canonical representation," defined in Ref. 751)

cosh(J.) sinh( -05))

Me0 A(1) = ) (8)

sinh(f.J ) cosh(J.4)

on the 2(2j t- 1) rest spinors in the form of the 2(2j + 1)-dimensional column
vectors u+,(0) = (N(j), 0,0,. .. ,0), .-. . , v,,(0) = (0,0,... ,0, (j)). Based on
certain considerations 5 of the m -. 0 limit of the covariant spinors, the simplest

choice for the normalization factor is: N(j) = mn. In equation (8) f are the
(2/ -1- I (2j ±- 1) angular momentum matrices with J, diagonal. The parameter
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, is given by

1 E P
cosh( -- sinh(p)=v yv =-. T (9)1-h: ' v~l-t2  m m' p,;

A straight forward calculation yields the following simple expression for the
configuration-space causal Feynman propagator

* J fd 3" P -'2
ýX SF' y)= J (2rr)3 2,og

X [u(:) (:) - O(x° yo) -r 71 v,'•() e+'Px-y) 0(yc -

(10)
where q = -1 for bosons and -1 for fermions.
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CLASSICAL EIGENSPINOkS AND THE DIRAC EQUATION

W.E. Baylis

Department of Physics, University of Windsor
Windsor, Ontario, Canada NPB 3P4

Many authors[1 ,2] have sought new insights into the Dirac equation and its classical
limit. Here, an approach based on the covariant Pauli algebra[ 3 ] P demonstrates close
relationships between classical and quantum theories of "elementary" fermions.

The observed 4-velocity and orientation of a particle is given by the Lorentz trans-
formation A which transforms properties of the particle from its rest frame Ko to the
observer's "lab" frame K. Only "elementary" particles are considered here. A particle is
said to be elementary if and only if its motion in K at any point v ( T ) on its world line can
be described by a single Lorentz transformation A (-t). Such a particle can not contain
independent structures (such as several elementary particles) since it would then require

different transformations A for each component. A particle containing separate parts
which move rigidly together could be "elementary" but would suffer a well-known conflict
with causality when accelerated. Therefore an "elementary" particle may be characterized
as structureless, although the existence of an intrinsic orientation, for example spin, is not
precluded. Only positive-energy particles are considered here, even though negative-
energy ones, representing antiparticles, can be consistently included in the classical theory.

The transformation A can be written as the product of a rotation Z and a boost ':

A ='5. In 'P, A may be any unimodular element (A A = I ); if unitary, it is a rotation
( A - • '"); if hermitean, it is a boost (A -4 2 = B" ). The 4-velocity of the particle is

found by applying A to the rest 4-velocity u, .. I (in units with c = 1):

it = Att,_A= AA * 2 . (1)

Note that it is independent of the rotation 'k. If the particle is observed in a different frame

K', A must be replaced by the transformed

A -4 A'= 1A. (2)

where 1. ( S I. (2, C) transforms quantities from K to K'. This transformation behavior is

one way to define spinors, and A may be called the eigenspinor of the particle.

The motion of an elementary particle is determined from its initial position and

velocity if the evolution A (-r) = .(t-r 0 ) A ('r0 ) of its eigenspinor is known. This is a
spinor transformation (2) where IC .To) is a Lorentz transformation obeying
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t(tro, co)= l, and L(x,to)= (TT,)L(T•,zo). Both A(T)and (T(,-o) obey the
same equation of motion, which takes the form of an identity (a dot indicates a derivative

with respect to the proper time t)

A=GA. G-A7C. (3)

Since A is unimodular A A = I . the scalar part of G vanishes: I G = A - A = 0. and A is

4-orthogonal to A. From (2) and (3), G transforms as a 6-vector: G - L G L. In particular,
if G rst is G as seen in the rest frame of the particle, then

G = AC res t (4)

and the time evolution (3) of the eigenspinor is also given by A = A G _,r.

With the help of A, any physical quantity can be transformed from K0 to K. Thus

the set (e,} of four constant basis 4-vectors of the rest frame, where eo = I is the unit
4-vector along the rest-frame time axis and k = -e, are the spatial unit vectors, are seen

in the lab frame to be the tetrad of 4-vectors known as Frenet vectors[I,4]

it, = A e, A (5)

where the subscript here labels distinct 4-vectors, not components. In particular, the Frenet

vector u. is the 4-velocity of the particle in the lab frame. The time dependence of u, is

found directly from (3) and its hermitean conjugate:

Li, = AeA * APA" = Gu + tG' . (6)

With a particular defined orientation of the rest frame axes, this is exactly the Frenet-Serret

equations[1 ,4], and G may be identified with the Darboux vector.

For example, the velocity of a charge e of mass m in an external electromagnetic

field F = E - i B, is governed by (6) with It = 0 and
G = P- FF(u)- 2mS, (7)

21n

where S is an arbitrary 6-vector constrained to obey S u + itS= 0. This gives the usual

Lorentz force.[ 5] The only effect of S is to add a rest-frame spin rate of- ims, . where s5

is the hermitean rest-frame value of the 6-vector - i S.

The "classical Dirac equation" is simply the spinor form of the equation relating the

4-momentum and the 4-velocity: p = mu, and its spatial reverse p = mut. From (I) and

the unimodularity of the eigenspinor A. these relations can be written

pA =rmA. PA=nmA'. (8)
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Classically p = p and the two equations (8) are equivalent. Any spinor A which satisfies

(8) must, within an arbitrary initial rot"tion and a real scalar multiplying factor, be the
eigenspinor of the particle. In a (2 x 2) matrix representation of (8), the two columns, say
q and ý of the eigenspinor A = (T,, ) are acted upon independently. The spinor
transformation (2) also holds independently for r) and t: they are 2-spinors. Since

A T (- , ) where 1" = -io~iO* and similarly for k, each of the equations (8) is
equivalent to the pair

pq" rn•, p• = r~l'.(9)

When the two 2-spinors are combined into the column "bispinor"

W= ( ,(10)

the classical equations (9) take the usual quantum form

y, p " q) = m (11)

where y, are the usual Dirac matrices in the Weyl representation. The choice (10) is not

unique; since the axes chosen to specify the initial orientation of the rest frame are arbitrary,

the various representations related by an initial rotation are physically equivalent.

If the Frenet vectors (5) are expressed in terms of the 2-spinors, some are seen to be
bilinear covariants of i. Thus components of the 4-velocity

it = Att... A * = A A * = 1]1f- + k k (12)

are the bilinear covariants associated with the quantum current density:

2 PYV 1P (13)

where 9) = 4' yo = (k _) and the scalar identity rirq' = nq Ti has been used. Similarly, the

Frenet vector 3 a is - 2times the spin dual s, and has components p Y" v 5  . The six bilinear
covariants which are components of the antisymmetric spin tensor correspond to the
6-vector S = is u , whereas the scalar and pseudoscalar bilinear covariants are determined

by the unimodularity condition A A = I to be 1 pip = 2 and P yý'tv = 0. respectively. This

accounts for all 16 bilinear covariants; none are left to express the Frenet vectors ,, .1

Indeed, u 1 and iu 2 are the hermitean and antihermitean parts of 2qi" which can not be

expressed as a bilinear covariant of the form p[... .]. The Dirac theory is evidently
incapable of describing elementary particles with more than one preferred direction (the
spin direction).
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Since the spin is proportional to the Frenet vector U 3. its classical time dependence

is given by (6). With G as in (7), and with S = A A s o •where s,, is constant, (6) is equivalent

to the BMT equation[6 ] for a spin with g-factor g = 2 in an electromagnetic field F. The

value g = 2 is a consequence of assuming a linear time development for A. A more general,

nonlinear equation can accommodate an arbitrary g-factor, but this is unsatisfactory for an

elementary particle which is not an isolated point.

Expressions for the symmetry transformations P, T, and C can also be identified for

the forms 1V and A. The w forms are identical to the usual quantum ones, but the corre-

sponding forms for A are simpler and have transparent geometrical interpretations. The
parity transformation P: ip - y, i0 p corresponds to spatial inversion A - A ,whereas charge

conjugation C corresponds to the reflection A - A\ e . the PT transformatiotý rotates the

initial rest frame by nt about - e and CPT multiplies A by i.

The classical Dirac equation for a free particle is just the momentum representation

of the quantum Dirac equation. It can be used to derive the momentum-space free-fermion

propagators used in standard QED treatments. If the free particle solutions are known,

the full quantum perturbation formalism results from the superposition of eigenspinors.

In terms of A the quantum plane-wave solutions ip(.) = iP(O)exp(-ip. x/h) are

A = A (O)exp(Le3 p' v/h))= A (O)exp(iemrT/h) which describe a rest-frame spin

about - e 3 at the Zitterbewegungfrequency 2rn / h. In the presence of a potential energy

I "the spin frequency should probably be modified to 2(m + I').

For adiabatically changing potential energies of purely electromagnetic origin, this

is sufficient to establish the operator relation

iiP(.x) = (p + o)W(x) (14)

and hence all of standard quantum Dirac theory. A phase shift in the bispinor w is equivalent

to a rotation about the spin axis, and local gauge invariance results as usual.
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Smooth massless limit of spin-2 theories
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Abstract
We find a set of auxiliary ghost fields for the massive spin-1 and spin-2

fields, such that the Lagrangian, the propagators, and the number of physical
fields have a smooth massless limit.

1 Introduction

We know from Wigner's classification, that massive particles with spin s have 2s + 1
helicities (being defined as angular momentum in the direction of the momentum
of the particle), while for massless particles of spin s there are two representations
with helicities ±s. So while for spin-0 particles we have one component in both
cases, for spin-1 we have two components for photons, but 3 for Z-bosons, and a
mssive spin-2 particle wou"' '-iave 5 components, to be compared with th- two of
gravitons. For higher spin, a smooth massless limit seems to require more and more
auxiliary physical fields. On the other side Gupta-Bleuler electrodynamics has four
field components (two physical and two ghost), so we expect auxiliary ghost fields
for the massive theory.

Such a smooth massless limit is necessary for-to say the least-the infrared
problem. When we introduce a small mass in the massless propagators, we should
obtain a massive propagator of the same spin. There are many possible auxiliary
fields to achieve this; here we want to concentrate on two, which we think are of
special interest. One scheme uses a minimal set, the other one has only massless
auxiliary fields.

2 Spin-i: Minimal scheme

The propagator of the massive spin-1 Proca-field,

(A A) m2 (1)

diverges in the massless limit. To rectify this, we make a "gauge tranformation"
Au,4ikB

Am= i- L2 B. (2)
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If the scalar field B commutes with the Proca field, and has the propagator of a
ghost,

(A.B) = 0, (BB) - (3)

then we obtain for the new vector field
____A_)_-__' iku

(AA,) = k2 - in2 , (AB) = ._ m2. (4)

In the massless limit, we get the propagator of the electromagnetic field in Feynman
gauge, and the Nakanishi-Lautrup field B.

The corresponding Lagrangian in the old and new fields is

L = -iA2+ I-(BB+ m2BU)
4 2 2+ 

2

-IF + A2 + B(aA) +B, (5)

expressed in the new field it has a smooth massless limit. This formulation is
discussed e.g. by Nakanishi [1].

We begin with a massive vector field which carries a massive spin-i represen-
tation of the Poincar6 group, and a scalar ghost of equal mass, and end up with
a Gupta-Bleuler triplet. If we denote physical helicity components by bold type.
negative norm ghosts by italic and norm 0 ghosts by usual type we have the helicity
components:

massive massless(6
(±1,O) (0) (0) -* (1) -- (0) (6)

The number of physical fields is not constant. The helicity-0 component of the
Proca-field and the ghost combine to the scalar and gauge modes of the Gupta-
Bleuler triplet. The gauge freedom of the electromagnetic field appears only in the
limit. This situation can be improved by adding further auxiliary fields.

3 Spin-i: Massless auxiliary fields

If we expand Eq. (1) in powers of mass, we get

I kk, 1 , + - + kkl, + On72 ). (7)
Mk 2 0 k 2 (k2)2

The "gauge transformation"
A,, = A, -ik'.p (8)

gives in the limit the propagator in Feynman gauge for Au, if the auxiliary scalar
field satisfies

(k1 12 1 (, • ) - (k2 )2
- (9)
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This can be obtained from a dipole ghost Oo, which has with 01 = O0o

1 1
(k2)2' (•o•,>= . (10)

The field
00€ + -0 (10)

satisfies Eq. (9). From the dipole we can form an additional scalar field

b = moo + -L01  (12)

which in the massless limit becomes a particle

I rn 2 ( k3V¢) -k (k`2)2 (¢ , -r(k2)2.( )

The corresponding Lagraagian in the old and new fields is

4 2 21-'F 2+ 2 + 102 1~
-Fi +M- A 102 - mt(aA) - !O$. (14)

4 2 2 12

In the limit we get electrodynamics with gauge fixing and a scalar field C. In the
Abelian Higgs model it is the Goldstone mode [2].

If we denote the helicity components of the dipole ghost by (0) --+ (0) we have

massive- massless (5
(±1,0)s i(0) -e (0)] [(0) - (±1)--*(0)] (0) (15)

So the number of physical fields remains constant. The gauge freedom of the dipole
ghost, ?00 --+* o + A, with OA = 0 becomes in the limit the gauge freedom of the
electromagnetic field.

4 Spin-2: Minimal scheme

To simplify the notation we multiply the propagator of the massive spin-2 Fierz-
Pauli field with currents (energy momentum tensors) and write the Born-amplitude
(see e.g. [3])

(t.HH.1) = 2 1 m2 (t.t- It-t' - 2(k.t)2 + 6- (2km`.t + Mmt'), (16)

where tUt =po tt' and I' = t&. A new field

h•,v = H•, + ;W2 (k,,B. + k.B.) + -ML (2k,,kv + m277,,,) D (17)

with 2a 2 = 6b2 
= 1 and the propagators

(B,,B.) = ,n2  "u ,2' (DD) - ],. 2  (18)

------------------- V-. -- 7-12
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gi ves (t.hh.t) t( . (19)

In the massless limit this is the propagator of linearized gravity. It propagates
helicity ±2 modes only; one role of the ghost D is to produce the nonvanishing trace
of the massless field h. The two-point function (DhM•) still has a singular limit,
which can be dealt with by introducing G = -D + -kB.

H., carries a massive spin-2 representation, B, a spin-1 ghost and spin-0 repre-
sentation of positive norm, and D a spin-0 ghost, all of equal mass. We have the
following helicity components:

massive massless
( 2 -±-1, 0) -1 0) e (0) ý.,' (0) (0) -- (-1) -- (±2, 0) - (±1) -- (0)

(±2.1,O~?(±,O)(O)+O)(0)
(20)

The Lagrangian for this formulation, including further auxiliary ghosts which
give a constant number of physical fields and a gauge freedom of the massive aux-
iliary fields can be found in [4], where it is used for the infrared regularization of
quantum gravity.

As in section 3 we can also find massless auxiliary fields. Expanding the propa-
gator (16) we find that a spin-1 dipole and a spin-0 tripole are sufficient to regularize
the massless limit. As the central representation of the tripole has negative norm.
a physical application of the minimal scheme seems to be more straightforward.
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On the metaplectic representation in quantum field theory
Jost M. GRACIA-BONDIA

(joint work with Joseph C. Virilly)
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We give an account of the infinite dimensional metaplectic representation in the Segal-

Bargmann framework: fully explicit formulae for thie integral kernels of the representation are

presented. Quantization of bosons interacting with external fields may be formulated with

the help of the metaplectic representation, with a suitable recipe for the selection of com-

plex structures: closed expressions for the vacuum persistance amplitude, S-matrix ... are

obtained. Occurrence of Schwinger terms, for instance the central charge of the Virasoro

algebra, is directly linked to the non-split central circle extension of the symplectic group.

The classical manifold underlying bosons fields is just a symplectic vector space,
i.e.. a real vector space V with a symplectic form S. Pick a complex structure J, i.e.,
a real-linear operator on V satisfying j 2 = -I. which leaves S invariant and such that

S(O Jr) > 0. for v 1- 0. To fix ideas, one can think of V as the space of real solutions for
a Klein -Gordon equation with external interaction. S as the usual symplectic form on V.

and J is chosen as the unique complex structure commuting with the time evolution

generator for the free Klein-Gordon equation:J=( 0 _(,+ 121/
= (-A + 12)1/2 ( 0

Then V can be regarded as a complex vector space with the obvious rule (o + id)vt
at, + 3Jz, for a, 3 real, and the hermitian form

(U v) := S(11.I J1) + iS(u.r) = dj(u.v) + idj(Jo.t) (1)

is a positive definite inner product on 1'. We shall henceforth assume that V is complete
for the inner product (1) and separable.

Let B(V) denote the space of antiholomorphic functions on V such that If1 12

sup1 ' f,_, lf( u)1 2 - (ul du. where V' ranges over the finite dimensional complex sub-

spaces of V [1]. Denote E,,(u) := exp( ½ (u I v)). Then E, E B(V) and for any 41 E 8(0'),
we have (E,., `F)B = I'(c). This is a well-known property of the system of coherent
states in Bargmann space. that generalizes to the infinite dimensional case. We write

10) = E0 to denote the vacuum (i.e.. the constant function 1).
Consider the group Sp of invertible continuous real-linear transformations leaving

S invariant. One has g E Sp iff gJ = Jg-. were the superscript "t' means transposition

with respect to dj. and g-t := (g')-'. We may decompose any real-linear operator g
on V into linear and antilinear parts by pg := 1(g - JgJ).qg := 1(g + JgJ). Then

g E Sp iff = ½(g + g-t). q9 = (g- g-t). If g E Sp. then pg is invertible; we define

T9:= qgpg I. We can parametrize g E Sp by the pair (p, T,): for g can be written in
unique way as g = (I + Tg)pg. where Tg is antilinear and symmetric and I - T' is

positive definite. p9 is linear and satisfies p•(1 - T)Pg = I.

9 g 
ip = I
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Now. let 3 denote an irreducible Wevl system:

3(,)3(",') = 3(v + v')exp[--S(v, v')]. (2)

and consider the new Weyl system 3,( v) := 3(g9). This is unitarily equivalent to 3 iff
T, is a real Hilbert-Schmidt operator. This is Shale's theorem [2]. which can be easily
proved using Bargmann space techniques. Write Sp'(1') for the subgroup of elements
of Sp(V') that verify Shale's criterium. By definition, the metaplectic representation of
Sp'(V) intertwines 3 and 3

g:

-(g)3(v)v(g)-' = 3(gt'). (3)

This defines v(g) up to multiplication by a complex number of absolute value 1. It is
easily proved [3] that all operators on B(V) whose domains contain the principal vectors
Er, have integral kernels: Af(u) = (. 4 (u,.). f) B In particular:

KV(S)(u, v) = c. exp { (u I Tgu) + 2(p-'l Iv) + (T,- t v I v)} (4)

when the Weyl system has the standard form:

3(v)F(u) := exp(l1(21t - v I -))F(a - v,). (5)

The constant c9 satisfies Icgl = det/ 4 (I- T;).
It is straightforward. albeit tedious, to compute the kernel of v(g)v(h). for g. h E

Sp'(I"). using Gaussian integral formulas. One arrives at v(g)v(h) = c(g. h)v(gh). where
the scalar c(g. h) must be a phase factor, in order each v(g) be unitary. It is found:

c(g. h) = exp(i arg det ` /2(I - ThT9- )).

The group cocycle represented by c(g. h) is not trivial. i.e.. it cannot be redefined away
by changing the phase of the vacuum persistance amplitude c,.

The space 8(V) is just a disguised form of the boson Fock space. To make the
translation, consider the correspondence:

(u~ - 2- "2(U I ,) ... (1 t,ý) ) - I, V ..V vn E 1,1n (6)

between antiholomorphic polynomials and elements of the symmetric algebra S(V) of V.
This extends to an isometry between 13(V) and boson Fock space S(V).

Introduce now the boson field 0 := -i d3. The annihilation and creation operators
for the boson field • are the real-linear operators on S(V):

a(v) := -t[((?) + io(J.)] o (e) := -[(6) - io(J.)]. (7)

The coherent states are generated from the vacuum by E, = exp(07at()) 10). The
effect of the metaplectic representation on the creation and annihilation operators is
readily determined. Let us write

ag(r) 1 [0(1t) + io(Jg-I t ,)]. at() := [o(,,) - io(g9g-'t)]. (8)
v/2 (V )

L
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in accordance with (7), for any g E Sp'(V). Since gJv = (pg + q9 )Jr = J(p9 - qq)v.
we obtain the Bogoliubov transformation a9 (gt') = a(pt') + at(qv)l.a (gr) = a(qgt) +
at(p91). We have immediately: i(g)a(v) = a,(gv)v(g). V(g)at(") = at(g),v(y), so that
each a,(gv) annihilates the "'out-vacuun'" 10.oUt := g )O) =: cghf'.

The classi'al scattering operator S, belongs to Sp. If, moreover. Ts,• is of the
Hilbert-Schmidt class, then its quantum counterpart '(Scl) is tile S-matrix. We want
now to factorize v(g) as vlg) = cgSIS 2 S 3 . where the S, are operators on B(V), to be
chosen so that

S 3E, = exp ¼((Tv Ic))E,.. S 2E, = EP;. SiE,., = fr 9 E,. (9)

Since the at(r) act as multiplication operators, S, need only satisfy S1 10) = fT, if it is
made up of creation operators only. We have at(cv )at(t 2 )I0)(0u = -1(u I Z'1 )(u Iv2), so
we take S1 := exp(-½atTgat), with

atTgat := ZOt(fk)(fk Tgc,)at(c,). (10)
1.k"

where {c)}, {fk} are orthonormal bases for V: this series converges (to an operator
whose domain includes all E,) iff T9 is Hilbert -Schmidt; and the sum is independent of
the orthonormal bases used. Similarly, one checks that with the definition:

aBa := Y a((,)(B(, I f,.)a(fk). (11)
j.k

it is obtained S3 = e'xp(- 1oTg-i a). and with the definition:

:exp(atCa): = -•. at(fk ) .at(fk)(f,- I Ct,) .(.fk, ICeijo(t 11 )..a(ei,),
-0O k, ... k,

I ... l'

we check that S 2 := :exp(at(p-t - I)o): is what we need. We have arrived this way to
a explicit expression for the S-matrix in terms of the (pg. T,) parametrization of the
element g = S, of the symplectic group on 1'.

Let us write Cx := (X - JXJ). Ay := (X + JXJ) to denote, respectively, the
linear and antilinear parts of an element X of the Lie algebra sp'(1') of Sp'(V). Then
Cx is skewsymmetric and Ax is symmetric. The derived representation of v may be
defined, for X E sp'(V), by: i,(X) := A,='°x(')v(exptX). where the phase factor

Ox(0) is chosen so that t --* v(exptX) is an homomorphism. Wke define the anomaly
of the derived metaplectic representation as the bilinear form o on sp'(V) determined

by a(X, Y) := [OX). i,(Y)] - i'([X. Y]). This is in fact the infinitesimal counterpart of
the cocycle c(g. h) of the metaplectic representation v. After computation:

O(X. Y) = 1 Tr:([Ax.A. A ). (13)

Here we defined, for A E EndR(V). Trc[A] := Tr[P+AP+] where P+ := •(I- iJ)
projects on the canonical polarization of the complexified of 1'.



614

Let us see how the anomaly which we have derived from the metaplectic representa-
tion allows us to compute the well-known Virasoro anomalous term. In this context V is
the vector space Nlap(S'. R)/R of smooth real- valued maps on the circle S'. modulo the
constant maps. The symplectic form S is given by S(f. h) : f0

2' f'(O)h(8) dO. which
is nondegenerate on V (in the weak sense). The operator J C EndR(V) determined
by J(sink0) := Ek cos(kO). J(cos kO) := -6k sin(kO). with ef = +1 or -1 according as
k is positive or negative, is the only positive compatible complex structure on V com-
muting with the rotations. Now f E V can be expanded as a Fourier series without
constant term: f(M) = Zk,, Oa•ik° with aA. = ak,. The complex amplification of J on
V- = Nlap(S'.C)/C satisfies j(,:,k,) = ikf,,k. After completing V in the inner product
determined by J, we obtain the Hilbert space L 2 (S'. R)/R. The polarization W0 is just
the Hardy space H 2 (D)/C of holomorphic functions on the unit disk which extend to
square-integrable functions on the boundary S' and vanish at the origin.

The Virasoro group Diff+(SI) of orientation-preserving diffeomorphisms of the cir-
cle acts on V by (gof)(O) := f(o-&(9)) tor o E Diff+(S 1 ). It is seen that go E Sp(V) for
each o. In fact, the go belong to Sp'(V). as has been shown by G. Segal [4]. The meta-
plectic representation of Sp'(1") thus gives rise to a projective unitary representation of
the Virasoro group, and at the infinitesimal level the derived metaplectic representation
will carry the Virasoro Lie algebra into operators on L2 (S 1 . R)/R. In effect, the Virasoro
Lie algebra consists of vector fields {(0)• on the circle S' for which ý(0) is smooth.
A basis for the (complexified) Lie algebra is given by the vector fields Xk : 3 -0 .
It is clear that they verify the Lie algebra relations: [Xt..X,] = (m - k)X.+m. Write
Ak := I(Xk + JXAJ) to denote the antiliaear part of Xk. Then from the previous
equations we get at once:

A4.(Cin) = 121(-1 + fntnfk ) fi(n-k)G. (14)

(Notice that -
4

k is of finite rank.) We'o see that [A., .4 kt( no ) is a multiple of t'(n-k-i)O,

and so Tr-k[A,. .4k) = 0 u,.less m = -k. Moreover.

[.4-k.Ak]' l{_]{2k + en(fn+k((O + k) -- enk(n - k))} (15)

The anomaly is now easy to compute. We note that Tr-([A_,. Ak]) is just the sum of
the diagonal coefficients in (15) for a > 0: and these .'oefficients vanish for n > IA'-.
Thus, if k > 0.

.- ) K-i a E(2 n(n + k)- n(n - k)) =
4 •12
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Canonical quantization in chiral soliton
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1. Purpose -In the framework of the collect.i ve-coord inate quant izat.ion of

I he St 12) nonl inear n-model, I.to of the present. aut hors(A.PI. K. and N.'l.(.) I

has considered a sol iton solut ion under aI special Ansat~z concerning the( sIlatic

configurat ion, and shown the possible existence of a pion-] ike quantum

soliton. hfere the word quantum means that such a soliton disappears when r,

t ends to zero; thus the quani um-mechani cal s1tructure oif this model ;1lays an

important rotIe. Our aims are i ) to i nvest igate quant um mechari ical aspects of'

Ith is mode I in connect ion with various procedures of canon ical quant izat ion.

espectiallly by noting a specific proiperty of this model ,i . e . the hidden local

symmetry, arid 1i) to examine properties of the soliton.

2. Ansatz - The model Lagrangian is tliat of the SL(2) c1-model given by

1 +=_ f 2fd 3 x Tr (U,,"UJ,) , is(2.1)

4+

0c IxIAlt) wit~h A C SU(2). Ansatz for o 0x stotk
0 0

0lX) = xpli T Pn 1 0 (r)], r = Xi1, (2.2)

where In 0 ) is a fixed unit vector in the isospin space: we take it as

(n 0 ) ((0,01). We have IJ(.t) =expli iPn(t M 1t)] with rit(t) =D(A) p n 0'

and A i A=D(Al) 1  Then the classical form of L(2. 1 ) is expressed asTpA p T P
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11ler = - 1•1 nB n -viol, Inki., (2.3)

where 1I[0] = f 2Id3., sin2 0 (r) and Viol I f 2{d3lx [dn/dr12 (2.4)

Although this model Is very simple, it has a noticeable aspect, hidden

local symmetry; t(x,t) is invariant under the local right transformation

At) - A(t)'= AMt) exp[-ia(t)H/21. (2.5)

The present model, therefore, a quantum-mechanical example of the remark

by Cremmer and and Julia.
2

3. Canonical quantization - (a)lntrinsic formulation: A(t)CSU(2)/U(1) is

specified by a set of two real parameters {q :b = 1,2}. Define
A ~ b i 2 m i

A(*A/q( M/ a = X.2in C(q)bm + I T h(q). (3.11

From the outset, all calculations are performed quantum-mechanically on the

basis of the hypothesis

qb d g(q) bd (3.2)

g is an unknown function of which is to be determined after imposing

the quant ization conditions. Procedures are similar to the StL(3)/L( I ) case.3

From lagrangian (2.1), one obtains Pb = 1gbd'q }/2 with z b ' mn

a M n. b be
Cb Cd .The canonical quantization conditions for q( and Pb lead to gbe

= 1) d, from which gbe is determine(]. Then lagrangian (2.1) is shown to have

the, same form as ci quantum-mechanically, where
1 f rP 1 n (t , m 1b

M 2 C3m (q)(A) n }" (3.3)

Defining lp = 1[l (POX ni X,. we obtain
I L 11, p PPA i15 (_px, V (3.4

I , interpreteas the isospin operators, and the ienvalS of I LP

ar e n52 q.( q + 1), q = 0,1,-''. Our L agran gian is expressed as

Leff, = (2 l) (ýVlol + V[61 , (3.5)

where AVII]N I -2/(2 11t1l) = W R/4; R is the scalar curvature. Thi

first term in R.II.S. of (3.5) Is equal to the covariant kinet ic energy K;
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so we take IHamiltonian to be

H = K + AVrie + V161. (3.6)

(b) Embedding formulation: We are to consider the problem of a particle

motion with a mass 1181 and coordinates (np) in R3. subject to the constraint

NfO = nP nP - I = 0. The formulation on the basis of Dirac method has been

described in our previous papers 4(as to a more general case N C R , see ref.i n p

5). After determining the fundamental Dirac brackets, we go to quantum

mechanics and perform quantum-mechanical calculations from the outset; then we

obtain the same algebraic relations and Hamiltonian as in (a).

(c) Quantization in case of hidden local symmetry: We write A(ESU(2)) as

A = a4 + i E 3 T ap with AhA = 1 = aB a. (3.7)

Define w11,• = 1,2,3; AA = T w (in the classical level). (3.8)

We obtain from (2.1)
Let I 'B w3

[ = 1 (4 AB a - w w) - V[wi, ( w ). (3w93

Under the infinitesimal transformation of (2.5),we have

w = w - •, (3.10a)

[a' B I [ + ia T3 1iaBI with T3 = 2 (3.10b)

[Dtal'= 11 + la T3 1[Dtal with Dt d/dt + iw T3. (3.10c)

Thus, Lagrangian incorporating the hidden local symmetry is

Lhid = 2 1181[t a] B[DtaB - VIB8 + (1 - aBaB). (3.11)

Following Dirac method, we obtain five constraints;

IP = PX( a Lhid/
3 
/ 0' , 2 = Pw = 31,hid •a 0I T a1 =C =a

(P3 1 T3 Ba PD 0, 4 aBaB -1 0 5 = a 5 = 0; (3.12)

the first three and the last two are belonging to the first and the second

classes. Imposing three gauge-fixing conditions, we obtain the fundamental

Damong {aBP}; then the same algebraic relations among n11's andDirac brackets Gong ba to the sari agraia welotin

ýP's as brfore. Going back to the starting Lagranglan, we obtain
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through quantum-mechanical calculations the same HamIltonlan as (3.6).

4. Quantum soliton and final remarks - The soliton or our model has, ir

exists, the followling properties: l)The baryon number N 1 0: 2)the spin J

0; 3)the isospin I = .(non-negative integer).The cigenvalue of 11(3.6) is

E .= r)2{f (, + 1) -1}/(2 11011) + V 11l + V n 11. (4.1)

Here V 181 is the pion-mass contribution, its concrete form is V BE]
21 7 2 f21,( UTJU

= n 11[81/2 when we take7 1i. = m f Tr(Tp U T L -3)/16. The necessary

conditions (Derrick) for a stable soliton to exist, obtained for EI(P)

F' q(O(r)14(r/P)), and the condition for the soliton solution of the

integrodifferential equation 6E q(P=l)/68(r) = 0 to exist are shown to be

inconsistent with each other.
6

One of possible ways to get a quantum soliton is to take account of the

breathing mode, on which we have examined in ref.1 on the basis of the

scale symmetry.7 Details of the present report are developed in ref.6.. and

detai led considerat ions of the above remark will Ibe appeared elsewhere.
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SELF-DUALITY CONDITION IN CHERN-SIMONS HIGGS
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1. In (2+1) dimensional spacetinie the possibility of including in abelian Higgs
model the Chern-Simons (CS) term1 has generated a great deal of interest. It was
noted 2 that in the Chern-Simons-Higgs (CSH) system, the energy functional obeys
a Bogomol'nyi-type' lower bound for a special choice of the Higgs potential. The
bound is achieved if the Higg's scalar field a satisfies the following first order self-duality
condition 2 .

-( a iD20. ?Or aa = -iePD 2 a. (1)

where Dm - am + iEm, in = 0.1.2 are the spacetime indices while 1 = 1.2. Our metric
is qmr = diag( -1.1, 1) with E12 = 6012 = 1. We set a p 2"p½ and substitute in (1).
The spatial part of r'm is then found to be vi = -0,, .- _O 1f9lnp. The electromagnetic

B = .f12  c2e

El = -0iZ
0 + 0°1,1

The critical form of the potential can also be obtained by directly solving 4 5 the
eqs. of motion with the aid of the self-duality condition. This procedure can also be
extended to the scalar superfield, a supersymmetric self-duality condition4 postulated.
and the eqs. of motion solved for the supersymmetric potential (Sec. 2).

The Lagrangian for the Bosonic Chern-Simons Higgs system is

1(-(a1)(Th1)- *.(Il12) K f.lmn Vlfmn - I fif (2)

4 4
where 15M - am - it',,. The equations of motion are found to be

D'Tha = l"(1a12 )( I Oad - ,, + K ; r.,,, = (3)

Here V'(1a12 ) = OV/8la0 2 andj1 = if(aE')a-oa t oa)is the Noether current. aj'(r) = 0.
For static configurations and on using the self-duality condition (1), eq,(3) leads to

O9OI.0o + Kf 1 2 = 2t2vo ja 12
C

2 vo2
+ efl 2 = I"'( la 2). (4)
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We also obtain

ji = 1al, j2 = -j la 2  and f12 + K'V= e(a12 
-- C2 ), (5)

where C is a constant. From (4) and (5) we derive the general result

V'1( 1a12) = •2,02 + 6-(2,2Ia12 la i2- )•t)o (6)
K

where vt is given by

[i2(2C2 102 - 8•)+ 1]vO = I-(lal2
K

Consider first K -* 0 (no Chern-Simons term). From eqs. (4)and (5) we are led to
(2(2lal - 8•)t0 = 0, V'(1a12 ) = 12(aI2 - C 2 ) + f

2 t,0. For the choice to = 0 we obtain

then

V = (•2/2)(ja 12 - C 2 )2 .

In the limit e --* 0, K --+ o such that (Ce
2

/ K) --* finite, the terms originating from
the Maxwell term in the eqs. of motion drop out. We find from eqs. (4) and (6) efl2 =

2(e2/K)(evo)Iaj2, evo = (03/K)(Ia 2 - c2 ) and V'(1a12) = (e2/K)2 (1a12 - C')(31a 1 -

C 2 ) leading to

V(1a12 ) = (•2/,)2(I(a12 - C 2 )21a1 2 . (7)

which is seen to saturate the lower bound of the energy functional. Setting p = exp( X /2)
we find that X satisfies the Liouville equation7 .

It may be worth remarking that in the general case if we impose in addition to the
self-duality condition the ansatz (2c2 la12 -9O,2)1 = 0 then from eqs. (4) and (5) we
are led to et' 0 = (e2 /K)(1a12 

- C 2 ), f12 = 0 and

V(lal 2) 1• 2,/)2(jl12 - C2) 3 . (8)

which, however, does not saturate the lower bound. A different and more complicated
potential is obtained if we impose, say, the ansatz .,2vO = 0.

2. Consider next the Supersymmetric Chern-Simons -Higgs system. The gauge
vector potential in the case of 2+1 spacetime dimensions is contained in a Majorana
spinor connection superfield (for notation see ref. 5)

r,(x. 9) = (x)+r) +e3( 1%av(.r) + -ye (..)) + i99na() (9)21

where 77 = A.(x) - !(jIaiX(.r))a. Here the Majorana 2-spinor field A(X) is the super-
partner of the gauge field j(x.r) while the spinor X(x) and scalar v(x) are auxiliary fields.
The covariant spinorial derivative is D' = (a/lft) +i(3,I8)o'9 and D,, = e0,D

8 . They
satisfy {Pc.,DO } = -2i-l".y'9. The field strength superfield is defined by

L
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141C. i (X, 0) D FrW'(~)= •,,,.

1A( -) + !52j(e0im(f, • + (10)
22

where fjm = (0,v. - 49ý vj).
The matter superfield is a complex scalar superfield

4ý(x,O) = a(x) + iOý,(x) + ifff(x). (11)

where a(x) is a complex scalar, ý,' (x) its complex superpartner and f(x) an auxiliary
complex scalar. The gauge covariant spinorial derivatives may be defined to be

V°4 = (D" + cF0 )4, t7(I* = (Do - eFa)-". (12)

The closure relat;on. {f7o,V3} = -2i jvV 1 where V1 = (0 + er) and rt = LD-li
is easily established.

From the total action

I /f d3xd2 O{ (41- * +(*Vo + A + 110'11- - 8r"} (13)

,where V is the superpotential. we obtain the following eqs. of motion

4 ((14)

KIT- , = d(crVOD - $V-'Z¢) (15)

and the conservation of Noether's current requires DM,0(V\ - $Vt-V) 0.
We adopt the supersymmetric gauge DF = 0 and consider static configurations.

The self-duality constraint on the matter superfield now takes the form4

Vap = i( 0 V)•,, tav* = _i(-• 0 V) 0q. (16).

We derive from eq.(14)

r° = iV'(jIuI ), (17)

where r, = ibD-'r with 1 = 0.1,2 and the supersymmetric gauge corresponds to
ir't = 0. The Noether current is also conserved.

In the absence of the (super) Maxwell term we derive from eq.(15)

KF 12 = - 1•-iDI2, (18)

KrO = if(141 2 
-_ C,2 ). (19)

where F1 2 = (rI' 2 - @F 1 ). Comparing the two expressions for r 0 we derive immedi-
ately the specific superpotential
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-(IpI2  1 _ C,2 )2. (20)

For the case of vanishing K the superpotential corresponding to the self-dual solutions

is found by following a similar procedure. In both cases the supersymmetric actions
contain the results of the purely bosonic theory as is easily shown by integrating the
superfield action over 9 and eliminating the auxiliary fields by using their eqs. of motion.
The same is true of the supersymmetric self-duality condition when analysed in terms
of the component fields. We obtain these results without the arguments for invoking an
explicit N=2 supersymmetry of the action 7 .
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EXACT RESULTS IN TWO PARTICLE SCATTERING
IN 2+1 DIMENSIONAL GRAVITY

M. K. Falbo-Kenkel and F. Mansourit

Physics Department, University of Cincinnati,Cincinnati, Ohio 45221-0011,USA

ARiSTRACI

By a judicious choice of dymanical variables, we couple sources to Chern-
Simons-Witten gravity in 2+1 dimensions. We find that 't Hooft's scattering
amplitude is obtained exactly if the invariant associated with the momentum

p pl- p2 is an integer in units of 47c/G, where G is the gravitational
constant. The general case is also given.

The description of two particle scattering in gravity in 2+1 dimensions has so far been acheived by

coupling the dymanical variables associated with the particles to the gravity field.1
4 

A more satisfactory

scheme would be to represent the particles with fields also. But it is not yet known how to do this. In

Witten's approach, 46 
one begins with the Chern-Simons action for the Poincar6 group, which for a

manifold M, with topology R x E, where R represents the time, can be written as
4

lcs =Jdt JE'je i a .3-q beo F1[w -aTlbW0• Febl eI)

ij = 1,2 ; ab = 0,1,2

Here e', and 0, are components of the connection

A, = e'.P. + 0,J. (2)

where P` and J' are, respectively, the momentum and the angular momentum generators of the Poincare'

group. Also,

FIA] -J l%
6

F[Al (3)

where Fi3 [Al are the spatial components of the field strength tensor for the connection A, and 0' is the
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antisymmetric tensor in two space dimensions. Here, we largely follow the notation of reference 61. To

couple a point-like source characterized by phase space coordinates (p',q') to the Poincare gravity,one can

supplement the action (1) by the source action4

1= f dt %1ab pait qbIt+leb+tq ,c(1)d )l+,X(p
2
+ m

2 
)14)

c

where the path C is the particle trajectory, X is a Lagrange multiplier, and t'= C - is tangent to the path C.

To couple two or more sources to the Chern-Simons theory one can add a term of the form (4) for

each of the point sources involved. This method is not unique, however, to the extent that the choice of

canonical variables in a phase space corresponding to more than one particle is not unique. We take

advantage of this non-uniqueness to write down an action
7 

which leads to t Hooft's version of the two-

particle scattering amplitude for certain quantized values of one of the Wilson loop observables. Let

(pa qa) and (p' 5 ,q 2) be the phase space variables of the two particles. We shall loosely refer to ({Il and ip')

as coordinates and momenta of the particles, although, as explained in detail in references i61, these

quantities are related to space-time coordinates and momenta by a multivalued gauge transformation.

Consider the combinations a a a a a
1p = P0 P" =I 5)

and let Q' and q' be the corresponding canonically conjugate variables, Then, consider the following

action for the two particle (source) system coupled to gravity:

1, dt q., P Idt Qb +TP(e) I c+ aQ,&sde ),

+ f dt Ib P' tat qb +tae",+ ýbcdq d)
Cq

+ X1if' p)+l2 + ml-+ k11( P-p)l + m} I

This action is invariant under the Poincare' gauge transformations
a b e a b

5e , = -up- r' CCo p - rbe, t7

6q -= Pa a hTb qc 5W = p' - rEc
5 

bQF (9,

8p = E kab [bp e p 8pa = ac 'T" P 10]

It is important to note that in (6) the paths CQ and Cq correspond not to the individual particle trajectories

but to the trajectories specified by the conjugate canonical variables, Q' and q', respectively. As discussed

in reference 161 for the standard case, these coordinates belong to a manifold Mq the spacial part of which

is the plane puntured by the two sources. Also the topology R x E allows us to identify QO and qo with the
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time, t. The variation of the combined actions Ics given by (1) and Is given by (6) leads to the field

equations

F1lel L q 5
2
(x,xQ) + L 82(x,xq) (12)

where L,,aqP n L,=c,'p

To gain more insight into the dynamics of two-particle scattering, consider the Wilson loop

enclosing both sources. Let

s P.P=(p -ip 2 ) p %+P pp = (p1 -p2 ) (13)

Then, we can use a method which is technically similar to that used by Carlip 151 to obtain the angle

addition formula when the sources are associated with individual particles. In our case, where the

sourccs carry the charges P' and pa, respectively, the angle addition formula takes the form

cos (O/2) = cOs(Vs/2) cOs( P/2 ) - sin(1s/2) sin (P/,2 ) P*P/p•'s ,

Thus, in general, the Hamiltonian describing the two-particle system is fairly complicated. But this

expression simplifies dramatically when the observable p takes on quantized values according to

p= 41m/G ; n = 1,2,.... 15)
where we have reinserted the gravitational constant , G, which up until now had ben set equal to unity. For

these values of p, we then have

H= ýs , mod21r 116)

The ambiguity can be removed by requiring H to vanish when s vanishes. In a frame in which the

conjugate coordinate Qa is at rest at the origin, we get, from the definition of s,

H=E, +E2  17,

We emphasize that for quantized values of p given by (15) this is an exact expression.

Let IP(Q,q) be the wave function deser~bing the two-body problem. Viewed from the frame in which

Q'= 0 at the origin, Y = 'P(q), effectively, and is determined by the Hamiltonian (17). To be able to give a

space-time interpretation, we recall that q' belongs to the manifold M. the spacial part of which is the

plane punctured by two sources. By requiring that Q' remain at rest at the origin, we have fixed four of the

six Poincare gauge transformation at our disposal. We are still free to make spacial rotations and time

translations. So, consider the gauge transformation

ql(r(t),O(t)) = exp T°Jo I q(r(t),0t)) i18s

It corresponds to a spacial rotation T°given by

r
1 

= 1 - IE, +E)l/2x)¢ (19)

This transformation which is clearly not 21t periodic leaves s, and hence H, invariant. But it is easy to

see that the transformed coordinates q' acquire a phase under the rotation 4 -) 0 + 21c:
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This transformation which is clearly not 2n periodic leaves s, and hence H, invariant. But it is easy

to see that the transformed coordinates q1 acquire a phase under the rotation 0 - + 2n:

q'(r,-+ 2zc) lexp 21c - ( E, + E,)l ql(r,) (20,

That is, they satisfy the matching conditions for coordinates on a cone characterized by the
deficit angle 5 = E+ E2 .

We therefore conclude that by fixing the gauge in the manner that we have, the two particle

scattering problem for the quantized relative momenta given by (15) is equivalent to the motion of the

relative coordinate q' on a cone with deficit angle determined by the free Hamiltonian (17). It is

important to note that the cone describing the reduced two-body problem, which we are discussing here

need not be a solution of the equations of motion (11). All of these conclusions are in agreement with

those of't Hooft, except that in our case the free Hamiltionian (17) is valid only when the quantization

condition 15), holds.

When the quantization condition (15) does not hold, the two particle scattering problem can

again be reduced to an equivalent one body problem in which the relative coordinate q'moves on a
cone. This is because none of the above arguments depended on the value of the deficit angle being E,

+ E2. For the general case, in the frame Q' =0 the expression (14) reduces to

os1,/2 cos[(E+ E_2)2 Icos P/2 - sin(E,+ E,)/ 2 sin( P/2 ) - (m - 2)/p ( El + E. ) 21

Clearly, 11 is a complicated function of the energies and momenta, and there will be corrections to the

siinpl( expression H = E, + E,. But, in all cases the parameter T' of the gauge

transformation (18 ) is given by cO = I1 - HI/200, and the transformed coordinates q' will satist\ the

matching conditions expected of the coordinates on a cone with a deficit angle given by H.

In closing, we note that a number of our arguments, in particlular the last one. also applies to

the case where the two sources carry individual particle charges, but our choice of dynamical variables

is more natural for the description of scattering. Moreover, the extension of these results to describe the

scattering of particles with spin is straight-forward and will be given elsewhere.

This work was supported in part by the Department of Energy under contract number DOE-

FG02-84ER40153.
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On Gauge Dependence of Pertubative
Predictions in QCD 1

H.D. Doebner 2 and R. Roczka3

Abstract

We review the gauge dependence of pertubative computations in non-
abelian gauge field theory in particular in QCD. Perturbative results for the
running coupling constant o. for various physical quantities R and for the
QCD scale parameter A are in general renormalization scheme and gauge
dependent. In abelian gauge field theory models - due to the existence of
renormali; ition scheme and gauge invariant effective coupling constant - such
a dependence may be avoided, in nonabelian case it is generic. We discuss
computational and principle difficulties connected with this fact and show in
addition that known QCD representations for mesons and baryons are also
gauge dependent.

1 Introduction

Pertubative approximations in nonabelian gauge field theory (GFT). especially in
QCD. depend generically on the gauge and on the choosen renormalization scheme
(RS), in contrast to abelian group gauge field theory. like QED. This differerce is
connected with the fact that in abelian GFT a unique renormalization , (RS)
and a gauge invariant effective coupling constant exists [1]. whereas in a nonabelian
GFT many RS-invariant effective coupling constants are possible which are all gauge
dependent [2J: hence pertubative expansion are also RS and/or gauge dependent.
This is a computational and may be also conceptual difficulty of nonabelian (IFI
and of QCD since there is no known inbuild mechanism which tells us the meaning
of a perturbative calculation for a physical quantity in connection with a given RS
and a fixed gauge.

We analyse in Sec. 2 the gauge dependence of the running coupling constant
(rcc) a = g2/4,r in QCD. The momentum subtraction RS is from the physical point
of view a distinguished one but in this schemes and all the others the rcc is gauge
dependent, which yields qualitative effects, e.g. a rcc a(p) finite for all p.

In Sec. 3 we discuss the gauge dependence of some pertubative predictions of
QCD and demonstrate that the gauge can significantly change this predictions.

'This work was partially supported by German-Polish contract X-81.5 and grant of Committee
for Scientific Research PB 705/91.

-addrems: A.Somnerfeld Institute for Mathematical Physics. Technical LUniversity of ('lausthal,
Clausthal D-3392. Leibnizstr. 10, Germany F.R.3address: Soltan Institute for Nuclear Studies, 00-681 Warsaw, Hoia 69. Poland.
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In Sec. 4 we consider the gauge and RS dependence of the QCD scale parameter
A and show that its values in two different RS can diffei e.g. by a factor of 2.

We analyse in Sec. 5 the gauge dependence of hadron representations in QCD [5].
We show explicitly that representations for proton, 7r-meson, K-meson or p-meson
in terms of quarks and gluons used in [5] depend on the gauge.

Sec. 6 deals with the gauge dependence of effective coupling constant (cc).
We complete our work with a discussion of the obtained results and mention

an alternative model for electro-weak and strong interactions based on a nonabclian
gauge field theory model which is spontaneously broken to the abelian 1(1) subgroup
[6], (7]; one should expect that in this model the gauge dependence problem of
pertubative predictions will not appear.

2 Gauge dependence of QCD coupling constant

The QCD rcc o(p) is discussed mostly in the modified minimal subtraction (MS)
renormalization scheme [8], which scheme is distinguished from other RS by the
fact that the n-loop calculations of various physical quantities are relatively simple
and more specifically the renormalization group functions like 3 and -ý are gauge
independent. One should stress however that MS scheme has difficulties. In iact
(a) The mass parameter it iii the V--S scheme has no physical meaning: U is intro-
duced to have the action integral in 4 - ( dimensional space-time dimensionless :
the coupling constant g (which in 4 - ( space has a dimension) is replaced by g1" 2

(see e.g. [9]). Consequently p is not directly connected with a physical scale and its
interpretation as energy or momentum transfer scale parameter [83 in QCD calcula-
tions is not evident.
(b) In the M9 scheme c(p) in the low energy region blows up when p -+ A, where
A is the QCD scale parameter [8]. For instance in the simplest case of one-loop
approximation one has (c is a constant)

c

a() = OC(1)

Some authors interpret this as a hint that perturbation theory breaks down in the
low energy region, whereas others connect this phenomenon with QCD confinement
properties [8]. However since t has no connection to the energy scale both interpre-
tations are doubtful. In fact we show below that in some momentum substraction
(MOM) renormalization schemes (1) does not hold even in low energy region.

In order to overcome the mentioned computational difficulties of the MS scheme
several authors Advocated another scheme, the MOM scheme. as the physically
motivated one [3]. In the MOM scheme particle propagators assume their free value
at k2 P 2 p > 0; for instance the ghost propagator D06(k 2 ) satisfies [3]

Dab(k 2) -b1 (2)
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Thus here the concept of a scale given, by It is justified [31. [The renorinalization
group equation for the rcc o(Q2 ) in the MOM scheme, based on (liark-gluon vertex.
has the formn (t _!In Q'/p 2 )

ii~ ~ ((i0 + O 'I,\

The .3-funct ion coefficients depend onl thle quiark mass mn. it andl the gauge parameter
a andl have a rather complex formu (sce [101. Eq.( 18)): e.g the asymptotic form of -lo
for A n mi/p ýc and in/ni :ý 0 is [101

(i(t-3- InA 5_1a+ I a2 +0 In
3 A G :3 2) )))A

i.e. 30 is second order polynomial of gauge parameter a. Furthermore, the rcc
ct(Q 2 ) given hy a solution of (3) is. in the MIOM scheme. gauge dependent. Oiw
can consider this as a diffiCtil~t\ Of the MOMI scheme [9] or as an indication that the
MIOM schemne is m-ore physical than other HS since exploiting the gauge dependence
of ck(Q2 ) one can get a rcc which Is finite for all Q' [1101. In order to illustrate this
we present in Fig. 2.1. the gauge dependence of (1(Q 2)

0.0

0.0

Fig 2 1. 'I li galngo depenldence (if (I (Q2  for In ?11.4 the ,nlaS of III dmarml uilark Ii' dottiied
liii. (,orrespomlds to niassiess rcase ni, = i %0hrih I, siialhy consId.red,

For a coinple,, analysis of 1,~ see [10].
\'\e stress that there are ot hers .\lO\I-ivpc US In \\-liii li t IeII- si(Q') i, gaiuge

dependent. [.or iistaiice in s(o called asYmnietri. mioiiienuit l ýInnsht act ion .\MOMI
RS we have (I I a ;

30= -3.5. .11 -3.25 +~ 1.10163a( - 0.375a' - 0.28,13uai
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In this scheme 30 is a constant and 31 is a third order polynomial in a. The compari-
son of MOM and AMOM scheme shows that there are no similarities in the behaviour
of 31 as function of a. In Fig 2.2 the evolution of the rcc o(t) at t = 1 In 1 variable
[11] a is shown.

0.30 c

020

0.00

0 20 .3 so ao

Fig. 2.2 The rcc a(t) for different gauges a = 1.0,-1-2, -3 and a(0) 0.06.

For a > 0 (say for the Landau gauge a = 0 or the Feynman gauge a = 1) o(t) -* 0
as t --- oa. For a < 0 we obtain a different qualitative behaviour: the rcc decreases
(as for a > 0) but for larger t > t. (the value of t. depends on a) it sharply increases
until it reaches the fixed-point value a*. Therefore the evolution of the rcc in the
two-loop approximation in the AMOM scheme is different from the MS scheme.
Notice that even asymptotic freedom is lost in AXIOM scheme for some values of
the gauge parameter e.g. for a = -1,-2 or -3. We refer our original work [11]
where these problems are discussed in some detail.

3 Gauge dependence of QCD pertubative pre-
dictions for physical quantities

It is generally accepted that the perturbation series for a physical quantity R

R = lim R ;), R a1 E- (k (6)= -Zrk((6)
k=O

is gauge independent. However if we work in the MOM scheme the cc a(p) is gauge
dependent and consequently the Feynman expansion coefficients rk. Therefore the
gauge independence of R in (6) is achieved by a subtle cancellation of the gauge
dependence between many terms of pertubative expansion. Hence the truncated
pertubation series of Rt NM (which is the only numerical value available in applications
of QCD) for a physical quantity R is in general gauge dependent. In order to
illustrate this fact we consider the pure QCD contribution to the physical quantity
R

aT(f +c- -4 hadrons) Z Q.(1 +/I) (7)R == E(+€ -.•l +t fi (7

f f1
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where ? - in the three-loop approximation - is given by

= 2 (1 + r,(a) - + r2(a) (8)7 7r

In general ri, r2 and a depend on the gauge parameter a: they are calculated

for the AMOM and M--S renormalization scheme in our work [11] b. We give in Fig.

3.1 and Fig. 3.2 the energy and a dependence for various values of a and the energy

respectively. The RS and the gauge dependence is obvious. e.g. R? for a = 3 both

scheme differ by a factor of 2 in the region around ./s = 30 GeV.

Note that changing the gauge parameter moderately from a = 0 (Landau gauge)

to a = 3 (Yennie gauge) one changes the i value at Vsi = 25 GeV by 30 %. Fig.

3.2 shows that for a > 3 the dependence of R on a is strong and taking the gauge

slightly larger than Yennie gauge one can change R by 100 'X or more.

-0.08

067 - VT2 00 eV

0.000

0.35

0.03 _ _ _ __.06

2ý 43 so so tOO 0.01...............
-io -8 -6 -', -z o . 6

Fig. 3.1 The energy dependence of R for a = 0.2 and 3 in AMOM scheme. The dashed line

represents Rý in MS scheme.

Fig. 3.2 The gauge dependence of I? in the AMOM scheme for fis = 25.50 and 100 GeV

- I/
0 08

0.06

-O- -S 6 -' -Z 0 2 4 6
a

Fig. 3.3 The h? gauge dependence in AMOM scheme for Vrs = 25 GeV: two loop approximation

(lower curve) and three loop approximation (upper curve).
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One could expect that including higher order corrections would soften the gauge
depedence in general. To check this. we present in Fig 3.3 the gauge dependence of
R in two and three loop approximation in the AMOM scheme.

Passing from two to three loop approximation a qualt itatively different behaviour
of R as a function of gauge parameter a is obtained. This is partly because in the
three loop approximation the three loop 3-function coefficient is the fourth order
polynomial in the gauge parameter [11] b.

4 Gauge dependence of the QCD scale parame-
ter A

The QCD scale parameter A is considered as a fundamental quantity in QCD. It
was introduced as renormalization group invariant through

A =Iexp(-- 3-0)) (9)

Celmaster and Gonsalves observed, that passing from a cc ox in X RS to a cc oa
in Y RS by

= x +Q1 + Q2 - +..
7r r 7.r

one has in all perturbative orders

Ay = Ax exp 3o

In MOM RIS Ql is gauge dependent [11]. e.g. in the AMO.I RS

I/(= 2 :33 + 3a + 3 a _10

Q1 (a) =4-(~j± +F2 4 9j

whereas in RS based on the gluon-quark vertex

Q ,( ) = 1 (89 25 a ( r 8.5 _25f + l ) _1011fQ,()= -- --• - a+("... -] -a+ --- .•- iofi

4 4 636 9 4 9j

holds, with nf as number of quark flavours and C" = 2.3-14..
We present in Fig. 4.1 the gauge dependence of QCD scale parameter in various

RSs.
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A(Geyl

0.5

Fig. 4.1 The gauge dependence of QCD scale parameter A for the RSs in which cc a is defined by
means of gluon-ghost vertex rAV,,,)(_, -

2 
"2) (continous line), the three-gluon vertex

FAAA(-,, _-P 
2

, P_2
) (dashed line), and the gluon-quark vertex FAT-1 (dotted line).

We see a rather strong gauge dependence of QCD scale parameter. It seems
therefore that the frequently quoted value of QCD scale A ; 300 MeV determined
in various experiments using MS scheme is of little principle interest since in other
schemes A may be 2 or more times bigger or smaller.

5 Gauge dependence of hadron representations
in QCD

Hadrons are represented in QCD in terms of quarks and gluons. It is interesting to
ask whether this representations for proton. 7r-meson, p-meson etc. utilized in QCD
calculations are gauge dependent.

Consider a proton state-vector 1PAt-') with the momentum P and helicity A in
the Fock space of quarks and gluons. The state-vector IPA4') is defined in the form
[51

IPAt') ~ >ii:JfdPP)LPA(PI (10) 03• ,; =... : (10)

xIPIA.IfIOI))lp2 A.-2 fz 2 )Ip3 A3f3o3)

Here the first sum runs over helicities A,, flavours f, and colours ok of a quark
with momentum pl. dp(pl) is the invariant measure over the quark momentum.
JpiAifio,) is the ket in 1-particle quark subspace and V'PA(PI,.. 3) is the projec-
tion of proton vector-state on the Fock subspace generated by three quarks.

0'P3(DI...0.) = (piAifiJ,) PA.,> (11)
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One could add in principle to r.h.s. of (10) contributions from higher particle Fock
subspaces e.g. 3 quark + quark - antiquark subspace, three quarks + n gluons
subspace etc ... ; however following [5] we limit ourself to the representation (10).

The expansion (10) is gauge invariant, because all product vector-states of the
different quark states transform as the tensor product of the fundamental vector rep-
resentation of the gauge group SIT(3) whereas the corresponding coefficient function
(11) transforms as the tensor product of adjoint fundamental representation. How-
ever the analytic form of 0,pA-function is up to now unknown. Hence in order to
do numerical QCD calculations of hadron interactions one has to assume some con-
crete expresslion for O'PA. In all expressions known to us the following factorization
is assumed [5]

W#'PA(P1 .- - 3 ) = 4'p\(pl -. f3)( 2, 3  (12)

PA(p. .. ..... ..f3) is choosen often of gaussian type (see e.g. [5] iii, Eq.(1.8)).
We show now that the factorization (12) implies a gauge dependence of proton

vector-state IPA,). To see this one has to find transformation properties of the
1-quark state !pAfa) in p-space under the gauge group SU(3) which acts in the
x-space, i.e. on the quark field g,,•\f(.r) as

V,.'\fo(x) = U_,3(X) ,Xf3(x) (13)

where U(x) is 3 x 3 unitary unimodular matrix with x-dependent entries Uij(x).
The 1-quark state [xAfa) in x-space is

JxAfa) = •,,+(x)10) (14)

where V},+ ,(x) is the creation operator with helicity A. flavour f and colour a and
10) the Fock vacuum. Under gauge transformations (14) transforms with (13) as

IxAfa)' = Uo3 (x)ixAf.3) (15)

The corresponding transformation of the states in p-space is obtained through a
Fourier transform of (15)

IpAfo)' = (U1,o(o) * I o Af3)) (p) = J d'p'l' (p - p')Ip'A fo) (16)

where

1'3(P) =i"(270r)X2
1 ?xT(x)d4 r (17)• p)=(27r)2--

For product states, we have e.g.

(Ipjxjfxoi)jp 2 A2f 2a 2))' =

I dp'dp'Uý,y,(p 1 - p'1 )( o232 (p2 - p2)Ip',Af,3j)lPA 2f2 ;32)

A local gauge transformation in ,r-space implies a nonlocal gauge transformation
in p-space.
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Now the representation (10) of the proton with W#PA given by (12) would be gauge
invariant if

( a2,3 IpiALfCO) = 0,0o23 IP Alfai) 18)

(18) implies with (16)

3

JJI -a.,(3, -- qi - H b.(3,6(Pi - qi) (19)
i=1

Using the well known parametrization of U(x)-matrices in terms of the Wigner
DMN(y;(x), v(x), <(x))-matrices [13] one easily verifies that (19) cannot be satisfied.
Consequently IP,\•%,) with the coefficient function (12) is gauge dependent.

The same arguments apply in case of the quark representation of other hadrons
e.g. 7r, K or p mesons. In this case e.g. for the K-meson. the function t'K(Pi. 0')
is usually taken in the following factorized form [5]

W2K(Pl .. 02) = VI'K(p .. f2- ) - , (20)

Again the obtained representation for K meson is gauge dependent.
Because of the gauge dependence ,)f the state-vectors it would be interesting to

analyse the possible gauge depende,. es of the expectation values of a given physical
observable in the given representations.

6 Gauge dependence of abelian and nonabelian
QFT in comparison

We mention -hat the question why the problem of gauge dependence in nonabelian
GFT does not show up for abelian GFT like QED. One of the reasons is that here
a RS exists and also a gauge invariant effective charge oi., which can serve as
expansion parameters. An expansion for a physical quantity R

k=O

is term by term RS and gauge invariant, and thus also the truncated series. Con-
sequently the numerical values of pertubative predictions for R('V) are meaningful.
The RS and gauge invariant effective rcc is given by

a mnv(q
2) = a+ B 1 x (22)

I + rIB(ql) I + IIX(q')
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where aB and the photon self-energy lIB are bare quantities and ax and I1X are
quantities considered in a RS denoted by X[1]. In addition, the Thompson limit
q2 -*0 is

lim Qa,,(q ) = - (23)Sq2- 0137

Since ai., depends on bare quantities only its numerical value for a given q2 is the
same in all RS. ri,, used as the expansion parameter gives a truncated series for R
which is RS and gauge invariant.

In nonabelian GFT models this construction for a RS and a gauge invariant
coupling constant a•,v is not possible. In QCD there are four (general classes) RS
invariant coupling constants based on the quark-gluon vertex, the triple gluon vertex,
the quartic gluon vertex and the ghost-gluon vertex [2], but all are gauge dependent
and hence is no perturbative expansion (6) which would be term by term RS and
gauge invariant. Consequently all physical or other quantities R(N) represented by
truncated perturbation series are in general RS and/or gauge dependent.

7 Discussion

Non-abelian gauge (local) field theories as a description of physical systems should
allow on one side mathematical methods to understand their structure and on the
other side computational methods and results, which can be compared with exper-
iments. The mathematical framework of such theories is geometrically convincing.

L the concept of gauge invariance is somehow understood and one has learned to solve
the difficulty that the (quantized) theory has to be rendered at least by a choice of a
renormalization scheme RS. The observable quantities should be gauge independent
and if they will depend on the RS a physically prefered or at least a consistent RS
should exist.

To get results one needs approximation methods. Perturbation theory uses the
effective coupling constant as gauge independent expansion parameter. In the special
case of an abelian gauge theory, like QED, there exists a gauge invariant effective
coupling constant which can serve as such an parameter and a unique RS is at hand.
For the non-abelian case this is not so. Different authors refer to different RS with
different physical justifications, there is no generally accepted consistent RS which
covers many and various types of experiments. Any RS invariant coupling constant

of QCD is gauge dependent, one can only speculate that there is a prefered gauge
for each RS, such that truncated pertubation expansion has *'good convergent"
properties.

Concerning the RS dependence we find considerable changes from one RS to the
other; this is expected, but seldom demonstrated. Furthermore there is in general a
gauge dependence if one calculates physical quantities with truncated perturbation
expansions; this is certainly also trivial but it is in some sense surprising that it is
really strong. The effective cGoipling constant is gauge dependent.

Alternative computational methods e.g. non-pert ubative approaches are needed.
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which give gauge independent results for observable quantities, even approximatly.
We mentioned one further possibility. It seems that a spontaneously broken non-
abelian gauge theory which reduces the non-abelian gauge group to it's abelian sub-
group would be a suitable choice in connection with computability. Such a model
based on spontaniously broken SU(6) gauge invariance was proposed for strong in-
teractions and extended to strong and electro-weak interactions in [6, 7]. Here com-
putational difficulties and the problems of RS and gauge dependence of pertubative
predictions are similar in QED.
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ON SYMMETRIES INSIDE
COLOR SUPERALGEBRAS

N. Debergh and J. Beckers
Theoretical and Mathematical Physics

Institute of Physics, B.5, University of Liege
B-4000 Liege 1 (Belgium)

Parasupersymmetric quantum mechanics, initially proposed by Rubakov and Spiri-
donov [0), has recently been reformulated [0] in order to support standard [0] as well
as spin-orbit coupling [0] procedures of super-symmetrization as it is the case in su-
persymmetric quantum mechanics [0]. These two possible superpositions of bosonic
and parafermionic [0] degrees of freedom can be studied in the simplest 1- and 2-
dimensional space contexts respectively for oscillatorlike systems and can be general-
ized to arbitrary n-dimensions [0].

For the general case we are dealing with two parasupercharges defined by

Qp = -T [aFj(+.j + qi.j) - a±,jl•., - q±j)]. (I)

where summations on repeated indices are understood. Here j = 1.2.... n and

the even bosonic variables a-, a2 (a+3, =_ a2 ) coincide with the corresponding
annihilation (creation) operators while the ý±, and q±,, are the odd parafermionic
variables characterizing each of the abovementioned supersymmetrization procedures
[0]. We then simply get the commutation relations

[Q- I[Q+,Q_jJ = 2QH., [Q+, [Q-,Q+]] = 2Q+H,

[H.Q1] = 0, [H,Q+] =0

(2)

and the idempotence relations

Q= Q3. = 0

leading to a new (Lie) structure that we call (for evident reasons in connection with
Witten's work [0] in susersymmetric quantum mechanics) the parasuperalgebra Psqm
(2). This new mathematical object is characterized as a Z2-graded structure which
in terms of even (E and odd 0 operators contains the following products

[E, [E, Ef]], [IE. [E, 0]), [E, [0, 0]]. [0, [0, 0]]. (3)

It can be shown, in particular, that the relations (2) are also equivalent to double
commutation relations [01.
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The general Lie parasuperalgebras appear at this stage as unknown Lie structures
but which can be related, in some specific cases, to ternary algebras [0] and to color
superalgebras [0, 0] including Lie superalgebras in particular. In fact, we propose
to include the Green-Cusson [0] Ansi.tze inside our parastatistical characteristics in
order to identify some of our parasuperalgebras with color superalgebras belonging
to the so-called C(2, S)-family [0] by refering to two-dimensional grading vectors.
Here we can identify Rittenberg-Wyler classes of generators with our even and odd
ones, so that their Z 2-graduation (for further details, see [0]). We thus recover color
superalgebras as particular parasuperalgebras and the general study of the latter is
now going on.
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N = 1 SUPERGRAVITY AS A NON-LINEAR a-MODEL

J. Niederle
Institute of Physics

Cs-choslovak Acaduny of Scifnces. (C-180 40 Pragut 8

Abstract

This talk is based on the papers by E.A. Ivanov and the author [1. 2]
according to which the N = I supergravity in superspace is found to be a non-
linear a-model. More precisely N = I super- gravity (resp. the minimal Einstein
version of it) is consistently reformulated as a theory of simultaneous non-linear
realizations of two complex finite-dimensional supergroups generating via their
closure the whole infinite-dimensional supergroup G of N = I supergravity. The
only independent Goldstone superfield accompanying a spontaneous breaking
of the infinite-dimensional supersymmetryv G down to the rigid N = 1 super-
symetry appears to be an axial vector superfield H"i'(x.O,0) identified with
the N = 1 supergravity prepotential. All the other Goldstone superfields are
expressed in terms of Ho and its derivatives by imposing appropriate covariant
constraints on the corresponding Cartan superforms (the inverse Higgs effect).
Possible implications of the proposed formulation of N = 1 supergravity are
discussed. In particular the intriguing analogy between N = I supergravity
and the (super) p-branes theories is pointed out.

1 Introduction

It is well known that Einsteins's theory of gravity not only exhibits a beautiful struc-

ture but also predicts with a great succes all known gravitation experimental results.
Notwithstanding there are many attempts to reformulate it. They are stimulated by
problems of gravity theory itself and, in particular. by a recent development in parti-
cle physics in which most of the theories of current interest are viewed as generalized
a-models. These models as all theories possessing spontaneously broken symmetry.
can be universal" constructed in terms of corresponding non-linear realizations. The
main ideas of such approaches can be illistrated on gravitation theory itself and sum-
marized as follows:

1. Gravitational interaction like all other interactions has a dynamical symnetrv
group G.

2. The group G is obtained from a symmetry group H yielding the physical con-
servation laws of the theory and forming a sub- group of G.

3. The corresponding Lagrangian is constructed by means of the dynamical group

G.
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In other words the non-linear realizations of G consist of identification of Gold-
stone fields with those parameters of G which are not connected with generators
yielding the physical conservation laws, i. e.. with the parameters of the factor space
GIH. From geometrical structure of G/H the gravitational Lagrangians (as well
as conserved currents) are explicitely constructed in terms of group invariants by
methods of differential geometry.

In the Borisov-Ogievetsky theory of gravitation [3] the dynamical group G is the
group DiffR3", and the symmetry group H generating the physical conservation lal's
of the theory - the Poincar group P. Then the gravity theory itself appears to be a
non-linear realization of DiffR3'• and the gravitational field nothing else than the
Goldstone field identifeid with parameters of DiffR3" /P.

Non-linear realization technique was first developed for finite-dimcnsional Lie
groups [4] and then for some infinite-dimensional ones [5]. In tne case of non-linear
realizations of infinite-dimensional group DiffR3 ' the situation is greatly simplified
due to the Ogievetsky theorem [6] according to which the algebra of Diff 3R` can
be regarded as a closure of two finite-dimensicnal algebras: the 20-dimensional affine
algebra A(4) and the 15-dimensional conformal algebra C. Thus non-linear realiza-
tions of DiffR3"', DiffRa.1/P can be constructed by taking simultaneous non-linear
realizations of A(4) and C', namely A(4)/P and C/P. The non-linear realizations on
A(4)/P give rise to a 10-component Goldstone field h,,(,r) and that on C/P yield
the scalar Goldstone field .(,r) as well as its gradient , The requirement that
both non-linear relazations should be realized simultaneously leads to the following
identifications of the Goldstone fields: =(,) =hu(,). Thus the resulting theory
has only the 10-components gravitation field h,(.r). Since its Lagrangian gives rise
to the same equations of motion as appear in the Einstein theory of gravitation, the
resulting theory is equivalent to that of Einstein (for details see [3]).

In the paper we !;hall briefly discuss N = 1 minimal Einstein supergravity in the
same spirit [1. 21. First. in Section 2, we shall recall its geometrical form'ilation 77]
and, using the results of [1]. a theorem according to which the inifnite-dimensional
gauge superalgebra A of N -1 sUpergravity gauge supergroup (G van be regarded as
a closure of two finite- dimensional superalgebras .4A and .411 corresponding to su-
pergroups G, and GC, respectively. Then in Section :3 and -1. non-linear retdizations
of Gl and Gi are described and redundant Goldstone fields are eliminated by the
inverse Higgs effect. Thus singling out the invariants with respect to G(1 which are
simultaneously also covariants with respect to G, we. in the end get one essential
Goldstone superfield 0,;(.r. 9.9). In Section 5 we show that .\' = I minimal Einstein
supergravity described in detail in [7] is equivalent to the above mentioned theory
of sumultaneous non-linear realizations on GI/P and C;1/P with gravitational axial
superfield H";'(x, 0.A) playing the role of the Goldstone superfield and with the La-
grangian being the simplest invariant with respect to G, and Gil. Finall\. in Section
6, we discuss analogies of the non-linear treatment of N = 1 supeigravity with the
p-brane type theories and indicate some of the further developments.
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2 Gauge Supergroup of N = 1 Minimal Einstein
Supergravity and its Structure

The Ogievetsky-Sokatchev formulation [7] of A' = m minimal Einstein supergravity is
based on the (4+2)-dimensional complex superspace

C4/2 = C4/4/C01 2  = {(XL L~)
= {(xs'.OSt} (1)

with {(XPO, ,)} and {xp.O} {p(x = )} being its left and rigth-handedI L L R. L"L
paramet rizat ions. In superspace C4/2 the infinite-parameter complex gauge super-
group G acts which is infinitesmally defined by

64x, = APP(XLrOL)" (2)
- A"(.r.OL).

Here,A" andA" are arbitrary superfunction-parameters satisfying the condition

aA°•i OA"
S =O0 (3)

which expresses infinitesimally the preservation of the supervolume on C4/2 corre-
spoi.ding to the minimal version of th N = 1 supergravity (for details see [7.8.9. 1]).

Using the results of our previous paper [1] the following theorem is true:
Theorem: The infinite-parameter gauge superalgebra corresponding to trans-

formptions (2) restricted by (3) can be obtained by taking the closure of two finite-
dimensional subalgebras:

AI = O. = -ii -i,,: PL=

Ob = 0"0L,: lý = --i(O'LOLP)O} (4)

and

* All Q. PL~p; Q'O R" -

T( = ( = .r".: 1 =-i (.r"Od + 20"d.) .5)

The structure relations of superalgebras A, and All are specified in [2]. The
meaning of A, and All is rather simple. Al is the superalgebra of all Grassmann vcctor

*1
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fields (i.e. each elenmelit of A, cart be ob~tainedl byV ganiging orliniL \ IX Itranslat ions in
purely cG;rassmantn direct ions ) and1( AII is thle special li near sirper-a Igibra in /2
Rem arks:

I. The Iheorein canl be proved by taking ii to accoil nthle following factIs. First - all
the g(-nerators of superalgebras A, and :111 belong to th liv i e types of generators
listed in /1/ which yield transformations (2.2) satisf ' ing (2.3). Second, all the
lowest dimnitsional generators of thle stiperal 'gebra .4 canl be obt aitned from the
generators of A1 and AI, by usirng I ltivir st rtict tire( relat ions and( relations of the
type [Al. All]}. Final]\.. thle higher dimensional gervirat rs of A c-an be derived
step by step from the p~revtours ones by succesivelyv commutin rg tie latter withI
each ot her and rising the induction technique.

2. In [11 the superalgebra A was obtained by takitng the closure of two superalge-
bra, that differ front A, and .4,,. The choiceo 041 Aarid A41 has the advantage for
constructing non- linear realizat ions ini lie tnext Sectiotis since :111 (inl coit radis-
tioct ion to the stiperalgebras used in [Il involves thle genIlerat orý R, and I'"'
which will be shown to have as thei r a'ssociate Godlstotie sirperfields t hose itl-
cluding as the lowest Conmponenits gauge fields of gravit on arid gravitirot.

:3. Thle suilera Igehras All containsý thle Loreniz gerierato-' .15 iL and~ Ifl.f njil bY

.11"i H(~i)+ Tw ý). .11, H(`6)

where

+ 1t~

These Loretnz genieratoirs fur-ru il 'eri-direit Stint) withI stijiuralgeb~ra A,1. 1 bus.
without losing generality. t lvy cart lie a dded to Al.

41. [hel( generattors (41). (5') are es-Seitutallly compl~ex anld so thle cotrreupoutiidng grouri)
elements will inl genroral be defitneid ontO (olie pnlex luararlieter rianifolil. hac-
tori/at ion over One( or another real sulnbgouti ( i.e r.ri lo a co:set' will thien
attotunt to leaving only itragitiarY pattit, tit-11 unnluuoitldiniiL group ilt taanteetti.

3 Non-Linear Realization of GI

Let GI denote thle COtANipe sui1pergroull t lie ~upciualgehla ouf wliuhu i, -1j ietille'l ill
-I). Fach element G, of suiyeurgrotil '1 caltl 1w paralnnutt izedillii tlii' flolowitng way\

coivetuienut for cutnistruictiig 1t1 lie n Itii-wa iiear relization of ,

YIII=!i2
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where

g1 = expi(9'Q., + r- PL,)-
92 = expi(,(8)

93 = expi(VPl\A0 ).

Transformation properties of the group parameters 0'. r•x) U'p and a"ý follow

from the group multiplication law

0 0
g 1gj = ,. i s a h.,.,ed elemet of c;, f)

Assuming g' of the form

gI +i Q( + (,PL+i + 1 ."-Q: + 1-' (10)

we obtain the infinitesimal transformation laws of supergroup parameters

.r" = c(p + ,0" -i+ (0+0•)•,.11,

6?.,pp = .a3PP - 2iO,-j.P
- P.MaPP = O.• •

Now. following the general routine [. 5] we introduce 1,' r '--ant (artan I-

forms " ";13+ , and k' Via

g-[(dg9 = + ,r},, +.,7+ + + k,.,-', ,•

By a direct computation we obtain

,7a ,td':' + 2io"/0O 15)

Ikl"• da'"• 6

We shall use these [,ft-in'ai'lant ('artan 1-forms to eliminate some ( Goldstone

suiperfields which are associated with the group paramefters. More precisely. we shall

identify the group, parameters associated with P"" = I?" I + P with t-e

bosonic coordinates r'"' of the real superspace. while that for IP,' ( = ' i 'i - Pij/11
with thie (oldstonie superfield l"t (.r. 0. 0). hIe group paraneter, 0 " 9 -7.. 0"

(0' )t are interpreted as grassimannian coordinates of the real superspace H"4 . The

Complx'x (.t+2)-dievnsiotmal superspace I can be regarded as an (S+.v I; dimetnsional

real supmerspace { (.mt...r74,OL,0) . In this Smlt0rs-pace a real phyl.ical smuperspace
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{(XPP, 0s,)} is iimbedded as a (4+4)-dimensional hypersurface determined by four
equations x" -. r" = 2iH"(.r, 0.0) [7]. The remaining group parameters 1', and a"
will be identified with the corresponding Goldstone superfields given on R4' 4 which
will be expressed in terms of HP4(x. 0, 0) by exploiting the inverse Higgs effect and
thus eliminated from the theory.

Namely expanding the appropriate Cartan 1-forms (13)-(16) in the covariant dif-
ferentials V'ro, dO" and d0O we can define covariant derivatives and spinor covariant
derivatives of H11 and t (for detail see [2]). Equating these covarinat derivatives
to zero we obtain

and (17)
•= -• (V"V,) H"0 .

Thus the non linear realization of GI can be entirely formulated in terms of the
superfield H""(x. 0.0) and the basic building blocks of the Ogievetsky-Sokatchev for-
mulation of minimal N = I supergravity (H"•I(r.O0.).VH"". H"") naturally
emerge already at the rigid supersymmetry level. The problem now is to select those
of the G,-covariants which are simulteneously covariant with respect to the super-
group Gi.

4 Non-Linear Realization of GII

Analogously to the previous case Gil denotes a complex super- group the superal-
gebra of which is A,, defined in (5). Each element Gil of supergroup Gi, can be
parametrized as

g = gll,(18)

where g9j denotes the element of the coset space GII/L with L being the Lorentz
group

L = exp(il4" 3 M 0, )exp("'ýIM ) . _ h'. (19)

Here M., 3 and ,Is, are defined in (6) and I is an element of the Lorentz group.
The element I of the coset space G,1 /L can b( parametrized in the following

way

g91 = 9192!3Y4.9 (20)

where g, and g2 are defined in (8) and
93 = exp(i,•. lP),

94 =exp(IuqjP "'!). (21)
gs, = exp(i¢D),
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The Cartan 1-forms are defined once again according to the general rules [4. 5] by

g dg'l = ILoa iQ+06QP1p +

=d + LIIPL, + ` oa + Q ,

3,3 a~~ , 13'p"

", R1,? + "'T T(,3)+-DD}D (22)

By comparing both sides of (22) we obtain
IA; jA0 

, ,P~ \.2.p

",R = WO' + , LO I' ,
, =I dXPL + i yPPdOP )B';, _ PPB'a07
Lp1 L Ll pp

",P = d c,.\.\Bp -

"= (dA- +A , A dLv )-(B- c(3

-- "Jp, - . 3

=-A' dt'~(-)B,: + (Bi')'dB,:.

4OO - Pd43Yb

where B is a function of the Goldstone superfields associated with R', and defined

by

95R3gs = (B--,'•_) ,-_. (24)

All these 1-forms, except those associated with .V.,). AL,, which are hidden in ,R
and WT , undergo the induced Lorentz trans- formation with respect to their spinor
indices when GCl acts on g-j by left shifts

0- ind
9 =glt = LiiL (25)

where

Lind .- I + ibh°"3(.r. 0, O)M.W3 + , 0h'"(x. O. 9).1a,

and g11 is a fixed element of GCI.
Applying the general formula (2.5) the transformation properties of the coset Pa-

rarneters 0"..rp , C-,. A"p, h h" and B," under GC1 can be obtained (for detail
see [2]).

Now we sihall eliminate extra Goldstone superfields and single out the covariants
of '1/ which are simultaneously 'ovariant w.r.t. (;.

Looking at eqs. (23) and (24) we see t hat is covariant also w.r.t. GI since R

ad D can he added to C, as extra autonuorpliism genierattors anl tlhus GI does not
transform the superfields B and , at all.

Next we shall fleconipose ... into the covariant ditfereintials of .r', and Hl"- once
again and then extract covariant derivatives of I.' . It turns out that conditions



647

for elimination of ý,Pý in the non-linear realization of GI (i.e. DPllH = DTH" = O)
are simultaneously covariant w.r.t. Gil so that e,,6 given by (17) possesses correct
transformation properties with respect to both. G1 and G11 (for the proof see [2]).

Eliminating <o, v, by (17) the covariant differentials of X" and H6 acquire
the forms

Vxao(b,5+D• =c ,.P) (26)

AH c = Vx14c£"? (27)

with

Their structure is completely specified by expressing the remaining Goldstone super-
fields A, ,r (or B) and p in terms of H".

We begin with B`. By inspecting the structure of the Cartan forms 23 we
conclude that B0 can be eliminated by imposing appropriate constaint on one of
the spinor covariant derivatives of the Goldstone field L," These are defined as the
coefficients in front of w' . ZZ, in the Gjj-covariant Cartan form ,""

-+pb /A, (28)

where
v• ,APPC21 z •tp V, \,"Bph -3ý

It turns out that only L6ý,Pý can be used for implementing the sought covariant
constraint since it is covariant w.r.t. G1 and Gil (and hence w.r.t. the whole infinite-
dimensional N = 1 supergravity group). It is meaningless to equate Ajofý to zero
because it would contradict to the flat-superspace limit

, =0. )=0, B = bb H" = "OPO . =NA 2V ]I,\\ =

Thu An shul eqat A - 1

Thus one should equate Ljt,/ ' to a proper Lorentz-covariant constant matrix con-
sistent with th flat limit namely

= 6. (29)

From here by taking into account that detB = 1 we can express superfields B"
and p, € in terms ofH"'.
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Let us explain now how to eliminate the Goldstone superfield A" The cor-
responding constraints arise from the requirement that in the dO-projections of the
Cartan forms standing in front of the generators R. D and T only the inhomogenously
transformed components associated with the Lorentz generators U.13 , A1o, survive.
These constraints are again manifestly G11- and G1- covariant and give A', in terms
of H" (for detail see (2]). Hence we are eventually left with a single Goldstone su-
perfield H"i'(x,O, ) which alone supplies non-linear realizations of G1 and G(1. This
confirms from another point of view than in [7] its role as the fundamental geometric
object of the minimal N = 1 supergravity.

It remains to show how the minimal N = 1 supergravity action reappears within
the present framework.

5 The Invariant Action

After employing the inverse Higgs effect constraints, the remaining simultaneous Gl-
and Gji-covariants are reduced to the covariant differentials of the N - 1 superspace
coordinates, the covariants differential of HU(.r, O, O) and to the covariant derivative
of the Goldstone field A' (the projection of the Cartan form Q"P onto the covariant
differential AO0). Since the last covariant rise to a higher derivative invariant and
the covariant differential AH"• identically vanishes we are left with the covariant
differentials AL'x, A.O", AO/ . An obvious simplest invariant is the supervolume
of N = 1 superspace (.r".00.0) constructed as an integral of the Berenzinean of
the corresponding vielbeins over d4'd 2Od2O. As shown in [2] it coincides up to a
renormalization factor with the minimal Einstein .N = 1 supergravity superspace
action in the from given in [8].

6 Concluding Remarks

i) The presented non-linear realization approach allows an algorithmic construction of
N = I supergravity based on the universal method of Cartan forms augmented with
the inverse Higgs phenomenon. The N = I supergravity prepolential H""(,r.OO)
appears from the beginning as a Goldstone superfield describing the simultaneous
spontaneous breaking of G1 and G11 supersymmetries. Many objects and relations
introduced "by hand" or postulated in the Ogietvetsky-Sokatchev approach acquire
a clear group-theoretical meaning. For instance objects F and F playing the cruical
role in (7, 81 turn out to be rlated to the Goldstone superfield associated with the
spontaneously broken generator D11 form GIt. The relations (4.25) in [S] prove to be
a particular case of the inverse I-figgs effect.

ii) It is worth mentioning that the inverse Higgs effect constraints are purely
algebraic. in contradistinction to the standard N = I supergravit v constraints which
are reduced to certain differential equations (vanishing of some components of the
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torsion), the prepotential being a solution of the latter. In the present formulation
these latter constraints are secondary, they can be shown to be a consequence of the
Maurer-Cartan structure equations for G, and Gn.

iii) It is interesting to see how the complex geometry of N = 1 supergravity [7]
(the preservation of chirality) reappears in the manifests of the non-linear realization
description. Before all, it manifests itself in that one deals with the complex su-
pergroups Gt and Gil in a holomorphic parametrization. The (' 4/ 2-coordinates r'L
09 naturally come out as the parameters of the relevant complex coset spaces. The
constraints of the inverse Higgs effect in the present case can also be interpreted as a
kind of the covariant chirality conditions stating the absence of the dA-projections in
the corresponding Cartan forms.

iv) Let us stress the defining role of the non-linear realization of the linear su-
pergroup Gn1 . The structure of the basic building blocks of N = 1 supergravity. the
covariant differentials nAxli,, Os', is completely specified by this non-linear realization
(together with the inverse Higgs effect). The role of GI is in a sense subsidiary - it
provides very simple criterias in which cases the Gtt-covariant quantities and relations
are covariant under the whole N = 1 supergravity group.

v) The construction of N = 1 supergravity as a non-linear realization of the
complex supergroup Gu1 in the coset supernianifold Gtt/L. with N = I superspace
(x";',O9",O,) as a real subspace and the N = 1 supergravity action as a G11-invariant
supervolume of this subspace suggests an interesting analogy of N 1 supergravity
with the (super)p-branes (strings, membranes. ... ) in the treatment of [10]. Actually,
the minimal N = 1 supergravity is recognized as a kind of '*spinning" super p-brane
of dimension (4/4) moving in the complex coset G11/L as the target space. the
Goldstone superfields eliminated by the inverse Higgs effect are direct analogs of the
Goldstone fields which parametrize in ordinary p-branes the cosets of the relevant
Lorentz groups and are expressed there in terms of the translation Golstone fields by
the same procedure [10]. This similarity raises some questions, in particular, whether
N = 1 supergravity can be reproduced as an effective "low-energy" limit of some
higher-dimensional superfield supersymmetric theories, byN analogy with condensation
of (super)p-branes in a field theory [11].

vi) Closely related to the latter remark is the problem of existence of theories with
a "linearly realized" N = I supergravity group. Such theories could be related to
the non-linear realization formulation of N = 1 supergravity much like linear sigma
models with associated internal symmetries are related to tho corresponding non-
linear sigma models, via appearance of non-zero vacuum expectation values of some
fields. Our construction gives a hint that these linear realizations should operate with
linear representations of the supergroup G11. An analogous problem for the Einstein
gravitation theory has been settled in [3]. As suggested by Witten [12], the linear
sigma model of this kind describes the phases with unbroken local symmetries in
gauge theories and can be l)resumably understood as topological field theories.



650

vii) Finally we note that the non-linear realization treatment of the non-minimal
N = 1 supergravity theories can seemingly be constructed in an analogous way.
However, it is a much more ambitious problem to find a general principle allowing us to
construct higher N supergravities by the non-linear realization techniques. One might
hope to obtain in this way the geometric prepotential formulations of supergravities
with N > 3 which are unknown at present.
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1. Introduction
In the supersymmetric quantum field theory, a unitary representation of a Lie super-

group or a Lie superalgebra plays an important role. If we are content with a representation
of a Lie superalgebra. Hilbert superspaces are not necessary. But if we want to consider a
representation of a Lie supergroup. especially the induced representation1 , one of the most
powerful too] to construct a unitary representation. the theory of Hilbert superspaces 2 is
indispensable.

2. Algeabra A of supernuinbers
Let A = A-6 E At = C-- N be a Grassmann algebra over C with countable number of

generators ri. where N: set of nilpotent elements (soul). Define the projecton b: A -- C
(body map) and the subalgebra A(') of A generated by ' .... ,,. Then A(,' is a Banach
algebra with the norm

I1,1 = !C. 1c',,. for A cm 't.
'if .*iJ

where v.1, = cl. c,,. c.i% E C. Let I be the ideal of A(") generated by r,. then we
have A(') I ,(,-1) . I_ and every element of A is uniquely written as

A = 1:A," A,, E I_. Al(-\())= C)(1

n>O

Let = , be an arbitrary increasing sequence of positive integers, and define a norm

p,(A) on A by

where A is expressed as (1). Then p_ gives the inductive limit topology ot .A(,'. Moreover,
each norm satisfies

p *(Ap) < 1,A(p,()

for A, /1 E A. and A is a topological algebra. The algebra A has the following fundamental
properties-A.
( t) A is a complete and nuclear space.
(2) Any bounded -set of A is contained in A(") for some n.
(3) Time soul of any elenmemit of A is nilpotent.

3. litbert superspace
A. Definitions

Assume that A has a continuous grade-preserving involution * satisfying p1(A')
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p A•).
Definition 1. A Z 2-graded A,-module H = `He j-+Hi, is called a innr product up\-r.space

if it has a Z 2 -graded inner product (-. .): Rh x 'H,3 - A 3 -o (a. 13 E Z 2 ) satisfying the
following conditions: For f. g, h E Ri and A E A.,
(1) (g, f) =(f, g) (symmetric),
(2) (fg + h) = (fg) + (fh) (biadditive).
(3) (f.gA) = (f.g)A (sesquilinear).
(4) b((f. f)) > 0 (positive definite).

The locally convex topology on 'H called the o-topology is defined by the following
system of open neighbourhoods of 0:

U~,.,)=h E R I pý((h, f)) < c.

where c > 0 and f E X.
Definition 2. A Z 2 -graded subspace H of. 'Kover C is a boas Hil!brt spacf of'H if the

following conditions are satisfied.

(1) H is a Hilbert space with the inner product (. .) of H. this means that (f.g) E C for
all f,g E H and H is complete.

(2) The norm topology of the Hilbert space Hf i. stronger than the induced topology from
the a-topology of R.
(3) (H.h) = 0 implies h = 0 for h E R.

Definition 3. A inner product superspace RI is called a Hilburt supcrspacc if it has a
base Hilbert space H.

B. Structure

Let h E 'H, then (h, -) is a continuous C-linear mapping form H to A.
Since (h.f) If E H.,IfjI < 1 is a bounded set in A. (h,f) If E H is contained in a finite

k

dimensional subspace ktn) of A. Then we have bv the Riesz theorem (h.-) = Z A,(h,,

k

where A, E A(") C A. Thus we have h = I hA,-.

Theorem 4. Let R be a Hilbert superspace with base Hilbert space H, Then the

Z 2-graded tensor product H ,2 A )t H and A over C is isomorphic to R. Conversely, let

H be a Z 2 -graded Hilbert s-',e over C, then H :-. A is a Hilbert superspace with base
Hilbert space H 2 1.

C. Topologies
The system P. of the norms PI. defined by

lý(h) = supp)((f.h))If E ft.f II 1,

defines a topology called the (-opology, and the -,-topology is defined by the system Q-, of

the norms
k

Q..( / ) = nf t h, )(p.,(A').

k

for h = I h,A' E X.
t----
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Since A is a nuclear space c- and 7-topologies coincide'. The inequality

p.,((g h)) < Q (g)P,(h)

follows from the inequalities

k k

p,((g.h)) < Z p.((g,A,.h)) <_ Z (A')(h)"

k

for g = giAi E ., with g, E H and Ai E A.

D. Stability of the (-topology
Theorem .5. The (-topology does not depend on the base Hilbert space.
Proof. Let Hi be a base Hilbert space with the norm and P'• a systen 0

norms of 7- corresponding to H, for i = 1. 2. Since Ht, and 1ft are Fr6chet spaces ani
( :,') H, x H2 - A is separately continuous (from the definition of babe Hilbert spacei

is continuous, i.e.. we have

for f, E H, (i = 1. 2). Thus we Ilave

f'- f) (,'-f2. I'Cf < ('.fl;

and

p.((h.f))< Pf(h)QO( f) (f ' (Ii )IQ ,f) ( hP/ if!,f

for h E 'h and f E H2. ('onseque"Tlt. we have

P2( h) < ('P'l(hl. 1"(i) < c" Q (1h)

for h E R1.
4. A-linear operators of Hilbert siperspaces

Definition 6. Let 'iH and H'2 be two Hilbert superspaces. Then a contiinouis iiipping
7 from 'HI to 1H2 is called a continuous. A-linear operator if it satisfies the followinii
conditions:

T( + .y) = Tx + Ty. T(xA) = (l.r)A

for x. y E H, and A E A. Moreover. T is called r'ad(-pr(.,t ri'9 if T1H, C 'H,, for It E Z 2.
Definition 7. A continuous .\-linear operator V- from H, to 'H2 is called unitaruy if it

satisfies ((x. Vy) 2 = (x. y)i for every .r. y E 'Hi and the range of V is the whole space -12.
Theorem 8. Let H be a base hlilbert space of a Hlilbert superspace h and U be a

grade-preserving continuous unitary operator of'H (from 11 to H). Then U(11) is also
a base Hilbert space. Conversely, if HII and 112 are two base Hilbert spaces of a Hilbert
superspace R-1 then there exists a grade-preserving continuous unitary operator U of H
such that U( /I,) = H2.
5. Orthogonal complements ,of Hilbert subfsiuprspaces

Definition 9. A Z 2 -graded subniodlie K of 'H is called a Hlilbert subsuperspace of H,
if the following condition,, are satisfied.
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(i) K" is a Hilbert superspace with the inner product (.. of R-.
(ii) The topology of K" coincides with the induced topology from H.

Theorem 10. Let 7- be a Hilbert superspace and let K: be a Hilbert subsuperspace of'H.
Then the orthogonal complement KA: = h E 'H (K. h) = 0 of A is a Hilbert subsuperspace
of 7h and we have

'H = k +- KC (orthogonal sum r.

6. Unitary induced representation of Lie supergroup
Let G be a Lie supergroup with even generators X, (1 < i < p) and odd generators Y,

(1 < j : q). Let Go be the group generated by the elements of the form exp(y•,P= XX,)
with x, E A0 and 0 g E G g = exp(Zl Ij'). ýj .eA then every element 9 E G is
uniquely expressed as g = goO for g0 E G0o and 0 E 0W. Thus the homogeneous superspacP
X = Go\G is homeomorphic to 0 - (Al )7.

Let (Go. L,'H) be a unitary representation of Go. For exp E 0 and g E G. define
functions ýo(g,f) E Go and ý(g.0) E 0 by (expý)g = ýo(expý). Define CL by

g _[L(g)O (ý) = L(ýo(g.9)) 11/ 2 0(ý(g.•)

for 7-h-valued function o(ý). Then (G. I'L.-1 :- is a unitary representation induced by
(Go. L.7 h) if we define the inner product by (o. k,) = J(o(f). t(fl)dý for o. v E
where (o(f), Ol()) is the inner product of R.
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1 Introduction

The role played by phonons in condensed matter physics is well known.
Phonons mediate various interactions between quasi-particles and phonons
interact with external fields, phonons carry an energy and a quasi-momenteurin
[1,2,31.

From the literature one learns that phonons are collective or rnacroscopi,
observables, and that their dynamics is induced by the microdynamics of the
system.

Here we report about work in which we were able to define phorions as

bona fide Boson fields or Boson particles, and to study their dynamics.

2 Phonons

We consider a v-dimensional cubic lattice I" with in each lattice point I E E•
a matrix algebra Ai = Al. of site observables.

Take any state p whichb is lattice translation invariant and tine invariail.

Consider the fluctuation of an observable A C Al,, in the state p:

FAp(A) = I (A, - p(A))
SIA IEA

*Contribution to the 1if.nternational Wigner-Symposium 1991, ;oslar, (ernianv
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If the state is enough clustering one shows that

limi FA p(A) EF 5 (A)

e~xists iI the, topology of convergence in the distributional sense evenl for

operators [!,51.
'Now we cbserve tile remarkable fact that F5 yields; a repieseritationl (f

Canonical commutation relations, iLe. FA for all local ot~servalbles A IS ;

Boson field. It turns out that these mnacroscop:- fluctuations coincidIe a itli
lhe plioiomis iii solid state physics.

3 Phonon dynamics

If one has a microscopic Hanmiltoniian dynamnics A -1 A,, t IR, tileni at
least for short range interactions, the fluctuation f,,(,4,) of A, also exist-s. I ri
that. case we are able to define a macroscopic dynamics C&f bv thle forinidia:

The lvmnamnicsý ii is then the phonon dynamics. and the studl\ of phonlon

physics aiiiounts to the study of this dynamics.
It turns out that the phonion spectrum (i.e. of ýi, is quite different ill

nature fromn the microscopic dynamnics of the system. WVe worked out naniv
models and observed that although the. microscopic spectrumn is, absolutely
cont inuouis, the lplionmon spectrum of the systemn has mna i discrete poinits

Thbis is observed iii the Seliwinger miodel 161, the Overhtiuser model aij

a sjpin-(lelsitv wave iiodel [81.
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The modular group as physical symmetry
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Since several years I am interested in explaining the appearence of symmetries in
physics. It is my opinion that only the invariance under Euclidean transformations is
a consequence of general principles. All other symmetries need an explanation. Even
the Lorentz-boosts are broken in charged superselection sectors which means that this
symmetry has to be derived if present in the vacuum sector.

In this representation we want to show that in quantum field theory the Lorentz-
boosts do appear as symmetry in the vacuum sector and have a natural explanation.
We show that the modular group for the algebra of the wedge domain can always be
interpreted as the group of Lorentz-L, osts, provided the cyclic and separating vector is
the vacuum-vector. In order to obtain tiis result one must show that the modular group
induces outer automorphisms of the translation group. To prove this three properties
are essontial. The locality condition, the spectrum condition for the translations, and
the stnrcture of the wedge domain, which is mapped by a semi-group of translations
into itself. By the same method we show that the CPT-transformation can be identified
with the modular conjugation. If the wedge is fixed then one is dealing with a two-
dimensir-al problem. Therefore, in all of the investigations we shall only deal with field
theories in two space-time dimensions.

The C.P.T.-theorem has been proved in relativistic quantum field theory by R.Jost
(Jo] in the frame of Wightman-field theory. In this proof he revealed the connection
of the C.P.T.-symmetry with the assumptions of positivity of the energy, Lorentz-
invariance, and the standard locality assumptions. In this proof the existence of a
vacuum state was essential. But up to now there is no proof of the C.P.T.-theorem in
the theory of local observables in the sense of Araki, Haag, and Kastler.

A different aspect of the C.P.T.-operator has been realized in connection with
the Tomita [To] Tak-esaki [Tal -theory of modular Hilbert-algebras. Bisognano and
Wichmann [BWl], [BW2] observed that the C.P.T.-operator and the Lorentz-boosts
are related to the modular conjugation and to the modular group of the wedge-algebra.
provided the theory of local observables is generated from a Wightman-field which is
covariant under Lorentz- transformations. Here again one is dealing with the vacuum-
sector.

Notation:
The symbol {M . X, Q, A, J} means an algebra M acting on a Hilbert space 'H such
that Q2 is cyclic and separating for M4. The modular operator and modular conjugation
given by this situation is denoted by A and J.

In the following we are looking at endomorphisms of M induced by unitary opera-
tors which leave fQ fixed. We are first looking at one single endomorphism. Next we are
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treating the case of a continuous semi-group with positive generator. Finally we apply
the results to the wedge algebra in the theory of local observables.

First Result:
Let {M ,NQ,.J} be a von Neumann algebra and let U be unitary with UL Q and
assume U induces an endomorphism of M i.e. '14 U* C A•I then we have:
(1) With S = JAI the relation

Us = SU.

(2) The operator-function
AltUA-,

has an analytic extension into the strip.

1 1
S(-;,0)= { i;-- <-im < o0,

IN 9

and it is continuous on the boundary. and it fulfills the estimate

IjA'=uAx-- < 1.

If U induces an automorphism then U commutes as well with A as with J and there
is no interplay between U and the modular group. Next we are turning to the case
where we have a semi-group of unitaries with positive generator and which induce a
semi-group of endomorphisms.

Second Result:
Let {J , H. Q, A, J} be a von Neumann algebra and let U(a) be a one-parametric group
of unitaries with UQ = Q and assume U(a) induce for a > 0 endomorphisms of ." i.e.
U(a)M U*(a) C M , a > 0 then we have:
1. the expression

has an analytic extension into the tube T and is continuous on the closure, where T is
defined as follows:

T = I(:.();(317:.?ni) E B)J.
where B is the interior of the quadrangle. the corners of which are given by the points

1 1{(o, 0), o ), (0,7)
2 2

2. The operator V(z,() is bounded

(V(zC)jl _< 1. for (z, )E T.

3. V(t - 4,• - it) has the value

22 v(t - -it)= , [, _ )j - .

U(a) has a positive generator, therefore it has an analytic cotinuation into the upper
half-plane. Since it induces endomorphisms of M4 for positive a. one maps the upper
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half-plane by a = ec onto the strip (0, 7r). For real ý we have an analytic continuation
into t E S(- 1,0) and for real t an analytic continuation into ý E S(0. r). This gives
analyticity in a tube with triangular base. Looking now at the set 13m t = - one finds
that one can analytically continue in the variable ý into the strip S(-r,. 0). Altogether
this gives the second result.

In order to find further analytic continuations one has to make use of the cyclicity
of Q for " and for A9 '. To this end one introduces two functions.

Notation:
Let {fM R, . Q, A, J) be as before and let A E -14 and B' E A4' then we define:

F+(t,) - (Q, B'A"U(ec)A-' 1 A.Q)

and
F-(t. () = (Q, .4AtU( -• )A-' 1 B'Q).

As one sees from the construction of the two functions they coincide for real values
of t and of ý. However the third statement of the second result implies much more
analyticity.

Third Result:
The two functions F+(t,ý) and F-(t,). which are holomorphic in the tubes T and -T
respectively, are different representations of one holomorphic function H(z, (), which is
holomorphic in the domain

f{Re zRE( E R 2 }fn{-7r < 27r~lm Z- yn ( < 7r}.).

In this domain H(z,() is bounded. One has

JH(z, ()1 < max{ j~j[j~fltB" •lj. jjA*Q12111B'Qjj[ .

This latter statement implies that H(:, () is constant along the direction given by the
strip (*) i.e.

H(:,t,) = H(: + +.c, wtr) for u- E C.

Using now the fact that M Q and " 'Ql are both dense in 7f we obtain:

Main Result:
Let {M . 7Y, n A, J} be as before. Let U(a) be a one-parametric group of unitaries wit,
UP = Q? and assume U(a) induces for a > 0 endomorphisms of A4 i.e. U(a),l U*(a) C
M , a > 0 then we have for(1,a) E R2

(a)

A"UTaA-'t = Uwe2
ffa)

and (b)
JU(a)J = U(-a).

If we assume, instead, that U(a) induces endomorphisms for a < 0 then (b) remains
unchanged but (a) is replaced by

Aett(a)\-at _•= ;(l
2

-Wfa).
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Application: Two-dimensional Q.F.T.
Let {J1 . h, Q. A, J} be as before. Now we assume that we have a continuous

representation U(a}, a E R 2 of the vector group of R 2 . Furthermore, we assume

(a) U(a)Q = Q
(b) The spectrum of U(o) is contained in the forward light cone I := a E R2 :o( >_

IaiI}
(c) Let tV be the set

W I a E R2 :ai > la0ol

then we assume
U(a)M" U*(o) C ." for a E T'V

Now we introduce the lightcone coordinates
a+ _aO +a, + +- a

- -- ' or a0=0 +a-,l = -- a

Since U(o) fulfills the spectrum condition it follows that L(a+) and V(a-) both have
positive generators and, moreover, we have

U(a+),M U*(a+) C Mfora+ >0 and U(a-),MA U*(a-) C Mforo- <0.

Therefore. we apply the main result and obtain:

Fourth Result:
With the assumptions described above and with

( cosh2r0t -sinh27rt)-\t = sinh 2 rt cosh2rrt

and

U(A(t)) = 4"

then { U(A). U(a)} induce a representation of the two-dimensional Poincare-group which
fulfills the spectrum condition and which have 0 as invariant vector. Furthermore. one
has

JU(a)J = U(-a)

All these transformations act local on the net constructed from the alqebra of the wedge
and its commutant.
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Algebras of unbounded operators (Os--algebras) arise naturall In the Wight-

nm.an formulation of axiomatic quaniun field t heory. Tomit a-Takesaki theory plays
an important rob. for a study of structures of Von Neumann algebras and for a
st udv of quantuni field theory [1 -.3]. and so it is desirable to extend the results
of Tomita-Takesai theory to Op-algebras. Such a study has been done in [4-7,
on the physical situations and in [8-11] for the general theory. In this report
we introduce standard systems and modular systems which are able to develop the
Tomita-Takesaki I heory in Op*-algebras. and apply i hern to the Vightman quantum
field theory.

1. Standard systems and modular systems for general 0p'-algebras

Let (."&l.. A) be given, where

(i) ." is an Op--algebra on a dense subspace ") in a Hilbert space R [12-.1-1

(1i) 0o r- P and %A'0 is dense in H:
(iii) A is a \cn Neumann algebra on R such that A'c, is dense in H and A' is

contained in the weak conmnmutant A,4' of M.'
In general. the weak commutant )A', of A-I is not necessarily a von Neumann

algebra. but by (iii) there exists the induced extension IA'(A4 ) of A4 by A'. that is.
it is the closure of an Op*-aigebra A4 1 = {fXj: X e .E4} on the linear span of A"D
defined by X.((l' = CXA for X E ,. C E A' and ( E P. [14.1.51. Since IAI(X)

is affiliated with A4 for each X c A-I and M&'l is dlense in R. it follows that Ao is
dense in H. hence. both the map: .V'o -- .X\ .. E A4I and Aýou -- 4 ,,..4 A A
are closable in N and their closures are denoted by N and .5Aý". respectively.

Let .Uo =a and 5'.A,= JAe,.LAl be the polar decompositions of S~1•

and .SAo, respectively. Then we see that t.iu C .>A.o. and JA.,AJA(o = A' and
Ao,,•-,t = A for all t E R by the To[miita fundaniental theoreni [2]. But, we

don't know how the unilary group {(Aý, I ER acts on the Op-algebra A4. and so
we define a system which has the best conditions.

Definition 1.1. A sYstfln (,M. o,A) is. said to bi standard if thl abo'i

conditions (i).(ii), (iii) and thl following condition (iv) hold:

(iv) A" = ) and A" "LA^- A=i. vt E R.

We liave the following results for standard systems.

Theorem 1,2. Sappjis thor F = (NM. o. A) is n standard syste in. Thrcn.
a= . nt.(lad hhlt vctor statf w"', on Ml sah.'t.is, fh( Ai.1PY-coudition with rrsprct
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to a out! -/imi-iidc Itr 91i'o1P f ar IIR oýf *-ci utocorphi~ins of Ai4 defined by a"( V _

All A&Xz17 for X E .4 anod t E R.

mI"Port alt e'xamiples of standard s 'Nstenis are appeared in thle \Vightman quian-
turn field theor 'v as seen iii Sect ion 3~. The not ion of standard s 'vstenis is useful,
hut the relation (iv) in Definition 1.1 doesn't hold( in general, and( so bv relaxing
this reqtuirernent we define the not ion of Inodul?:. systemns which is able to develop

unbiloundled Tondiia-Takesaki theory andI is more applicable to examples.

Defiijitioii 1.3. A systtm F = (,'.&. A) is~ ,ald to be modular if the above
corldition.' )(i)ii and tht follotriny condition (i\-) hold:

(i\.),'" i/( it a siubsptaC( 'F Of D( !A' (M )) su~ch thot G E 'D- 'A')('" )E C F
and zY'' C FC fiur ul/ t C- R.

Let F (Mt. c. A) he a modular systemn and F thle set of all subspaces S of
D( 'A ('t)) satisfy'inlg tilie Cond(it ions iii ) iv'- \\e PlIt D1- U E. Then Dr is a

'El
subspace of DPtA'()4)i containing M~'Io ai~d A r Dr. anad so U1 l F XN E
£ct( Dr); XeoA, is a i eneralized von Neuimann algebra onl Pr [9] andI the 01p-algebra

C()onl Drj geneivated byv J A' I -' TFr: t C= R) is anl 0p--subalgebra of
UffV). We have I lie following result.

Theorem 1.4. Suppo.~e that =AI ýM .&,A) .is a modular syste in. Thu c

(C) U).6o. A) and )( F(1). ýo* A) ir( ,hma nrd syse4(m.,.

,Cr) (is said to lbe a left 0p'-lagebiii of thle modular s ' stem Y and Uf F) is said to
he a left ye ne rali-d ion Ne umnini elge bin of F. We remark t hat if V (.'4 ýo.A)
is a standard syst om. then Th- D) A( A) n C )= (. k4)

2. Standard systemns in the Wightman quantum field theory

W\e give sonie examplles of standard systems in the Wightman quiantum field
t heory, and consider thle connection between standard systems obtained from wedge
regions in Minkowski space andI tile association of a local net of v-oi Neumann al-
gebras with a Wightman field. Thle almost resultsý stated here are obtained by
niaking use of the works of Bisognaiio and( WVichmann [1.5] and Driessler. Sumi-
iners and( \Viclimaiii [71. Let ,y be one scalar. herniltian 'Nighti man field with a
cyclic vacmuum Q. It is regarded as a liniear map of the Schwartz space S(R 4 )
into anl Op'-algel'ra C0t(D suich that ý[,flt = -,f'] for f E S(R4 ) adhering the
stand~ard assumptions [16.17). For any,\ subset R oif 'Minkowski spiace .11 let P0 (R)
be thle Op'-algeb:-a generated by' {,,:[f[:.f E S(R4 ),suppf C R). and A1 ('(A)
lie a stronigly contit inous uiiitary groiip of lie Poincar6 group P on thle Hilbert
space R ohitainlee by the Complet ion of Dl. EBisognano and Wichmninir [43 deter-
mni ed thle modular group and thle modular involutiion for the right wedge' region

{XR = ý.1) E >Ixr4 1} and( thle left wedge region III = {.r E 11:X'r < - IX111
as follows: Since 9 is a cy-Nclic and separating vector for 'P0 (11*R) and Po(IL).

NQ ~ V11 X PihVn) (resp. Pu(11*)) is c-losable and its closture is denoted
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bly S 0 i (resP. SP ilLW). Let s 5  *~in)ivp 1 iti he the p~olar de-
c-omplosit(ion. F'lien Jr*j'r0 ,u)i equalIs tile aiit iuiiitarv\ Involution J1 3 . 0)0-0.

where 7, (,lenot es thle rot at ion byV angle 7,about thle :1-axis and 00 (leiiote!5 the
canoicalT(T-peraorall]Z 1/2  eqasapitv lfdj ortrV(7
canonical~~~~~~~~~~~P 0~Poertr 1ii , ' e)Quasapstv efajii prtrI

obtainedl bv analvt ic continuation of a one-parameter unit ary group { I (I) }ER Of
velocit ' transformations in the 3-direct ion. SPOW L)I = pl-s = JV 1 , -). Fur-

therynore. thIe P~air (J. I{I1 (t ))iR) satisfies thle relat ions :Jpo( it *)J = Po( 1VL
i~)0 (')(t) -' = 'P0(,II') and I (t)Po(1VL )I (t)-' = P()( 11I.) for all t E R.

It is natural to consider when there exists a von Neumann algebra A( IVR) such
that (PoO0( 11. . A( 11R),) is a standard svstemn. We have the following result for
this, question.

Theorem 2. 1. To0 ( It"[?), f. A( lUR) i-s a 4atndard -sy.-f in if and only if thtrt

(f ists a ron .Y auiant a/y tbra A(1I - on 71 such that A) i Pu) lip )' and
A( IV) C PU) W1 L),ý

We next consider the connection between the standardness, of (Po) lR). Q. A) lie)

and the association of a local net of v-onl Nenniann algebras with a Wightmiann
field. A local net is anl assignment R -A)(R) of regiotns R of the \tinkowski
space .1I with von Neumann algebras A(R1) sat isfying the conditions; of ?isotony,. i.e.
A( R1 ) c A) R2) if Ri C R2. locality . i.e. [A) R1 1. Al R2)J = 01 if R, and R2 are
spacelike separated. and cocorianc(. I.e. =~)(R1.) A(AR) for all A\ E P
[1..31 A Iliglitman hield 11 is a,.,.ociat~d to a local nit A of ron Vunirana algebras

if each field operator ,;[f] has anl extension to a closed operator. :[fl, C AIf*].
that is afflitated with A( R) if the support of lie test function ~f is containedl In the
interior of R?. We have thle following results:

Thieorem 2.2. L(t W' b( thi sit {AIVR: A E PI and K* tlu s;(t of all closýd
douibh conu-- witl, a non-tinipty muntror. Thtn. : i.s associat'd to soni local uirt

WV E W -A(W1) of ron Nuitinann algtbras iff th~r( e'xi,,ts a standard Systrin
('Po(1Ii).9.A(WR)) such that

(a) (U(A)A(1lVRiU(A)` = A(IFp) for- faci A1 E P s~t. AIVp lp
(bi) U(.\)A)WR)U(.\)- C A(i 'R) fo r t(a c/ A G P ,. t.t A 1 C I V.
(c) U(.X)A(i41?)U(.\V'1 C A(11 R) for I t1ch .I P s.t1 . I IVR C I L.-
Furtbh ririor( . o is (issociatid to soin( local nit( K E k - (K) of ron N( imna nil

a lg(b ra s iff thuIt(r e xistfs a st a ndarid s y-sIfitn ( P ( i VR). 9,A ( I ') ) s a t ify in g fthf a bo v
conditions (a). (b). (c) andi flt condition

(d): (U{U'(A )A(1Vlp)(A)-';A1\lVc K, k)) cP(), for inch K E V. tchirt
A` is flth causal compfli in(iit of K.

By Theorem 2 2 we have the following results under t he additional assumptions.

Corollary 2.3. .5 ?IPPO`( that P0( ii)~. is a con .V umianin algt bra. Thcn,
T(PlIp)A). .(Po(V/n?)')') is stanidard, iff ('P0(1R)J')= P01iL'. iff ; is associatid
t on local1 ni(t of W C W ,('P, ( IlV)
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Corollary 2.4 .S'ppo( that PO(h)', i.s a ron N\• aman algebra for all A' E K.
htn th• followig statuem ets av( equinalent. (I) )P0 (l1'll). Q ( PO(IR),,.)') is a

standard sy.,t t. (2) , is as.ocieatd to a local el 11t i V' (ro) VV - (W )' of
con .Ntimaun alytbra.,. (3) ; is associated to some local nit I K k -- 13 K) of
con .'tu7an7 , algebra.s. (4) 1., as,,ociattd to a local lit h' e k" --' rP(o')',.)' of
ion N.•uma'i, ahytbra,.. (5) ,. a.i.sociat(d to a loral net A' t k" - Pu(KA'"). of
ron Ni•' a l•i algqbra,.

Borchers and Yngvason have sh7owed that the condition (5) in ('orollarv 2.4 is,
also equivalent to a certain positivity property of the \\ightiman distrihillions in ([6'
Tlheorem 3. 1 ).

Corollary 2. i. 5'1p]pos. that Pt Ii)".) i., .,t ntially .tif-adjoint. Thin tb,
follou'ineq .ta(nht7it, a(t- equiiah ut. (/) P )('). 'Po(I|•)')) i, standard il.
(2) ;i. a..,ociated to it local 7t " It' 14 - Pot It I .)' of roll .\N f i aliilge bra.,
(.3) .; i,- at,,,ociottd to .o0m local lit I E k' - S(K) of ro,, Vf.,,r7777 algebras.
(4) ;,, a.-ao,'iated to a local net K E k' - Path I'')'. of 7o0 .\a',, algt bra,.

Iii thi, sect ion ,\v, have inivest igated( t le stl a nlardtnes- of Vsy'te077- ( P0) Ii").9. .A(i 1 7)

for wedge-megions W. linr. it is, diffictIlt to gi%\ cxatlpie., of ,tandarrd syst tols for
domains except %',eilge-regions. By the IHislop anid l~ongo resuIt f(ls' Tlheoren 2) wt-
see that for a inasless free field (PO(O)... (Q. ,( )!'),. )') is a rmodular s\'stenm for each
open (1o071le cone ) in. Al.
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Quantut lattices are described by tiewis of quasilocal algebras: Let R ibe a latticc
and .A ani arbitrary finite subset of points in the lat ice, i.e.. A {= ..... , ). .c} At
each point k there is an algebra aIl"' of n x n- tatrices. The tensor product A' =rkitnk

kE"-I.\ "kkl is called the local algebra related to A. A syvsti'e of sets A whilh is directed
Icy' means of the inclusion relation allows the constructic n of ti' in dcitic , li'c it i 1i

. il= Aiii ," A ,4 is a quasilocal C*-ag1,geira [21, [3.
The set 8(A) of states is constructed inl dual manicer but we are not iitct'reted in

tle Iliost general states. Instead we start from a state space St( of si att's which are
invariant inner permutations of lattice points and are suitvcd for tle fcollowing. SI -
weakly closed and a simplex and so is its extrenial iouliidary 3,S ' whi,'h i- giwvi b.%
states : = 5 k :A where all :k are descriled by the samne c'ment :ei S C 8( C )-I',
The central decomposition of each state S" C . deconipcses into .tare. ,f 0o'5. N,,r,
that to each ., there corresponds a central ineasure p .

The cetitral decoinposition of a state carries over to tlieC GNS-rei r,,i-.i at i wiitiiire it
iiiluces a spatial d.coamposition which is described iby a direct ititeral: H _. H . Q.

H, f 4,;7:. hpi/ ) with E = suipp)/.) C 0,8 '' SiM, ".

Let ."A = 1.)ý.A4)' (= weak closure cif I-I.A) be' the v-oin Neulti al~i 'li ri which
corresponds to the GNS-represientation II_. Thiie d,'compositiini of I1 iniplis a 6,l,',,-
position .. Mf,' .t4~dt,( ; = :- L-(E. p.). Thin alg,'lra .M_ has in general
a tion trivial center Z. = I n l4t = f (.dpt(.g . This is ili contrast to the original

ujsillocal Algebra A. whicli is simple.

Also the constrtction of iiean-field operators depend, oni the titate _'. Let {ac I
bec' a basis il L11"'c and ,rc(q,) = IF-1i .kE. c = t'"'1 (I-\! is the' sizei of .\ ice the Ic,'

bean of cT,. The limit limix IL) rtO),)) = 0(a,) exists iti the weak oiperatcr tcIclcciry
and tcotigs to the center 3' of .M1.. This abelian algebra .'. -. L" ' ., t/ i is wcrv
larice but since E is compact it contains the algebra C) E) of contituous fincticns on F.
C( E) is generated cy th le i(ean field operators.

With C -= H)(A) -: C(E) we have 11..,A) C C C .A4.. The gradual construction of
tle algchra of operators M. dlepending on the state ,' itl Which the itfiiti sytem t is' will
al s o reflect itself itl the 'lyiautiics of the systeni. The polynomial Q' : Q- ml`, ... ,?.c i
,lepienls ocl lical operators ani determinizes the local Hatiiliotniati H- :) ATQ' which
is an extensive quantity). The local dynamics of a C AN is describecid bv the oi"

paratlliter groitp rA a = exp(tH.)aexp(-ctHd ). The tierniodviiamical lhiniit caIc
bc taken only if a suitable state is chiosCen and the GNS rrcrisentaticm is coinstrcucted.

t hat is: 7-s(II)(a)) := stop - litti 11.(7P"(11)). The mapping rcti ' ) (li,.'s not leave Ilu A)
invariant. But ext ensioi of r7 to tieati fields (iti geteral a noii trivial coti-tructionh
.- las to a nuormi -c'ctioll s aut otiirphisiii group coni tained in A.ttt( L'). T'h( algebra

C( E) gene'rated i th le meatn fields is then ritapted into itself [41. [51. [6].
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Finally if the stat,'- is invariant mui(br the group TQ the GNS-c onstrrcticon iii liei
a unitary one-parautier[r group on . (E. p_.). If 6Q is the generator of

we have the following result [71, [81.
Theorem: There i, a unique selfadjoint operazor on the GNS !fi[h,'rt aipar-, t11 -
D( Q -- H, quch that

1) r1ý(. A) =1 .4 *-'t""-, t C fl?, A C I. ,

2) AQ(4) = JIIt,.Al on D(tH-)) .4 E D(C(,
3) ,xp(itHfy) Q. -Q-, Vt E l? i.e. H9 iL = 0
4) D {AQL..4 c rl.(A) C(Ej} C D(H•) C R- L' a core of HQ.

5) For 'H-. -' Af(: .4 =a f. a E I.(.A') and f C C2(E) one hasq

y(.A1Qt) = 5 Q(.4 )Qj = ([H[%a.I• f)iQý + JQ- (O f) i..

T ,li. ouid t ermn il thlis- ' 1 u;,oio'' t, mic.al genern•tr of th(' tinme raian1ltion- it to,
theiS,.iig Iti(t ure .'ontaitis a Pois~on brioker. This "tructuIr gvo, b~ack to) t' .It,,T !II

commutator in N ("') as follows: Choos" an hlermitTian su1,-hasi. ji, 1• ', <'. al,., l

,'out aons ;dl relevant operattors for 11Q and , hich -onisttit tI- in hi. ftom 1: , I , }I 1,;i

for a Lie alvgebra G. The( ,Corre(sp)onding Lie group GA C SU(li a•ts via - , r -
,'. yi C G. in C. Choose ,o , t o01lV tine invariant blti also ( 1; ilvari:tnt witi I;

invariant central support E). Every G E E C 0,S" coi.titutt.s Oi1 ,'hI•CTIT X il tht' ,h:1)

9* of the Lie algebra 9 by the prescription x(a, := (;: •ax , . whic'h i inhrl,-'n-h.:
of A. and this shows E C j;*. For fy E C (E). the ,differenitial, iiif.-, Ill' i

rtan, E* = g . Thus one sets 151. [91

{ffg(x) := -[,Kf ,,,) . x E Ec- "

We have there the interesting situation that the (ltulritul tilic generator Contains a;, .
sical tine generator {Q. }. which is by Construction a self-aidjoint olperator iil L2 ( t, j.
Since according to the basic principles of quantum nechanics the ten,'erator IN i, ;In
(nergy observable., also its part with thle Poissoi braket shoilatI have ; physicalm Ia 'a; in.
It seenIs that in he field of maCroscopic quax it tIn I thenoi m[1a 1103. 11 i 4,'il ;r tr-, of
this type are crucial. On the other hand it contradicts completely the philosophy of the
quasi local adgebra [2,, even in its extension to weak closures.

For a theoretic,ad justification for extending the concept of a (Itiai t nitll obstrva 1 bh

to the Poisson brakect operators we want to employ the formalism iof geonietric (utanti
Zation [9, 112]. For simplicity let us a.ssumie that E is just one( orbit of tlie catdjiiit
representation of G in '*. Then the symplectic forma c belonging t( tihl' Poissu t1raket

is non -degenerate and (E . ) is a syniplec tiC manifold. If thle Coh iohiiougy cIa ss of 4 in
t1t(E- C') fulfills a certain integrality condition, then according to [91. [12] thelre exists a
quanturn manifold Y over E, that is a principal U(I) fiber bundle over E with, conitact
structure. Let us write V -z U.j,- T,, where T7, _ T -- U(I) is the oiti-diiieltsionial

---*1.i--• a aa•ma m im il | I I -
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torus for all x E E. The contact structure on Y is constituted by a certain C' one-form
a, the exterior derivative of which gives a.

In order to introduce quantum observables and quantum states one considers the
group of quantomorphisms Quant(Y) which consists of all diffeomorphisms of Y which
respect a and commute with the action of the torus on 1'. A one parametric subgroup
of Quant(Y) is by definition the action of IR on Y by quantomorphisms. One can
show that it is completely determined by a function Q E C'(E). Given such a Q we
denote the corresponding finite time symplectomorhism by t:? (acting on i-1) and the
quantomorphism by ýQ, (acting on 1"). The generator of the latter (a Coc-veclor field
on Y) is denoted by ZQ. One finds for their Lie braket

[ZQ, ZQ,] -= Z(QQ,),

(where we have set h = 1 in the formalism of [91, [121).

Now one can define a quantum state as a mapping F : Quant(F) -- C which
satisfies

(i) F(z) z, where z E T denotes here also its actiot, on Y';

(ii) F is positive definite on Quant(Y);

(iii) F is continuous.

Conditions (ii) and (iii) give rise to a unique probability measure p ou IR by the
Bochner formula

F(ctzQ) C 'S da(;).

Thus a gives the distribution of the ZQ-values in the state F.

We claim now, that the Poisson braket part of the generator of the linmiting mean
field dynamics is a quantum observable in the sense of Souriau. Since we have the
limiting dynamics strictly speaking only for polynomials Q C C¶(E), we restrict the
following to this case. (There are strong indications, that the mean field dynamics can
be introduced for arbitrary Q r C'(E), cf. [131 for certain analytic functions for Q.)

The transformed measure t, := 1i,, 0 ,;, is equivalent (observe: It, is faithful) to
It, with Radon-Nikodym derivative dpy/dp, =: D,. Now set

: = S , z Q j ( f o •- -, ) D I 1/ 2 f , , ( -

where f E C'(E), and zQ E T is independent of x C E Equation (*) gives rise

to a continuous family of unitary operators on Co tE- L L2 (E, p.), which has
a Poisson braket generator. The vector Q, is useot up to now as a state at most for
the algebr M_, the largest we have mentioned. Considering UQ as a GNS- (resp.

Kolmogorov-) representation of €p we have the Souriau state

F(ý) (f := V t 6 R, VQ 6 C- E)

Thus, by this ansatz we have a prescription how to extend , to the von Neumann
algebra created by A4 and all U,. To this the Poisson braket operators are affiliated.
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If E is the union of several G-orbits, then one has to perform interesting reduction
procedures to apply the above mentioned ideas. There may be some relationships to [141.
That in general a mean field dynamics in the previously described sense involves more
coordinates than is physically meaningful is illustrated for the BCS-model in terms of
the full CAR-algebra (instead of the pair algebra) in [15]. Such a reduction of variables
seems to be also essential for the theory of macroscopic quantum phenomena [11f.

References

[1) S. Sakai, "C*-Algebras and W*-Algebras", Springer, Berlin (1971)
[2] R. Haag, D. Kastler, "An Algebraic Approach to Quantum Field Theory", J. Math.

Phys. 5, 848 (1964)
[3] 0. Bratteli, D.W. Robinson, "Operator Algebras and Quantum Statistical Mechan-

ics I". Springer, New York (1979)
[4] E. Duffner, A. Rieckers, "On the global quantum dynamics of multi-lattice systems

with nonlinear classical effects", Z. Naturforsch. 43a, 521 (1988)

[5] P. Bona, "The dynamics of a class of quantum mean-field theories", J. Math. Phys.
29, 2223 (1988)

[6] Th. Unnerstall, "Phase spaces and dynamical descriptions of infinite mean-field
quantum systems", J. Math. Phys. 31, 680 (1990)

[7] Th. Unnerstall, "Dynamische Beschreibung und extensive physikalische Gr6flen
makroskopischer Quantensy.,teme mit Anwendung auf den Josephson-Kontakt",
Thesis, University of Tdbingen (1990)

[8] Th. Unnerstall, 'Generators for unitarily implemented dynamics of infinite mean-
field sy.stems ", Contribution to the International Conference on "Selected Topics in
Quantum Field Theory and Mathematical Physics" at the Liblice Castle, Prague,
Czechoslovakia, June 1989

[9] J.-M. Souriau, "Structures des systimes dynamiques", Dlinod, Paris (1970)
[10] H. Devoret et al., Macroscopic quantum mechanics experiments", Helvetica Phys.

Acta 61, 622 (1988)

[11] A. Rieckers, "Condensed Cooper pairs and macroscopic quantum phenomena", Lec-
ture given at the NATO Advanced Study Institute "Large-Scale Molecular Systems:
Quantum and Stochastic Aspects", Maratca (Italy), Mirz 1990, Proceedings ed.
by W. Gans, A. Blumen and A. Amann, Plenum Press

[12] J.-M. Souriau, "Interpretation geometrique des etats quantiques", Lecture Notes in
Math. 570, Springer, Berlin (1977)

[13] F. fBagarello, G. Morchio, "Dynamics of mean field .,pin models from basic result.,
in abstract differential equations", Preprint Universitit di Pisa (1991)

[14] G.G. Emch, "Geometric Quantization: Regular Representations and Modular Alge-
bras", Lecture at the XVIII International Colloquium on Group Theoretical Meth-
ods in Physics, Moscow (1990)

[15] T. Geriseh, R. Honegger, A. Rieckers, "Beyond the pair algebra for the BCS-model",
Preprint, Tiibingen (1991)



672

Quasi Averages for Mean Field Models
in Algebraic Quantum Statistical Theory
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1 Introduction
An important method in quantum statistical mechanics is the calculation of quasi
averages for the identification of condensation phenomena. Let us report shortly the
main ideas (see e.g. [1]): modify a given microscopic Hamiltonian H by a small (but
finite) perturbation ýh. Then calculate the thermodynamical limit of the equilibrium
states at temperature T and finally turn off the strength of the perturbation. The
resulting state is called a qnasi average (QA) in contrast to the regular arvrage
(RA). where the original Hamiltonian is not modified. In certain cases, namely if
phase transitions appear. QAs and the RAs differ from one another. In terms of
Bogoliubov. the state shows degeneracy. usually being connected with a symmetry
of the model.

We will imitate this procedure in the rigorous frame of operator algebraic quan-
tum statistical theory (see e.g. [2]). This clarifies many aspects of the above ex-
plained procedure: What is the meaning of the QA? What is the degeneracy? Which
states can be calculated as QA? What is the nature of the microscopic perturbation?

2 Mathematical Frame
The (--algebra A := ;,EN/3. with = M= (C), is used as obstrvablk -algfbra of the
quantum lattice system, with state space S(A):= {,v E A'I (: 11) = 1.,a positive).
Because only mean field models will be investigated, consider especially the set of
permnufation inrariant or homogfneous stats

SP(A) := {f E S(A) I -e = e o 0, .Va E P}

with the finite permutations P := UnEN,, and OE ',IEN xr, := C.ENx,(,) E A.
SP(A) is a Batu r simplfx with extremal boundary 0,SP(A) := {Ir, I ; E S(S)}
and (fl,: •ýEN.r,) := BIEN (,p Xr). V .KEN.r, E A. [3]. The frtrnoal decomposition
of ,. E SP(A) coincides with the cuitral dcoinposition into factorial states. The
c(ntral mfeasire( it, gives the classical probability for the occurrence of a purf phase
HI. if a physical system is prepared in the state w. The states He, lying in the
support of the central measure pi,, of a lirniting Gibbs statc o,) at inverse temper-
ature 3, are QAs in the above described context. The limiting Gibbs state is an
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w'-accumulation point of the sequence (4
")n6N with (H,),IEN being selfadjoint

elements in A, :=- 113 C A for each n E N, [4]. 1 is the usual Gibbs state
at inverse Temperature 3: tr(e- 3H,.)/tr(e-JH"). with tr as the usual trace on .
respectively the trace state on A.

As model class we specify the family of all microscopic Hamiltonians (Hn)fEN =
(nh,),EN. with h := (h,)nEN being a (selfadjoint) approximately symmetric se-
quence, abbreviated by §' respectively Y,, [5]. This can be considered as the largest
class of mean field models on A.

The reason is that these models possess the important property, that the mapping
J :' -- C(S(B),C), h -4 [j(h)](•p) := lira. (1,: h,), V,; E S(B) is well defined
and surjective (C(S(B).C) are the continuous functions on S(8)). By this, each
element in C(S(B).C) can be connected with a class of approximately symmetric
sequences. Furtheron. there is a minimal principle of the free energy density for
the limiting Gibbs states of the mean field model h: Erery limiting Gibbs state
minimizes the functional f(3. h..) : SP(A) - R, this means there is an element of
the Bauer--Sirapler S(3, h) := E S (A) I f(3, h, c) = f(3,h)} with f(3, h)
i n fIf (3, h. I ') E S P(A)} [4,. 5],

3 Symmetries and Limiting States
To discuss generalized QAs. we define internal symmetries on the set of approxi-
mately symmetric sequences. In the following. H is a closed (and therefore compact)
subgroup of the unitary operators in B. PH is the unique Haar measure on C(H. C).
There exists a canonical representation 0 of H as automorphisms on A:
9 : u -- 0. is defined by linear and continuous extension of

OX(_,.Nx,) := CiENAdUx, = E•NUXiU" V .IEN x, E A.•Vu E H.

Definition 3.1 A function f E C(S(3). R) is called inrariant with respect to H. if

fo(Adý)" = f forall u E H,

The following types of symmetries may occur in a general mean field model:

(i) H is a global internal symmetry of the system h E ý,, if j(h) is inrariant
uwith respect to H.

(ii) H is a strict internal symmetry of the system h E :',, if thert exists an no E N.
such that for all n > no holds: 0•h, = h,. Vu E H.

In terms of these definitions, we can formulate the main result:

Theorem 3.2 Choose an approximatly symmetric sequtnce h E s'a with the global
internal symmetry H. Then for all 1-I, E S(3. h). there txists a h' E :S. with H as
a strict internal syrnmdry and lim... ,Ih,, - h' 11 = 0 such that

3,h' :=_HdjtH(u)
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is the limiting Gibbs state of the system h'. The support of the central measure P•,'

is concentrated on the orbit OH(rl, ) := {FIAd-, Iu E H}.

PROOF:
We will give a sketch of the proof, for details see [5. 6]:

(i) For every model h E Y,, with global internal symmetry, there exists a model
b with this symmetry as a strict one and lim., 11h, - hl1, [6]. Note that
S(3, h) = S(3.h).

(ii) Choose Hl; E S(3. h) n 0dSP(A) = 0,S(3, h). Such a state exists, since S(f3, h)

is a Bauer-Simplex [4]. H is an global internal symmetry and therefore it
follows, that fH O0,H1;dIIH(u) E S(3, h) [4. Proposition 3.9].

(iii) Finally take a strict symmetric perturbation that prepares the limiting Gibbs
state fH , JldPH(u) E S(3. h). For this use the methods elaborated by
Raggio and Werner [5] and the constructions in [6]. The model h' is constructed
with the help of the principle of minimal free energy density for the limiting
Gibbs state and the separability of S(A). r

Corollary 3.3 Note, that Theor'im 3.2 is validforevery group H, which is a global
internal symmetry of the model h E Yý. especially for every subgroup of the a
"maximal global internal symmetry group' of h.

4 Conclusions
With the presented results, it is possible to calculate every pure phase state in the
central decomposition of a limiting Gibbs state (use Theorem 3.2. with H = {f11).
By the help of resymmetrization, more complicated limiting Gibbs states can be
calculated, namely all states. which can be decomposed with the Haar-measure of an
internal symmetry into pure phases. Corollary 3.3. This is relevant for models, with
S(,3, h). consisting of more than one orbit of pure phases with minimal free energy.
where in general no explicit information on the limiting Gibbs state is available [7].

In contrast to the original way of calculating QAs, the two limiting procedures
(thermodynamic limit and then the change to the zero value of the perturbation)
are now combined to one limit and the microscopic perturbations differ from these
ones, used by Bogoliubov. These are only technical questions. A detailed analysis
of the proof in [6] shows, that the limiting procedure can be decomposed into the
two original ones. Furtheron in special models all terms can be chosen explicitly as
magnetic fields or particle sources, etc. . The main aspects: Correct size and action of
the perturbation on the original system are fulfilled. In view of lim,,-. ih, - h'II =
0, the perturbation h, - h' can be considered as a purely microscopic one, which
leaves the thermodynamical density functionals of internal energy and free energy
density unchanged. An upper bound for the strength of a perturbation, which
changes the Limiting state in a non continuous manner, is given.
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The new definition of strict and global internal symmetries is an instrument to
classify a given system with respect to symmetries appearing on different levels of
the description. It is obvious that the influence from the microscopic model up to
macroscopic features strongly depends on the strict symmetry aspects. There ex-
ist model discussions with both types of internal symmetries and the consequences
on limiting Gibbs states, [8]. In this paper the influence of a bounded coupling
interaction between two BCS-superconductors is analyzed. In the uncoupled case,
the strict internal symmetry consists of the gauge transformations in the two su-
perconductors. In the coupled case, this is only a global internal symmetry. As
consequence the decomposition of the limiting Gibbs state becomes weighted over
the phase differences between the two superconductors, that allows to proof the
Josephson-relations for the coupled model.

Finally some interesting problems will be noted: Do elements h E Y3. exist, with
a global but not a strict internal symmetry H and a limiting Gibbs state a with
,; o .= w. Vu E H? This is connected with the search for elements h' E Y. with
arbitrary w E S(3, h) as limiting Gibbs state and limn._. 11h, - h'n0. = 0.
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States of a finite quantum system are considered also in a role of classical macroscopic

field. Quantum mechanics (QM) is reformulated and generalized in terms of a Poisson sys-

tem. It contains the nonlinear QM (NLQM) as well as the dynamics of mean-field theory

(MFT), and also the dynamics on submanifolds of coherent states as well as classical me-
chanics (CM). The double role of traditional states in QNM leads to possible interpretation

of the newly introduced nonlinear quantum ohservables: the operator representation of a

given observable can depend on classical macroscopic background of the microsystem. Two

types of quantum mixed states are distinguished to describe correlations with macroscopic

background. The mentioned models described in the sanke simple framework differ mutually

only by subsets of observables used for their description.

QM can be reformulated equivalently (1, 2] in terms of (infinite dimensional) clas-
sical Hamiltonian mechanics on the phase space P(7H) consisting of one-dimensional
complex subspaces x. y.... of the complex Hilbert space H. Linear operators X = X-

on h then correspond to the functions h.X-: x ý h.x(x):= Tr(Px-X) -= (IXhx) / (.r(r)

on P(1"H). where P, = P, (0 5 .r E x) is the orthogonal projection onto x. The Poisson
bracket is defined by

{hx-,hy}J(x) = i Tr (P.[X. 1-]) =: h,[.x,ý I(x).()

where [X,Y := XY - YX is the comnmutator. The Schr6dinger equation is then
equivalent to Hamilton equations corresponding to (1): If H is the Hamiltonian operator
of a QM system, then the evolution of the "observables" f =tx is described by the

Heisenberg-Hamilton (resp. von Neumann-Liouville) equations

dt

where h - h 11 , and ; - IHis the "Hamiltonian" (resp. "Poisson") flow on P(H)

corresponding to the unitary evolution t * exp(-itH)x of vectors x E H-. i.e. a one-
parameter group of transformations of P(?ý) conserving Poisson brackcts 4lhich caii
be determined from (2). This immediate rewriting of QM differs from an "ordinary

Hamiltonian CM" on P(R) by a specific restriction of the set Y(P(H)) of real-valued

differentiable functions used as "observables" and -'generators": QNI uses only those

f E Y'(P(H)) that have the form f _= h.-(X = X*). Let us call these h\ affine functions

(or also "Kihlerian functions". 11]): They can be considered as affine functions defined

on all convex combinations p :ý F \,P, E S. (:= the set of all normal states on C(H))
of the pure states P, E P(1-f). Other f will be called nonlinear functions on P(H). The
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"'equation of motion" for general f, h E F(P(H)) has the form (2). where the Poisson
bracket is the unique extension of (1) to generally nonlinear h. f E F(P(K)):

{hf}(x) := iTr(Px[dxhdxf]). (3)

The differential df is defined here in the Frbchet sense, cf. [2]. The formal transition
from QM to NLQNI consists (in our transcription) in the addition to atfine "generators"
of QM of also some nonlinear ones. Inclusion of any additional (nonlinear) symmetry
generatoi Q into this formulation of QM leads to a considerable extension of the theory.
The flow 4Q on P(9-t) does not conserve the "'transition probabilities", i.e. there is t E R
such that for ,:; Q one has

Tr (P.P.) 0 Tr (fPxPY). (4)

This is a consequence of the Wigner theorem: the conservation by ,:Q of I (xIy) I2 for all
x, y E 7H means that Q can be chosen as an affine function. The inequality (4) implies
that:
(i) Affine functions f are generally transformed into nonlinear functions ,;*f := f 0

.,; hence, the introduction of nonlinear generators requires also introduction of
nonlinear observables into the theory.

(ii) Transformation (under -) of density matrices p := 2j , depends on their (dif-
ferent possible) decompositions into extremal elements Px.,. We conclude from this
that one has to distinguish between probability measures p ui, o,' pircsent-
ing density matrices in the traditional QM), and the states described by density
matrices themselves: The former are called here genuine mixtures, and the later
are elementary mixtures; the genuine mixtures describe states of physical systems
corresponding to classical probability distributions of the "elementary quantum
states- (= density matrices), and can be interpreted as describing correlations of
the quantal system with a -'macroscopic background". (3, 2].

(iii) Distinction of the density matrices from their convex decompositions leads to neces-
sity of definition of evolutions (=- groups of symplectic transformations) of density
matrices which is independent of the evolution of elements x, P('H). The cor-
responding Poisson bracket on the set of real-valued functions f. h.... defined on
the set S. of all density matrices p is

(h.f})(p) := i Tr (p[dph, dpf] ). (5)

where dpf E £(7-) for "sufficiently nice" f.
Technical problems connected with manifold structure of S. and a definition of

Poisson flows on S. corresponding to (also unbounded and not everywhere defined)
nonlinear functions on S. are partly solved in [2]. Restrictions (or "projections") of
these flows to submanifolds of coherent states determined by group representations
U(G) lead to standard approximation schemes in QM, [4, 2]. e.g. to the time-dependent
Hartree-Fock approximation.

We propose an interpretation scheme of nonlinear functions f: S. -- R occuring
in the role of "observables", which is inspired by the specific formulation (3] of the
quantum NIFT. Interpretation of f is not specified uniquely by f itself: f can be vritten
in a form f(v) _ Tr(vf(F(v)), where t is a selfadjoint operator-v alued function on

--W A "lni U i i u HHimn| • i I i
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the dual Lie (G)* of the Lie algebra of a Lie group G, and the affine mapping F: S.(E
v) -- Lie (G)* is determined by a continuous unitary representation U(G) of G in X".
Hence, the observable is specified either by f, or by the function f: S. x V(P) - R,
(p;v) - j(p;v) := Tr(pI(F(v))). where D(F) C S. is a dense domain. The first
variable p is called the quantum variable, and the second one v is the classical variable.
The classical variable describes a state of an (possibly fictious) infinite ensemble of
equal quantal systems (with the correspondiug value F(v) of the classical selfconsistent
"mean-field" generated by them), whereas the quantum variable corresponds to the
actual value p of microscopic state, which can be for a single system different from v,
[3]. Hence the state of a microsystem is described not only by a genuine mixture p,
but also by a function / : S. --* S. describi ng what specific quantum state ý(v) is
"occupied" by the considered microsystem, provided the "classical state- (representing
the infinite ensemble) is v E S.. A simultaneous restriction of the theory to an orbit
of U(G), and to a set of scalar-valued observables f gXves C.1M on a ho,,ogeneous phase
space of G.

The expectation of f in the state ,;,,p described by a genuine mixture i, and the
".quantum state deviation" /3 is expressed by

,,,(f) -. ,,Af) := J (•• ,v) vp(dv). (6)

Time evolution, and other continuous groups of transformations of the observables
j (resp. of the states w, p can be canonically defined. (2].

The described scheme leads naturally in many cases, by a use of the group rep-
resentations 17(G), to reduction of solution of nonlinear Schr6dinger equations [5] to
solutions of classical finite dimensional ordinary differential equations. [2].
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In the Coulomb gauge the canonical field variables for the electro-magnetic field are
the vector potential A(x) and the transverse electric field fI(x) := -eo ET(z). They are
smeared by means of complex test functions f = fl + i f 2 E C c L2(A)® C', where E is
a pre-Hilbert space of complex 3-component functions localized in the cavity A C R3 .
The field operator is formally

,W() = [ Aj(x)fj'(x) + Ij(x)fj'(x)] d 3X

which leads to the Weyl operator W(f) = exp[it(f)]. The rigorous theory starts
with the canonical commutation relations in Weyl form:

w(f)*=W(-f), W(f)W(g)=exp[-' Im(flg)]W(f +g), f,gEE. (1)

The field algebra is the smallest (abstract) C*-algebra [1], which contains all Weyl
operators, and is denoted by W(C) [2]. As C*-algebra W(E) is uniquely given by (1)
and E. It is simple, has trivial center, is nuclear, and is anti-lirninary [3]. From the
last property it follows that W(E) has - beside the Fock representation, given by
the GNS-triple (IHF,?F,tF) over the bare vacuum state WF, which is in the Fock
space represented by the cyclic vector fIF -- over-countably many (quasi-) inequivalent
(irreducible) representations.

The states o (also the non-regular ones) are uniquely given by their characteristic
function

cW(y) := (,;W(f)), f E,

where the r.h.s. denotes the expectation of W(f) in the state p. Especially for the Fock
vacuum state WF holds CF(f) := (WF;W(f)) = exp [- f Ill, f E L. A state ]

is classical, if C•, = CFP•,, where P•, is positive definite over C [4] (and exhibits no
anti-bunching).

The starting point for a squeezing procedure (theoretically and experimentally)
is mostly a coherent laser state. Since to these states there is always attributed a
classical (not necessarily sharp) phase, we have to deal with non-Fock coherent states
[5), [6]. One finds in fact [7], that in the Dicke laser model with infinitely many atoms
(appropriate for a macroscopic radiating material) the state for the time asymptotic
quantized radiation is coherent (in the sense of the factorization condition of [81) but
not representable by a density operator in Fock-space. Replacing the coherence function
of (8] (into which the normally ordered expectations factorize) by an arbitrary linear
form L : E --- C we have the following recent result [6], [91:
1. Theorem: A first order coherent state w is non-Fock, iff its coherence function L is
unbounded (in the norm-topology of E). In this case its characteristic function has the
general form

C,•(f) =COF(f)jCexp [ y (zL(f) + L(f))1]df*(z)(2
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with a probability measure M on C, showing w to be classical (positive P-representation).
A non-Pock first order coherent state is second order coherent, iff it is nth-order

coherent for all n > 2, iff u in (2) is concentrated on the unit circle in C.

Since a coherent state with unbounded linear form L : C -* C has divergent ex-
pectation values of the (unrenormalized, Fock-) particle number operator, it describes
physically a situation with a macroscopic number of photons.

2. Proposition: Let w be a first order coherent state with unbounded L. Then its
GNS-triple consists of the representation Hilbert space Rt, = HF ® L 2(C, i), where 7 "F

is the Boson Fock-space over 911"l and jA is from (2); of the cyclic vector Q, = OF ® 1,
where OF is the Fock vacuum and I the (,u-integrable) function on C with constant value
1; and of the *-homomorphism R, : W(E) -- B(H,) defined by IL(W(f)) = WF(f) ®
Wci(f), f E S, where WF(f) is the Fock-Weyl operator and W 1(f) the multiplication
by the complex function z E C - exp[ •-(zL(f) + 7L(f))] in L2(C,Ip).

The associated von Neumann algebra is M., := rl,(W(C))8tp = B(?1F)®L'(C, p)
with center Z, L'(C, p). In Z. is the macroscopic phase operator E) given by the
function z .- i9(z) = Arg(z) in L'(C, j.). If u is quasi-ir,'"riant under phase rotation,
the gauge transformations of the first kind are unitarily implemented in W, with the
renormalized particle number operator N, = NF ® 11 + 11 ® -ý as self-adjoint generator.
It holds

[E),, N,•] cill. (3)

Since w in the foregoing Proposition is regular (in fact it is analytic) we have
n (wff)) - exp [iA•(f)] with the self-adjoint field operators 4,(f), f E E, satisfying

[,D(), b,(g) C i Im(flg) 1l. (4)

We obtain here from Proposition 2

'Zý(f) = 'F(f) 11 + 11 G 4ed(f)

where 4DI(f) is the multiplication by z E C - v2_ Re(zL(f)). The corresponding
annihilation operators are

a,(f) = ' ['D,(f) + i4'.(if)] aF(f) ® 11 + 11® adi(f) , (5)

with a,1(f) the multiplication by z E C " -L(f).
Let be J : -4 C an involution (which is anti-linear with J = J* = J- 1 ) and Cr its

fixed point-space. Then $•(f) and 4•(if) are canonically conjugate for f E Fr, with
11f = 1, in virtue of (4), and constitute the "quadrature components" of a,(f) by (5)
(cf. 1101 and references therein).

The field fluctuations are
(QýJlAt(f) QL) = 1 il2l2 + (llAtl (f)l)

where the first term of the r.h.s. are vacuum fluctuations for all f E E.
In order to squeeze w we consider the general Bogoliubov transformation yrT, based

on the real-linear symplectic transformation T :C E- E, i.e. lm(TfJTg) = Im(f1g),
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for all f,g E E. By definition we have rYT(W(f)) := W(Tf), f E E, which extends
to a *-automorphism of W(E) [21. The field fluctuations of the transformed state
W 0 IT may be calculated in terms of the old state with the transformed field operators
_YT(4(f)) := t'(Tf), f E E, and are given by

(924LA'b(Tf) .,•) = 4 j(Tf 112 + (I(Az2(Tf)l).

Observing the unique decomposition T = T1 + T2 into the (complex) linear and anti-
linear parts, T, resp. T2, we find the following necessary and sufficient conditions for T
to be symplectic

T7*T2 =T;T T2T1 - T2T . (6)

It holds
-TT(a.(f)) = a.(Tzf) + a,(T2f). (7)

3. Proposition: The Bogoliubov transformed macroscopic coherent state ,. 0 IT has
(at least) one mode f- E 9 with squeezed vacuum fluctuations j(Tf._ 11<2 ' If- 11',
iff T2 4 0 (•. T1 -4 0 by (6)), and this holds iff the transformed vacuum WF o IT ts

non-classical, that is, iff Pwpo..r(f) = exp(!((lf 12 - j(TI 1')] is not positive definite.

In [11] a multimode squeezing transformation is investigated, where the transformed
vacuum has infinitely many squeezed modes and is a special case of the above situation.
In this and other works [12] the counting statistics of squeezed photons are treated.
Strictly speaking only those field excitations can be counted, however, which behave
correctly under gauge transformations of the first kind, -y(W(f)) = W(e'*f), f E E,
t9 E [0,27r). Just if T2 4 0, (7) does not behave under -yo like an annihilation operator
and we have

IT 0 14 $ - 0 -YT

We, therefore, propose the improved squeezing transformation

YT(a'(f)) := aw(TTf) + e-2e0° a,(T2 f) , (8)

involving the macroscopic phase operator 0,. Only if the phase has a sharp value one
has the conventional case, in which, however, there is no renormalized particle number
operator N,, cf. (3). Just if N, exists (that is, if the phase fluctuates over all of [0.27r))
one has

YT 079 ----=-YO 
0
YT, V 0 E [0,27r)

and the squeezed photons have rearly a particle structure.
The transformation (8) has the analogous form as the gauge covariant Bogoliubov

transformation in the BCS-theory (cf. [131 and references therein), which was crucial
for charge conservation and the definition of the tunneling supercurrent. The term with
the doubled phase operator in the exponential corresponds there to the annihilation
operator of condensed Cooper pairs. From (5) and the definition of 0, we can see, that
it is also in our case the main part of the squared annihilation operator for the classical
(= phase correlated) photons. The coherent two-photon structure may here possibly be
connected with the two-photon structure of squeezed light.
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In any experimental realization of the squeezing transformation (cf., e.g. [14)) one
finds strong indications that the involved phase is in fact macroscopic in that it cou-
ples directly to macroscopic devices (and does not refer to the microscopic phase of a
one-photon wave function). Applying the dual transformation j, to w, the quantum
mechanical part constitutes the gauge covariantly squeezed vacuum. Since this trans-
formed vacuum is non-classical and coupled to a macroscopic phase one should here
look for macroscopic quantum phenomena in the realm of quantum optics [15), [161.
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QUANTIZED RADIATION FRO'M
COLLECTIVELY ORDERED ATOMS
REINHARD HONEGGER

Institut fur Theoretische Physik. Vniversitit Tiibingen. W-7-100 Tiibingen. F.R.(;.

1 Summary
For infinite mean-field quantunm lattice sYstems [1]. [21,[: coupled to the boson hield
by means of cocycle equations it is constructed a general class of global quantumn d,-
namics. In physical applications such systems are due to collectively ordered .- ee
atoms or the Josephson junction weakly' interacting with the elect romagnet ic field.
Restricting to the photons in the infinite timne limit (t -* D) for very general initial
states we obtain macroscopic classical states onl the C-elalgebra [4] associated
with the quantized radiation. in which one p~art ially refinds the collective ordering
of the atoms. In the special case of the Dicke model [5). [6]. [7). [8S] these photonl
states show quantum optical coherence of first (and higher) order [9). [10). [11). [121.

2 The dynamics
Let us first consider the mean-field system. As (--algebra we have the infinite tensor
product A = (&LM M,, denoting the m~ x ini-matrices. In the repre.enitation

nE IN
HI, associated with the foliun, $c, generated by the pernmutat ion invariant stales onl
A the limits m(xr) s fin) IHa (?1A(x) ) Of t he local mnean-field operators (A C IN.

MAW r. - x E: I\
1EA i-'th place

exist in the strong operator topolcogv. and the ni(x). .r C M, are, elementws ('f the
center 3. of the v-on Neumann algebra .", :=1, (A)". There exilt a project ion1

valued measure 6. IR-'2  , 2,, with supp(C, ) =:' , ', being convex, such that
S-fE ý(xr) dE ( .r) defines a *-isornorphism from the continuons funct ions C(/-.,)

onto the C*-subalgebra A' of Z. generatedl by f{rnt.r) I.r E 1Mmý ).
For each polynomial Q ý-Q(niA ) in thle local inean- field operators mn x ). x.

lNm. there exists a limiting dynamics n? . lmeI 5 G"'' e-fiAýQI ") onil

It is oQ(AK) = A' 0 E IT? and the restriction nQ[t- is given wit hin the isonmur-phy
A' ý- C(Ea) by a classical flow ;Q on the classical phase space E_. For literature.
see [1[. [2]. [3].

The boson system is described by the Wevi algebra W(EF) [131 over the one-bwosot
testfunct ion space E. and somne quasi-free d'ynamlics. , i.) Ve 1 f Vf Cý r.
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W(f), f - E, denoting the Weyl operators and S the one-boson hamiltonian. Let be
r a locally convex topology on E. stronger than the scalar product such that e"' is r-

continuous, and denote by H16 the representation of W(E) associated with the folium

.Fb of the T-continuous states on W(E). H1(1'V(E))" =: Mb, llb(W(f)) =: W4(f).
By continuity RVb(g) E Mb is also well-defined for g in the r-completion T- of E.

According to hamiltonians of the form

AH A ;, Vb + 1 , 2Gb + +(j&(x)d,"(x) :-: a(Qk)+jOkHk=

the dynamics of the interacting systems, which we study here, in the representation
H17 G fib of A S' W(E) is given by

7"'(Z) = Q( t) (o: 2itS)(Z) Q(,,) VZ E Mý. Mb Vt E IR

with the spectral integral Q('t•) :=f, 11 fl, M'('t(x))d($,(x) 116) E Z,' _Mb.
where

x) jeAS 6(e's ) dA E Vtt IR Vx E E,. (1)

and the coupling function o(x) = v'- L W(x)Ok Vx c E., where k E C(E.) and
k=1

6k E r. The function (t, x) ý- yt(x) satisfies the cocVcle equations

t:',+((x) = t'(x) + e'Ss 4'r(;Qx) V.r c Ea Vs. t E IR.

and (1) denotes some solution.

In the Schr6dinger picture the dynamics is given by affine bijections t1,; on the

folium F. 72 Fb of Hl, 2: l1b-normal states on A .. ( W'(E) satisfying

(v"'(,,); Z) = (.a; rt"(Z)) V,.' E F, 6 Y' VZ E .to 77. .

3 Time asymptotic boson star s

If '046 denotes the restriction of the state ,) from A x- V(E) to W( E), (ý,'b : 1)

(W i HA '3 Y) VY E W(E), in the present section we investigate the existence of time
asymptotic states lim v1"(,:)Jb for some ;' E Y, 2' Fb.

Assume S to have pure absolutely continuous spectrum and the existence of the

limits lim •(z _,(x) f) =: L,(f) uniformly in x E E, for ea( f E E. Clearly

the L 1 : E i' are linear forms. which in general may be unbounded with respect
to the norm on E. Assume ,; E Fb fulfilling the asymptotic product property

tlim (,;: W(etSf + g)) = ('0 :1'if))P(; H'(q)) VfJ q E E. and denote by F6, the

smallest subfolium of )b containing • (GNS-folium associated with ,;: , is a so-called
"S- abelian state [131).
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Under the previous circumstances for every c E FT Y- exists time asymptotic
states Rt(d') n W(E). t E IR.

11'w l(f)) = (,7; Wff)) j.expf iV'2 Re(L,(f))} dl(W; E. 0 %ý_(x) l~b))

for all f E E. in the sense of weak'-lim(v(,'a)Ib - Rt(,.,)) = 0 V,.7 E F Y;. The

macroscopic ordering of the mean-field system, which is expressed by the classical
phase space E0. the flow ,t). and by the statistics of the initial state '; 2 Y"J .
one partially refinds in the formula of Rt(,,). that is in the emitted boson field
(radiation). more exactly, by means of their central decomposition.

Obviously. by definition we have v;t(W:)Ib E .Fg Vw E .77 Y'. But the limiting
states Rt(,w) may leave the folium T'7.

Taking for ; E Fb the Fock state ;F- (-;: I(f)) = exp{- 11f J2} Vf E E. all
the time asymptotic states Rt(,.,) are classical.

4 The Dicke model

The Dicke model consists of a system of (infinite) two-level atomis interacting with
the radiation field. As (''-algebra one has A .- EýL\12. that is n = 2. where
a1 2 is the observable algebra of a single two-level atom. It is assumed level-splitting
e > 0 for each atom. E. is given by Ix E JR' I ýJa'l < 1)}. the polynomial Q is linear.

and the flow ,,Q is the rotation around the .r3-axis with phase-velocity y.
Regarding only one direction of polarization the testfunction space E is choosen

to be a suitable dense subspace of L2(IR3 ). The one-photon hamiltonian S := V!--
with the usual Laplacian ,\ on IR3. Because at time t = 0 there should be only a
few photons we work with the folium s'f associated with the Fock state pF.

The time asymptotic states for e E .Fý . )T,F are given by integrals over the
complex plane 4I', the projection of E, onto the {.r,. X 2}-plane of IR3 .

(Rt(W): 1(f) 4 = e-1111 2 ' exp{iv'22 Re(zG(f))} dp,, 0 () Vf E E,

where G : E - IV is a fixed linear form which in terms of the Fourier transformation
f * f on L2(1R3 ) is expressed by

G(f) =~ 61I~eo(k) f(k) (1.1k) - pv.. oI!Affl-) d3k.

Here 01 (k), Ot E L2(1R3 ). denotes the coupling constant of each two-level atom
to the mode k E 1R3 of the radiation field. The first summand of G represents
the resonance (Ilkil = &) between the photon field and the two levels of each atom
(remember the level-splitting I). whereas the second one picks up in the surrounding
of the resonant modes. The time asymptotic states here show macroscopic quantum
optical coherence.
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Quantization on the Gauge Orbit Space
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Abstract

We propose a programme for quantization on the gauge orbit space and
apply it to a nonabelian Higgs model as well as to an SU(3) - gauge model
with Weyl fermions.

1 The gauge fixing problem

In 1977 Gribov [1] observed that the Coulomb gauge fixing does not make sense
globally: Denote by C the affine space of gauge potentials (configuration space). by
G the group of local gauge transformations and by N = CIG the gauge orbit space.
Consider the subspace S, defined by the Coulomb (background) gauge condition

D() (A - -40) = 0

with D" (A) denoting the co - covariant derivative with respect to a fixed background

gauge potential A. It turns out that the orbit of G through .4 intersects S in general
several times (Gribov ambiguity) - showing that N cannot be parametrized by gauge
potentials fulfilling (1) globally. In 1978 Singer [2] showed that in some cases there
does not exist any (global) gauge. e.g. for pure SU(n) - gauge models on S4 . This
is due to the nontrivial topological nature of the fibration C -- N. or - more
precisely - of the principal fibre bundle C' -- C0-/1e, (G = G/centfr(G), with
C". denoting the (dense) subset of irreducible gauge potentials. The gauge orbit
space is a complicated stratified set with the generic stratum given by the above
principal bundle. For basic mathematical investigations concerning these structures
we refer to [3].

"On leave of absence from: Sektion Physik. Univ. Leipzig, Augustusplatz 10/11, 7010 Leipzig
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At one hand Gribov's observation stimulated interesting mathematical investiga-
tions, on the other hand there were attempts to circumvent this problem, see [4] and
references therein. The basic strategy of these papers was to restrict the functional
integration to gauge potentials lying within the Gribov horizon So C S,

So, =fA ES:- (D- A (q} , (2)

(with -D* (q) D (A) denoting the Faddeev - Popov operator). Unfortunately, until
now all attempts to make this idea rigorous failed. Finally, we note that also simple
algebraic gauges, like the axial gauge, do not solve the problem [5].

We conclude that one should define the functional integral (or any other quanti-
zation procedure) on the gauge orbit space. This way we were led to formulate the
following programme:

1. Parametrization of N in terms of gauge invariant quantities.

2. Formulation of field dynamics in terms of invariants.

3. Calculation of the functional measure on N.

4. Regularization of the functional integral on the lattice.

(In a final step one would like to construct the continuum theory rigorously - an
extraordinarily difficult problem, which we have not even touched.)

Before passing to a discussion of examples we must underline that N has cone
- like singularities [6] - due to the existence of non - generic strata. Recent inves-
tigations on finite dimensional models simulating this situation [7] show that those
singularities might play an important role in the functional integral. Nevertheless.
for the time being, we neglect them in our considerations.

2 A nonabelian Higgs model

We consider the theory of an SU(2) gauge field A interacting with a matter field
ýI in the adjoint representation on Minkowski space M, described by the following
classical Lagrangian

L = -V (11401 2) + D,4'DP1DI - IF2•Fý, (3)

with DPO and Fa, denoting the covariant derivative of 1) and the curvature of A
respectively.

One can show (8] that every equivalence class [(A, 1))] of generic configurations
of this model is in 1-I correspondence with a set of invariants (R. r. v. [XI; h), where
R and r are R+-valued, v is a R-valued covector field, [\J is a Z2-class of SL(2,C)-
valued fields and h is a magnetic vortex current. The fields v. [N] and h have to fulfill
certain topological compatibility conditions. For a deeper discussion of geometrical

p
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and topological aspects we refer to [9] and further references therein. We see that
a hydrodynamical picture of field matter emerges; for the abelian Higgs model this
was discussed earlier [10]. Also one can show that the magnetic vortex current fulfils

dh = k , (4)

with k denoting the magnetic monopole current, see [111. We conclude that the
magneti( monopoles contained in this model are confined by magnetic vortices -
showing an interesting relation to ideas of 't Hooft and Mandelstam [12] concerning
the solution of the quark confinement problem.

To formulate field dynamics in terms of the above invariants in ar. elegant way.
we use the vector space isomorphism of the exterior algebra and the Clifford algebra

i: AMic - Cliff (M1C) . (5)

For 1- and 2-forms we have i (adx") = o. I", i (13.dx"Ad'). = .[V• 13,
with (I") - Dirac matrices. The first term in (3) takes the form

Li V(R2) (6)

for the second term we get

L 2 = ! Ri"R + g2 R2 r2Tr{i(,)ix} (7)

and for the last term we obtain

L3 = -Tr (G,) + -Tr (WW) (8)

with

G = G=i(dt+h)+ igrg[i(\,ix1

W, = I [ii(dr).i(k)] +,rDj(X)

1D,. = -(09"+ 1,g "4)b"-
2

In the above formulae g denotes the gauge coupling constant.
Concerning point 3. of the programme mentioned in section 1. we start with the

(formal) measure

dit = l1d4fl'IdA . (9)

One can show [8] that for topologically trivial configurations dp naturally decom-
poses into

dp•= dp. de . (10)

with
dj = J1-R'dR 1r 7 drf ldi,'fdv() . (11)
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Here do denotes the measure on the group of local gauge transformations and
dv (,k) the Haar measure on SL(2.C). Thus. dji is the (formal) measure on the gauge
orbit space of topologically trivial configurations. Finally. one has to incorporate
topologically nontrivial configurations. For that purpose one needs a measure dh on
the space of magnetic vortex currents. Such a measure was proposed in [13].

Now we can write down the (formal) generating functional on the gauge orbit
space

F JdP (R, ,v,[,,,))dh xp ýi fJL(R. v x]x; h)} (12)

One possibility to make this expression rigorous consists in approximating it on a
lattice. For attempts to realize point 4. of the above programme we refer to [141
and further references therein.

3 An SU(3)-model with Weyl fermions
We consider the theory of an SU(3)-gauge potential A interacting with a triplet 14s of
Weyl spinors in the fundamental representation of SU(3). described by the following
"classical" Lagrangian:

1 ''Tr' F") . (3
L = 2Imr (a`" 1D ). IV ) _ (F,-- (13)

We denote the natural Hermitean metric on C3 by (gAB). A. B = 1,2,3. and use the
two-component spinor language, in which V / = ") .K = 1. 2. A 1.2,3. The
following considerations are valid for arbitrary (curved) space time M. In that case
the covariant derivative D,41 is g: by

D, aI- , i, - L+ + i A,,B•BA-k (14)K k A A Lu .A B I¢

with (";, L) denoting the spin connection on M. The following quantities are ob-
viously gauge invariant:

j'L - i- ga4B , (15)

a, -l (B" IL K. (16)

with

B,, RL (DV) gABip4 (17)

K 1 ABC (D1,K': jpL (is)
2LM A B c

We observe that jkL and a, IL describe matter of mesonic and V, . of barionic
type. We have

B kL j + i . (19)

-' -nan imiilmil I I -2
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Moreover, we define
1 _ k _kL (20)
2and notice that j. = lkL~a

aJ (ac)kL, O, - Pauli matrices, belongs to the forward light
cone, (because we deal with Weyl spinors).

Generically, we have VI" (x) 5 0 and %p2 (x) $ 0 for all x E M. Still there are
special configurations such that both C3 -vectors are proportional to each other.
Generically, this happens on a set f1 of isolated points. We denote Mo -- \ Fl and
notice that J > 0 on M0 .
Theorem:
Every class of gauge equivalent generic configurations [(A. lp)] is in 1-1 correspon-
dence with a triple (j, a. V).
Sketch of the proof:
First we show that there exists a continuous gauge on AL) such that

%P =0. (21)

Due to the decomposition C 3 \ {0}= R+ x S'. the vectors AD'4 (x) and V (x) define
two points V (x) and V (x) on S' • SU(3)/SU(2). Since SU(3) acts transitively
on S5 , we can gauge 41' in such a way that it coincides with the first element of
the canonical basis (CA) in C 3. The stabilizer of the new ý' is equal to SU(2)
and acts freely on the orbit S 3 through 'P2 . The orbit intersects with the C2 -
subspace E spanned by el and c2 at two points. There is, therefore, an SU(2)-gauge
transformation, which does not move'P' and sends 'P2 into E.

Obviously, T fulfilling (21) can be represented by a complex 2 x 2-matrix 'P.
with det 'P 0 0 for all x e Mo, and SU(3)-gauge transformations are restricted to
the subgroup

Hdetg0 :g E U(2)} (22)H= 0, (det g)- --I

The polar decomposition of GL(2.C) gives

'=u.p, (23)

with u E U (2) and p being positive Hermitean. Obviously, we can "gauge away- u.
Finally, a simple calculation shows that there exists an SL(2.C)-(spin) gauge such
that p can be represented by-ip = Vil1 .(24)

Summarizing, we have shown that there exist SU(3)- and SL(2,C)-gauge transfor-
mations such that ' can be represented as follows:

A J( 1, 0, 0)
T -- v ,1(,l0) (25)
'P = 0.
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In this gauge we get (tor simplicity, for the case of flat space time):

jAL = j(uo)h'L

a, ,L = -JAA LK (26)

V, K = iJ 2 AK
with A, Lk" = ýL A A BD --I•

w L B " Formulae (25) and (26) show that given (j.a, V), a

representative (A., T) - and. consequently, the class [(A. 'P)] - can be reconstructed.

Next we have to calculate the Lagrangian in terms of invariants. Using
FPAB =[D, DA I gAB (27)

and a decomposition property of the Hermitean metric,

2J
2

9AB = \AB + YAB (28)

withI' k.B =XA`XB
XA = 7-2 KL CA BC

1AB =2A jkLB

we obtain the following result:

I ImTr (a"(D13IJ) t) (29)

Jd Tr (FAFA') (30)

GL N.* rAL /p, A ,- jL .VC' -, JL JKI -"- X,G) , -L WM •'~ I ;" .

with
I . L i! -- L ,

K j2 KL -2 L+ 1 ' jAIN

GAP = D1 Vm BPI2M I' l- 2 B[ BBt,,L = j2 1,LD[A V) _2 toI . +-1 1'. J'1 '[ -

Using (19) this result can be rewritten in terms of (j, a. V).
It turns out that invariant quantities (15) - (18) can be defined for the case.

when the q(K are treated as anticommuting variables. However, a complete descrip-
tion of the (Berezin) functional integral in terms of those quantities is still under
investigation.
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Constant Yang-Mills Potentials

R. Schimmning . E. Mundt
Fachr~chtung )datleienatik

Ernst- Mori tz- Arndt- Universi t&i
0 2200 GreifSwald , Germany

Big classes of solutions A, = ,.)of the Yang-Mills equations

D'0j= 0. F_, = dAy- 19A,+ LAK

are distinguished I)\ cond(itionIs Of se,(lfdualit\- (inW5t alitons.monopoles.dyvons.. .. e x-
ternial svinnietrv (sphericalhcyliiidrical..vos~inietry) or constancy (constant or co-_
variantl IConst ant potentijal Or field strength). Let us (discuss Yanig-Mills potentials
A4=: 0~~ with const ant coniponent s A,~, iii soini gauge and choice of (oordilnates.
The partial differential equations 1)~ 1I.3 0 collapse to the purely algebraic equa-
t ions

[A". [.4, A,[] = 0.()

Here cr..........1.2 ....n are tensor indices with respect to a vector space E. t he
A,, are elemients of somie Lie algebra L. atnd [ . I denotes the coniunutiator in L.
The external space or slpa(etini, /-, is equiipped withl a Euclidliani or Mlink-owskialn
scalar product resp~ectively. which is described by const aiit coniponenits g,,. of a
metric g. G;reek Ind~ices are lowered or raised by mieans of the niat rices ( )or
(g"') :=(gj~)- respectively' . -1lhere is an alternative represenition inl termis of tensor

indices i. j....=1. 2...... Vwith1 respect to the st ructunre constanit s c k of L. and
1-formis a' on E as the coin ponieit s of 1:

~~ k- a'=0. f = ( A a-'. (2)

where A denotes the Outer ,i,' :iir' i,' di si.1 / the ininer p~roduct ofdif-
etitial formls on E wit Ii respect t o g. 'Fie probleliii ( I). (2) look-, simiple. but it is
unsolved as yet, that nieans a cliaracterizatoion of its general solnit ion is not kniown'.
All one can (10 Is' to restrict to syecial classes of Lie algebras. Thie following negative
result has been shown ili [11:
Theoremn 1. A constanit Yang-Mills potential on a Euclidlian or M inkowski space
with values in a conipact Lie algebra is flat, 1. v. gainge-equivaletit to t lie Zero po-
tenitial.
If, for physical reasons. Only coimltpact Lie algebras are accepted for Yang-\hills thle
ory. thban we are done. Bumt t here are, nmatlienilat ical reasonls [I] to discuiss other
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t~j's oif hie algeI a ras too. I lie lollwilig posýit ie resultI I ea >% to show
Theorem 2. A mIi- Alliari nilpiotent hie Algeb~ra -'Irmt, iioii-flat cofiltati Yaiig

Next we noute souitie >t rijt iral I lienrelills:

Theorem 3. Let L - I1. (B 11 be the direct slimr of Lhe algebra> , L uý 1, ud14 letI
lie 1. ol)Ot flt aI .1 Al & 1! lbe ('orr('sputidiiglv'1 (l('( itilp(Thi'il iii all Lj putentita~l

Alf anid all l.,-potetit ial .11,. ['lie Yaiig-\lill.> equal'Iou frw .1 1, litivaleiit to fille
Sepiarate Yalig- Mill" vqiiat iiifor <I,0 A/aod .111.
'Theorem 4. Let L. = L., 0 1,11b Ili(th setilidirtetI slifti of all idecal L, atid a hieu
algebira L11 and let A1 4 , (D Itnleorsiiiiil euipsi.[i ~ig Mill
equiat ion for .1 implies that for .1.

Theorem 5. If a Lie smibaghwrai .11 of 1. adiliiit a 1100l flat coflistalit Yatig-N\hilk

plnelit ial lien so does, L
Ilii fact, Ilevorein 2 describhes a ;ubcsa", of' tileorei) 7), becaulse eOerS itol Alihiati
niilpoteiit lie algebra contiains tiel :ti-diitieiis;ioiial llei~ellierg algebra H13 A, a> aIb
alIgebras.
O)wiiig to t lie ;)teeediuig thleoremis. low-diiiieiisioiial lie algfi~ra, 1. alle it, lhe dhi'( li-~er
11(1101ivelY With Ireispect to t hiri ditiieiisioti A. G . Ml. uhaiiaakiý;mio\ [2i ,lassifietl

all isotiorpliv tylc', of real Lie aklgebras ilp tli filie diiierisiori 5i. Followitig himt. Iliet

rostaliou for a Lie algebra iS L'J w\-)ill) Ilealis t ie At iiit1111iiislrealet
of dimuetisioti N\. Ivetit oil 1ll)VPrCiriptIs1 h...t .aiid for 1i cW i iltiiat1oll 1iatatii('t ti oil

Which t lie Lie algebra delei~l. ['lie set of .N diiiieitsiouial Lie. aluebra' bit A

defcomposes i~fta five laeswith Iiespect to flie prubvllet of i 21:

l. ecomuposable lie algeira>. I liest( c all be let asýide be( at"'( for fteil'] thle Yanig
Mills equlationis are reduced ito d~iitiiisioi sm>iallet liatil A.

2. Non-dlecomuposslle Lie algehiras for sliil is esery\ Coistarit Yatig-M\illk Jot eTl

fisi is trivial:

3 . Noii-decornposable rinlpotert Lie algebira., Mlicli admuit jioulflat 'Vaiiut,-NMills po-

tent isIs accordinrg to t lieureti 2:

4. Nori-decoriiposabl('lo tIti-ldipit ett hie algebras, 1. adittit I tug- af raio-flat cotistanti

Y'aiig-\hills lioteunfial w~ith Iis iesli a muit tivial siubslgefbra .1! of L,:

J,' W, LP , p 1,p( 0). L" p L'', 1 ,1 L L
'5.4' '.,2 L .i~' 1, .2. 5.25 1*.A' i lie 5ii 1 2 'i ii S.'2,k'i

5. Notne of filie aboive: *r*
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Z A tt'4i t, 11 a 2 - ' f I A t- 41 t I Vs f

(li1- 2.
ct\ lassical lie ttlgtlifas .'()j N) oi ./ A. H) Io Ilit- p-6,1i1 oil iltt)4otta! glotip >Y"I A

or Ilthe sp'cial liucar gitt hif 'L N. HI "t'mlo'l jvt itppear it or liw' t A 0

References

11) k.S h m iizA c i m ~i iiii t m (Bl;)2 . - '\

i 1 ilrkaoI.VNi 4AZvd a.3.11 19:3)0



698

PHASE SPACE STRUCTURE IN GAUGE
THEORIES AND QUANTUM DYNAMICS

Sergei V. SHABANOV

Laboratory of Theoretical Physics. Joint Institute for Nuclear
Research. Head Post Office. P.O.Bor 79. Moscow. USSR

Abstract

A phase space (PS) structure in minisuperspace cosmological models with
gauge fields is investigated. It is shown for the S0( n). n > 3, gauge group that
the physical PS differs from an ordinary plane. It is argued that the wormhole
size quantization should change due to a non-trivial physical PS structure of
gauge fields. Some physical consequences of the found phenomenon are briefly
reviewed.

1. It is well-known that the main feature of gauge theories is the existence of
the first-class constraints [11, i.e. some relations between canonical coordinates q'
and momenta p,, i = 1,2,. .n. ,;,(q. p) = 0, which have to be valid during evolution
and satisfy the following conditions {;•. ;b} ('£, where } means the Poisson
brackets.

Let the total phase space (PS) of a first-class constrained system be an even-
dimensional Euclidean space R 2 '. For constrained systems, a physical trajectort'
q' = q'(t), p, = p,(t) must liecon a manifold in R2" determine([ by the equations .,, =
0. However. the surface of the first-class constraints does not form a physical PS
because solutions of both H{amiltonian equations of motion and constraints depend
on the gauge arbitrariness [1). Indeed. due to the equalities __, = 0. we may add to
a Hamiltonian H a linear combina t ion of constraints. i.e.. change tt in liamillonian
equations of motion by the gvne,"iz,,,d Hlamiltonian H

1
E =IH + .X -. where A, are

arbitrary functions of time nw il herefore. solutions q'(t). pkt) depend on these
functions. Variations of V,, mean a gauge t ransformat ion of the solut ion because tile
first-class const rai ntis are genera iors of gauge t ransforntat ions; '[ i . p, - P, +p, q'

q + 6q', bq' = ,. q } . analogously for ýp,. where ,,, are infinitesimal arbit rary
finctions of time. So. a choice of a concrete form of .\, is eqi:tvalent to gauge

fixing.
Points of the total PS connected 1) a gauge transforiatlion correspond to the

same physical state. By definition there should be a one-to-one correspondence

between physical states of a systent and points of a physical PS. Thus. in order to

determine a physical PS in a first-class constrained system. one should identify all

points connected by gauge transformations ont the surface of constraints ,;, = 0.

It turns out that many gauge theories including the Yang-Mills ones have a

non-trivial structure of the physical PS. i.e. it is not an even-dimentsional Euclideaan

space [2]-[4]. Below we demonstrate this using as arn example the so-called Einstein-
Yang-Mills ministperspace models and briefly discilss some dynamical conseqtences

of this phenomenon.
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2. Dynamical variables in the Einstein-Yang-Mills system are gauge potentials

A.(x) and a metric tensor g,ý(x). This system is rather difficult by itself. Following.
however. Ref.[5] one may introduce a set of simplifying assumptions and consider
closed cosmologies with an ROS3 topology. In this case gauge fields on homogeneous
space are described by the SO(4)-invariant ansatz [6]-[8]. The reduced system
(the minisuperspace model) contains only a finite number of degrees of freedomcorresponding to gravitational and gauge fields. Namely, gauge fields with the SO(n)

group, n > 3, are described by a scalar X = ),(t) E R, a vector x = x(t) E R', I =
n - 3, and a real antisymmetric 1 x I matrix y = y(t), i.e. y = yaT', ya E R, Ta
are generators of SO(1), so that the effective minisuperspace action of the Einstein-
Yang-Mills system reads [81,[9]

t2

1 (e) 2 + P 2 - A2o 4 +( x)+(-D ) 2  (1
21 P I- A

tj

where N - N(t) and p = g(t) describe gravitational degrees of freedom; DA =t + y
is the covariant derivative, A2 = const (it goes from the cosmological term); V =
V(,, x 2) is a potential induced by self-interaction of the Yang-Mills fields, its explicit
form is not essential for what follows.

The action (1) is invariant under two local groups. the reparametrizaton one

t - -- t ' ( t ) , A 7 ( t ) - -, . ' ) --t ( 2 )
dt'

and the S0(1) gauge group, under which only variables x and y transform as follows

x -+ Qx, y .QyQT + QjT. (3)

where Q = expwTa E T0(1). Ftt QTf = 1 and a, =,a(t) are arbitrary
functions of time; other variables remain unchanged.

Varying the action S with respect to the velocities A cyop.x and *, we find
canonical momenta PN, P., Pp, p and p., respectively, and then the canonical Hamil-
tonian

N 2 2+A 201 + 2 N(4
H = F p _ 0+ + p + 2V - = [HD ya (4)

"where ,a = pTa x. Due to two local symmetries of S (2) and (3), the system has
the primary constraints [1] PN = Pa = 0 (S is independent of Ný and ya) and the
secondary ones [1] which are equivalent to the following

HwD) = 0, (5)
0" 0. (6)

All the constraints are the first-class ones. As a consequence, the Hamiltonian
vanishes, which is always the case for systems with a reparametrization symmetry.
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Eq.(5) is the classical Wheeler-DeWitt equation for the minisuperspace model.

The constraints (6) generate the SO(1) gauge transformations of the canonically
conjugated variables x and p. However, not all of them are independent. The
number of independent constraints is 1 - 1 since any vector in R1 has a stationary
subgroup SO(I- 1).S 3 . Consider now the physical PS structure of gauge field degrees of freedom.
Obviously, the total PS of these variables consists of points (x, p) E R"' and (X, p_,) E
R2 ( we ignore the pure unphysical degrees of freedom (y,,p, = 0)). The physical
PS is a subspace of the total PS picked out by the constraints 0', = 0 and an
identification of all points connected by gauge transformations on the surface of the
constraints.

Variables X and p, are gauge-invariant therefore their PS is a usual plane, R 2 .
The general solution of Eq.(8) is p = ýx where a function of time ý is determined by
dynamics (by the potential V). This solution means that only radial excitations are
admissible. Further, one may always direct a vector x along one of the coordinate
axes with the help a gauge transformation (the unitary gauge), for example, we put
Xi = tbix. As a consequence, pi = b5ilp, p = ýx. However, this is not the end. There
remain residual gauge transformations forming the Z 2 gauge group with the help of
which one may change the sign of x : x --+ ±x (the gauge rotations through the
angle 7r).

The residual gauge group cannot decrease a number of physical degrees of free-
dom, but it reduces their PS. Indeed, the sign of p should change simultaneously
with that of x due to the equality p = 4x. Hence the points (x,p) and (-x, -p) on
the phase plane R 2 are gauge equivalent and should be identified. The phase plane
turns into a cone unfoldable into a half-plane that is just the physical PS because
the gauge arbitrariness is exhausted.

4. The PS structure modification leads to some dynamical consequences in
classical and quantum theories. In particular, periods of periodic motion depend on
the PS structure, which is easy to see in our model.

It was shown in Ref.[9] that in the unitary gauge xi = 6 ilx there exist periodic
solutions x(r/), o(q) and X(9/) with periods T,, T, and T,, respectively. If we inter-
pret the solution p(q) as a wormhole connecting two points in the same space, the
gauge fields should be the same at both the sides. Since X(iq) and x(q) are periodic,
the period T, (the time between two e-maxima) should be an integer multiple of
their periods [61, i.e. T, = nT, = mT, where n and rn are numbers. The last relation
leads to the exponential quantization of a wormhole size 161,19].

However, the PS of x is a cone unfoldable into a half-plane. It means that for
x = x(r/) oscillating around x = 0 [41, the physical period is T'h = T,/2 because
points x < 0 are gauge equivalent to points x > 0; T.Ph is the time during which the
system returns to an initial physical state. Therefore the real quantization rule of
wormholes reads

T, = nT, = mTph = T. (7)

2
As a consequence, the quantization of the wormhole size is also modified.
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For theories with an arbitrary gauge group, periods of oscillating physical de-
grees of freedom are defined by powers of the independent Casimir operators for
a given representation because the residual gauge group identifying some points in
a physical PS is the Weyl group [3],[4]. As a consequence, the physical PS struc-
ture influences directly the WKB-quantization method since frequencies of periodic
motion determine quantum energy levels in this case [31,[4],[10].

In quantum theory, the path integral approach for an evolution operator kernel
depends on the PS structure [3],[4],[1 1], which leads to modifications of a quasiclas-
sical approximation [31,4],[10]. It turns out that a solution of the problem itself of
a path integral construction for the first-class constrained systems with the reduced
physical PS gives automatically an approach for correct solving Gribov's problem
[12],[4]. Further, quantum Green functions have unusual analytical properties so
that elementary excitations of degrees of freedom with the reduced physical PS can-
not normally propagate (13]. For the considered minisuperspace model, the found
PS reduction gives rise also to a modification of the path integral representation for
the ground-state wave function of the Universe and, as a consequence, its quasiclas-
sical calculations should be modified [141. In conclusion, we would like to note that
the phenomenon of the physical PS reduction may take place for fermionic (Grass-
man) degrees of freedom too [4]. However, there are specific dynamical features in
this case [4],[15].
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ABSTRACT

A dynamical feed back mechanism between quantized matter and an underlying fiber bundle geom-
etry with SO(4, 1) as structural group is investigated in the presence of gravitation. Spinless matter, de-
scribed in a quantum mechanical manner, is represented in terms of generalized wave functions (sections),

defined on a Hilbert bundle 7t over space-time carrying a local phase space representation of

SO(4, 1) related to the principal series of UIR determined by p. Bilinear currents in the matter fields
are introduced which act as source currents for the bundle geometry inducing further geometric quanti-
ties (torsion, de Sitter boost-fields) which specify the geometry beyond the classical metric determined
through Einstein's equations.

In order to describe quantized matter in the presence of gravitational fields generated
by distant macroscopic classical masses one introduces a Hilbert bundle hi over a curved
space-time base manifold B. (See [1] and the earlier references quoted there.) For the
description of leptons one would consider a bundle N carr ing a system of covariance of
the Poincar6 group. The typical fiber of Wi would in this case be a Hilbert space providing
a unitary irreducible phase space representation of the inhomogeneous Lorentz group,
IS0(3,1), yielding a quantum mechanical description of (spinless or spin 1) particles
of mass m in terms of square-integrable functions depending on the local fiber variables
(,,,p) with q E Tx(B) and p E Vmk C T*(B), where Vm is the positive (+) or negative (-)
energy shell in momentum space, with p2 = m2 , and T,(B) denotes the affine tangent
space of B at x on which the Poincar6 group acts as a group of motions and T,(B)
denotes the cotangent space at x (compare [2]). In a geometric framework intended for
the description of hadrons which are characterized by an intrinsic length parameter R of
the order of 10-13 cm and a corresponding spacial extension one would have to change
the phase space bundle E'(B,FP = M 4 x V, G' = ISO(3, 1)) used in the Poincar6
case with M 4 denoting Minkowski space (viewed as an affine space), by "curling up" the
flat fiber M 4 isomorphic to the homogeneous space ISO(3, 1)IS0(3,1), and go over to
a curved fiber G/H isomorphic to a space-time V4 of constant curvature with curvature
radius R m 10-13 cm. Here H = SO(3, 1) denotes the Lorentz group, required to be
a closed subgroup of G, with respect to which G contracts to the Poincare group in a
formal limit R --* oo. Hence G is one of the ten parameter de Sitter groups S0(4,1) or
S0(3,2). Let us choose on physical grounds (spacial compactness and absence of closed
timelike geodesics) the (4,1)-de Sitter group as the relevant group for the description of
extended hadrons and introduce the de Sitter phase space bundle E = E(B, F = V4 x C+,
G = S0(4,1)) over B, which is a soldered bundle [31 associated to the de Sitter frame
bundle P(B,G = S0(4, 1)) over B. Here the soldering is made through the de Sitter
subspace VI of the local phase space P, isomorphic to A+ -- V4' x C1 (compare [4])
with V4(x) and B having first order contact at each x E B. C+ denotes the cone in the
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embedding five-dimensional Lorentzian space R4,1 (in which V' is a one-shell hyperboloid
of radius R) with the fifth coordinate normalized to 1/R, i.e.

C' K[, = (a6bia =0 with (5

where ?lab = diag(1,-1,-1,-1,-1) and the summations run over a,b =0, 1,2,3,5. The

superscript of C:i: stands for sign (0 = - with the vector C = (Ci, (5 = k); i = 0, 1,2,3,
0

characterizing a so-called horosphere or horocycle through the origin C = (0, 0, 0, 0, -R)
of V4 determining thereby a direction of a whole wave field given by an infinite set of

0

horospheres parallel to the one through C. (Compare [1] and [5] and the meaning of a
horosphere as a wave surface of constant phase in a space of constant curvature.) Hence

C•E CL parametrizes the space of horospheres and thus the space of horospherical wave
solutions of the G-invariant wave equation on V4 used in [1] and [5]. In the In6nii-Wigner

R-oocontraction limit 50(4, 1) + ISO(3, 1) sign (0 goes over into sign p 0 labelling the
positive or negative mass shell in the Poincar6 case [5].

Let us now construct a phase space representation of the de Sitter group for spinless

particles, .(Ag) = U(P)(Ag), related to the unitary irreducible representation (UIR)
of the principal series of S0(4, 1) characterized by the parameter p; 0 < p < oo,
with p determining the mass of the particle in question [see below]. The Hilbert space

L 2(ý:) of square-integrable functions in the variables (C, () E L± C AJ' with respect

to a G-invariant measure, d(, C() [compare Eq. (4) below], is denoted by NO. Here

+ h x C± is a six-dimensional horospherical submanifold [61, (1], where h denotes a

1- rosphere being a spacelike hypersurface in V4. (Wompare also [7].) One can construct

a coherent state basis of 1 "-,P) in terms of horospherical waves from SO(3)-invariant res-
17

olution generators O(C') yielding a parametrization of the basis of 7"-•P) in terms of the

coset space S0(4, 1)/S0(3). In [1] it is shown that N(P) is a one-particle resolution kernel
rn

Hilbert space with ýP)- =-- + E "W-, where the superscripts + and - denote the sign
H1

of (0, with 'H+ and W- denoting the one-particle and one-antiparticle Hilbert spaces,
respectively.

As a geometric arena for the description of spinless quantized matter we now introduce

the soldered (first quantized) Hilbert bundle 7W = 7-(B, .F = 7 "P), U(Ag)), associated to

P(B, S0(4, 1)), with standard fiber 7"/ carrying a system of covariance of the (4,1)-de

Sitter group. Denoting the generalized coherent state basis of the local fiber "A)' (x)W

which is related to a particular choice of gauge a = u(x) on P by uT),- with x E B;

(EC) E , constituing a local de Sitter quantum framo, one has the following resolution
of unity at x E B [parameter p is suppressed]:

J =4 1
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and the expansion of a state vector '(TP)± belonging to the principal series of UIR's of
SO(4, 1) with respect to the local basis ,bu(x):

- f C (2)

Here d(,) is the G-invariant measure [1]

d•(¢, C) = - g26 (I[k, Cil - c)dp(•)$5([Cf,CI)d4( (3)

obeying dE(Agý,Ag() = dE(ý,() with Ag E SO(4,1). In (3) the quantity dp4(4) =
(R/l5lj)d•°dýld 2dd 3 denotes the invariant measure on V,' and c is a positive constant
determining a particular horosphere H( in V4(x) parallel to the horosphere HI through
0

Scharacterized by C.
The coefficient %/P(x , C) in the expansion (2) is the scalar de Sitter coordinate wave

function, or for short, the generalized matter wave function which may be regarded as
a section on the first quantized de Sitter bundle R over space-time with standard fiber

R(P). The variables (•, C) in the local fiber of the bundle k play the r6le of local stochastic
variables on 7"-. [Second quantized bundles with Fock-space fibers constructed with tensor

roducts of one-particle spaces h-C+ and one-antiparticle spaces W- were considered in
]. For simplicity we shall, however, base the definition of the bilinear currents in the

fields %(P)(4, C) and their adjoints on the first quantized bundle 7-N introduced above.]
Eq. (2) can be reversed and yields using a bracket notation for the integration over the
hypersurface t with measure (3):

I(p)(,• = (bu(x) (4)

The transformation rule for %X(P)(, C) under de Sitter gauge transformations Ag(X) on 7-I

is (O(Ag(.))'0(P)((PC) - ) - A(-) I

From the construction of the coherent state basis described in more detail in [1] it is

apparent that •(P)(•, C) is, for fixed x E B and C E C±:, an eigenfunction of the Laplace-
Beltrami operator'), = ] -Lab(•)iab(•), on V4(x) with eigenvalue (K + 3)/R 2 where

S= - + i; 0 • p < 00, i.e. [5]

+]2)q()(•,C) - 0. (5)

This yields the following relation between the constant R, the mass m of the particle
and the value of p : [m'- 2 R2 - p2 + 1. For fixed R the parameter p is thus a variable
determining a particular mass value.

We, finally, quote the kernel for the propagation from the point (ý, C) to the point

1)Lab(O) i(4.-T -b Lab(4) = lac7lbdLd( ).
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(•', .) in the local fiber over x E B in 7?Y:

77I( W,' = .ux 4P, U(( ) (6)

and the reproducing property following from (1)
;.p)t • , f€(p, tl .t "" N,,k(p),n (n7)•,et

So far we have prepared the ground for a quantum kinematical description of spinless
matter described in terms of generalized wave functions defined on the first quantized de
Sitter bundle 7W constructed over curved space-time in the presence of gravitation. Let us
now introduce a dynamical feed back between quantized matter present in the geometry
and the imprint this leaves on the underlying bundle geometry. To this end we introduce

bilinear source currents, constructed in terms of the quantum fields ¢(P)(•, •) and their
adjoints, and use them as material source currents determining the bundle geometry
beyond the metric part which is determined by the energy-momentum distribution of
classical matter as in Einstein's theory. This then yields a quantum fiber dynamics (QFD)
on 7 determined through covariant current-curvature field equations [8J characterizing the
short distance behaviour of quantized matter in the presence of gravitation in a framework
based on the (4,1)-de Sitter group as a gauge group.

To recover gravitation in a de Sitter gauge invariant manner as the gauge theory of
the Lorentz subgroup H one has now first to go over to a nonlinear realization of the
transformations of the de Sitter group in terms of "Wigner rotations" being in this case

0

Lorentz transformations belonging to the stability subgroup H of the point ý in the fiber.
This is done by introducing a section ýa(x); a = 0, 1,2,3,5, on the (soldered) de Sitter
bundle E = E(B, F = G/I n- VI, SO(4, 1)) and reducing the connection ,R in P with

the help of the boost transformation A(ý(x)) : --+ (x) to a nonlinearly transforming
form. We call this the nonlinear (N.L.) gauge on P denoted by

KL.WRIab ([R') o~i for a = (i, 5); b = (j, 5). (8)

The r.-h. side of (8) remains form-invariant under gauge transformations on E
r(x) -* ý'(x) = Ag(x)ý(x) with the Latin indices suffering a transformation with a matrix

A(ý'(x), (x)) E H. The one-forms 0R; j = 0, 1,2,3, in (8) are the soldering forms of the
Cartan connection in P in the N.L. gauge. The de Sitter frame bundle P introduced here
and the Lorentz frame bundle appearing in a vierbein formulation of gravitation may,
in the N.L. gauge, be viewed as interlocked bundles with the Lorentz part [wR]ij given
by [wR]ij = ij + ftR, where Cv- is the usual Lorentz connection appearing in a purely

metric theory and 7i! is the torsion addition resulting from the embedding of the Lorentz
gauge symmetry into a bigger (here de Sitter) gauge symmetry. The additional geometric
quantities characterizing the geometry in P(B, SO(4, 1)) beyond the metric are thus the
torsion induced in the base, turning B into a Riemann-Cartan space-time U4, and the
coefficients of the soldering forms of the bundle connection representing de Sitter boost
degrees of freedom.
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In [8] a set of covariant bilinear hermitean currents of the type

(P W = ('(•P) (, 0 10 kab I T , (9)

are introduced using G-invariant integration over the local fibers of 7H, where Okab; k
0, 1,2,3; a, b = 0, 1,2,3, 5, are operators constructed with the infinitesimal generators l•ab
ot the phase space representation ,• tAg) of C)0(4, 1) and the operators Dk? fur covaxiwit

differentiation on X-. These currents are now used as material source currents in a set of
de Sitter gauge covariant nonlinear field equations for the torsion and the de Sitter boost
fields specifying the geometry beyond the metric determined from Einstein's equations
as in eeneral relativity. In [8] the axial vector torsion case is treated together with the
restriction tha.?t the de Sitter boost fields [tog].L. 5 ]i5 ? I Fki5 are antisymmetric
[fR -- rR51 wheR c 9k are the fundamental one-forms on B. For this particular

case the field equations together with the Bianchi identities for the bundle curvature are
investigated and discussed and the consequences worked out in conjunction with Einstein's
equations for the metric.
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Abstract

Geometric properties of classical gauge theories of C = Oo(4.2) are in-
vestigated witl:;n the framework of first and second order G-structures. In
particular we discuss difficulties in conformal gauge theories arising from the
non-reductivity of the isotropy subgroup in C, in comparison with the reduc-
tive Poincar6- and deSitter/anti-deSitter case.

0 Introduction

Consider a relativistic metric or conformal transitive spcetime group of at Irast 1.
order., i.e. a group S of automorphisms of a Lorentz- or (Lorentz-) conformal mani-
fold M, acting transitively on Ml ('homogeneity') and containing the Lorentzgroup
L := 00(.• 1) 1 ('spare and time isotropy'). Then one knows that S belongs, up to
local isomorphisms, to the following list

metric case conformal case

P :=T 4cZL (Poincar6-) P11 := T 4t(L C .1 D) (Poin ,r&-Weyl-) (1)
O0(4, 1) (deSitter-) C := Oo(4.2) (conformal group)
00(3,2) (anti-deSitter-)

Taken as candidates for spacetime gauge groups, there is a large number of investi-
gations for the first four of these groups, and a remarkably smaller one in the case of
C. From the mathematical point of view, two main structural differences between
C and the remaining groups in (1) might be responsible for this fact

i) C is the only -second order'group in (1)

ii) C is the only group in (1) with non-reductive isotropy subgroup.

The first point leads to 2. order conformal G-structures (see sect.l), which, com-
pared with 1. order conformal structures (gauge group P11 ), might be seen as un-
necessarily complicated tools to represent conformal geometry; and non-reductivity

1Oo(n, in) := connected component of O(n, n).
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generates problems concerning the mathematical representation of gravitative po-
tentials via connection forms (see sect.2).

On the other hand, C has the richest structure of the goups in (1) : all of
them are subgroups of C. Hence, for a systematic investigation of spacetime gauge
theories, a natural starting point seems to be the choice of C as a gauge group.
possibly with appropriate symmetry breaking to one of its subgroups. We indicate
and motivate a geometrical framework of a gauge scheme for C, i) exploiting fully
the second order property of C' and ii) accepting the non-redurtivity in C as a hint
for a deeper analysis of the nature of conformal gauge potentials.

Sects.1 and 2 sketch the role of the group C as a background structure which
in an obvious way generates a conformal gauge bundle with Cartan connections r
as natural canditates for gauge potentials. In sects.3, 4 and 5 a geometrical inter-
pretation of these potentials is indicated and a symmetry breaking from conformal
to Lorentz structures is performed which results in a Riemann-C'artan-spacetimn
(proofs and details of these constructions will be given elsewhere).

1 Conformal geometry
(1. and 2. order structures)

We sketch the occurrence of 2. order conformal structures with the help of 'confor-
mal coordinate systems' :
Consider the group C (locally diffeomorphic to T 4 x (L , D) x K4, with trans-
lations T4 , dilatations D, and special conformal transformations K' 4 • T 4 ) as a
fibre bundle with 'extended Weyl group* 11" := (L '7 D)ZK 4 as structure group.
The factorization via right multiplication of WV' on C gives the homogeneous
space fftj4 := C/l 1 1. As an intermediate step we get the W 7-bundle C/K 4 over
A1J4 (= (C/K 4 )/W`) with W7 := L Q D, the 'Veyl group',

C -- C/K4 --- 4 . (2)

Left multiplikation of K"' on C then defines on PA4 for each a E W" the 'conformal
coordinate system'

Ca : IR4 = T4 -, aT 4 +n14 , 74 r :- 7r 1 0 7-2, (3)

centered at xo := r(l) = ci(O) E Ai4. Destinguishing 1. and 2. order contact
classes, each a. induces a 'conformal linear framne'at x 0. the 1. order jet j,(o,) of
aa (Lorentz frame at xo up to conformal factor) and a 'conformal 2. order frame'
at xo, the 2. order jet j02(cko). Obviously, the collection of all j0(aa,), a E W".
induces a conformal structure (light cone structure) on the tangent space To,14.
Performing this procedure for all a E C, we get a conformal structure [77] on all of
Af 4 , i.e. a Lorentz metric up to positive functions on Al'4 and. via C 3 a - Qý
a natural identification of the ,1"'-bundle C with the a. order conformal frame
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bundle L(?,IJM4 [6], [2). Similarly to (3), one defines (local) 'conformal coordinate
transformations'

: alI o a : B 4 = T 4 -' - V T 4 , a E H'. (4)

For a = (a') E 10 C W", pa locally is given by the usual special conformal
transfomation x' • 74 = (x' + aix 2 )/(1 + akXk + a2x 2), hence with trivial 1. order
action in 0 E V,4. This implies a natural identification of the W7 -bundle C/K4 with
the 1. order conformal frame bundle L1~1JM4,

C -L21A 4 c L2 I1 4  (2. order frame bundle)

C/K 4  L[,g 1J
4 C LAi 4  (linear frame bundle) (5)

C/W1 A- 0,414

(A corresponding discussion for the Poincar6 group leads to the identification of P.
considered as an L-bundle over -4 = T' = P/L. with the 1. order bundle L,,lfi of
orthonormal frames in Minkowskispace (ff?, q). Similarly for the "1. order groups'
O0(3,2), 00(4, 1) and P".)

2 Cartan connections

The application of conformal coordinate systems aa for the interpretation of C as a
2. order G-structure extends if one introduces 'geometry' :
Consider first the case of P - LJR" with "orthonormal coordinate systems'
a. : R4 = T' --+ aT 4 

_+ PIL, a E P, instead of (3). The Maurer-Cartan-form

on P then splits into a translational and a Lorentzian part, 7=0 + A, and the tan-

gent space in a E P of the submanifold aT4 C P coincides with the kernel kcr A0
of the 1-form A. on T0P. Because of

T41 = IT4 for I E L, (6)

this means right-L-equivariance of the 'horizontal subspaces' ker A, ; hence A is a
connection form on P = LiF?. In Lie algebra terms (6) implies [Il,t4] C t4, i.e. the
Lorentz algebra 1 is reductive in the Poincar6 algebra p.

In contrast to P, the 'isotropy part' A + 6 + K of the Maurer-Cartan-form
o0 0 0 0 0 0
r=O + A + 6 + K on C, with dilatation part 6 and special conformal part K. is
not a connection form on C = L' 1 ,i4, because of the non-reductivity of w" in c

([w", t4] = I i d 0 t4). However, extending L',,] A14 to the 'affine" 2. order frame

bundle A' 1D,4 L 2 A14 xw,, C (associated bundle with respect to the W4"-left-

multiplication on C and, moreover, a principal C-bundle over A14) with natural
embedding

L2IT - A2 l jJ4. (7)



711

extends uniquely to a (flat) connection form T- on A2 11'. s.th. 7= k' r : i.e.

" is a Cartan connection [61 on L',, Al', invariant with respect to automorphisms

of Ll A'1 given by left multiplications of a C C. Observe the nonsingularity of the

t-valued 1-form 0, which coincides with the pull back via 72 of the canonical 1-form
(soldering form) on L1,1AI 4 C L nI

4 .

3 The 2. order gauge bundle

The structures mentiored above, [11 = C111'", (q], L[,]D1 4. L'.71Af4. '. A271 A14.

all are extracted solely from the Lie group structure of C: in this sence they
are given canonically. In particular, the existence of the natural connection form

on the C-bundle A2 Iii4 might suggest to use A2,,4 A' as a 'gauge bundle' for

C with background structures [,i] and -r'-. and to introduce 'gauge potentials' via

the generalization of 7 to arbitrary connections T. Since there is no natural non-

singular 4-form on A 2 1I4( 9 0. .ijkt A 01 A 0 A 00 is nonsingular on L' At,, but
not on A IN] A

4 ) for the construction of Langrangians on A',4)1 A
4 without introduc-

ing further objects, one is forced to pass to the 'equivalent' structures L 2 1A 4. '.

Gauging C then is realized via the interpretation of arbitrary Cartan connections
r=0+A+6+K on L(uI as gauge pote ntials. This is in complete accordance with

the (1. order) case of Poincar6 gauge theory [31, where the P-bundle A,, 4 of affine
q-orthonormal frames is reduced to L,J 4 = P C ,4,f14. and Cartan connections
r = 0 + A on L4R4 are split into tetrad fields 0 (cf. sect.4) and connections \.

The critical point in the conformal case is the fact, that in the corresponding
splitting of r into 'tetrad field' and A + 6 + K, the latter fails to be a connection form,
with consequences e.g. concerning the possibilities to define covariant derivatives on
L' At'" and to construct invariant Lagrangians.

Our aim here is to ignore this fact and to proceed to indicate a gauge formalism
on L' )lBIf' consequently applying the notion of Cartan connections in formal analogy
with the case of the Poincar6 group (and the remaining 1. order groups in (1)).

4 Geometrical interpretation of r

The typical distinction between internal and (1. order) spacetime gauge theories

is the occurrence of the canonical 1-form 0 on the bundle of linear frames. This
is intimately related to the interpretation of 0 in r = 0 + k as the tetrad field in
Poincar6 gauge theories, i.e. as a geometric object defining the spacetime metric.
In bundle terms, this interpretation is simply stated by



712

Proposition 1 Given a Cartan connection r = 0 + A on L,,1R4 . Then 6 fixes
uniquely an embedding

iL: L, ILL?4  (8)

s.th. i (0) = 9.

The L-bundle i(L,,ff?4 ) C LEI? thus gives a Lorentz metric 9 on AV, s.th.
i(L,,14) = L9ff?4, the bundle of g-orthonormal frames. As a rcsult, each Cartan
connection r on L,5 4 determines a Riernann-Cartan-spacetime (1Rt4 , g,i.\). i.e. a
Loientzrnanifold (f! 4 .g ) with g-compatible nonsymmetric connection i.A.

An analogous 2. order mechanism in the conformal case requires some further
investigations :
We first define the 'Cartan derivatire" V corresponding to the Cartan connection
r = -4A+6+K on L' iAll via pull back ot the covamiant derivative V corresponding
to the connection T on .42 ]l 4 'associated' with r

V4," := dis" + r' A r,"ti'i (9)

for fields t, = (to,) transforming under C (with Lie algebra representation r of
o(4, 2)), and

-Vr := dT + 1.[r. ri.

Calling
VOi = dO' + A'k A Ok + 6 A 0, (10)

the torsion of r (or of 0 + A + 6). one proves

Proposition 2 Let r = O + A + 6 + K be. torsionfrfe (V0 = 0). Then there is a
uinque cinbedding

j : L 11 L14 --- L'• • A14.

s.th. J*(O ( - 6 -t \ + 6 (with canonical 1-form 0 (2) on L2 1"I [6J).
Morco, r. thre is a uiqu, conformal strcthr, [g] on Atll. s.th. j(L. 1]I 2 ) =

L2 1 •1' (conformal 2. order st'ucture corr sponding to [g]).

"to generalize for arbitrarily given r = 0 + A 4- b + K on L',]2 14 one shows:
There is exactly one Lorentz-valued I-form V'. s.th. 0 + V' + A is torsionfree and

extendible to a Cartan connectin. Writing 0 + + for tie canonical 1-form
on I' lt, 4 C L•2 1' (-= Maurer-Cartan-forin if [ýq] = ,itj) we eventually conclude :
Each (artan connection 7 = 0 + A -- + + K on (C = LD' 11' uniquely determines a
conformal structure [g] on Alt4 and a bundle isoniorphism jL: t.,,]fl -A t't 4 . s. h.

j*(O + \ + 6) = 0 + A' + 6. Correspondingly. the final geometrical interpretation of
r is that of a potential which fixes [y] together with a (artam coonnection

.J.T = +)j.A+ , +j.h (12)

on L' All, where 9 and h are catinnical.(11
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5 Symmetry breaking 11 -W" L

Symmetry breaking 'conformal structure -* Lorentzstructure' usually is performed

on 1. order level, i.e. as a reduction W 7 = L ® D -+ L, using equivariant functions
R: -- IF, y> 0, with nontrivial weight. We indicate a 'prolongation' of

this mechanism to 2. order to be able to link up with the result of sect.4
(2)

Define the 'prolongation' P0: L' Al'4 -+ fJ6 of • (where p transforms as
1(2)

po - (deta)--p for LLIMr4 ) e ý-* ea, a E W7 ) by ýO:= (0 120, /€-o, O)T,

(2)
with pull back 0 of cp to L2I A 4 and proper interpretation of 0" in v . Take the
Wl'-invariant Lagrangian L = 1() i i(2)) ijklO A 01 A 0k A 01, with

standard generators k' of KV C C in the 1R6-basis • = (yO+y5)/vr, yY ..... 'y 4  :

(y'- y')/V" (metric signature on ' . , -+, +). Then variation with respect

to VY := 1/€ yields the eqn.

D'D3 " + j.N, x '=O. (13)

which is valid on each 'prolonged' L-bundle in L' 1 JA4, i.e. on each subbundle191

of the form LW'l4 C L 2Jlg4, 9 E [g], and where D is the covariant derivative

corresponding to the Lorentz connection j.A on L~I l 4 in each case. Eqn. (13)

includes the special case D'Dj,, + (R/6)', = 0 for j.r =9 + A + 6 + K (cf. [5]), R
beeing the scalar curvature of g, resp..

(2)
The isotropy subbundle (P))-'(0.0, o = 1) now turns out to be a prolonged

L-bundle, i.e. equals L',A14 for a unique g' E [g]. Hence, having exploited the

full structure of the conformal group, we end up with a Riemann-Cartan-spacetimf
(Al•', g', 01`2 o j).At).

6 Generalizations

i. The formalism indicated in sects.L.... 5 can be generalized for arbitrary base

manifolds Al admitting Lorentzstructures (or, equivalently, conformal structures).

Moreover, the (naturally 'soldered') gauge bundle L AlI4 may be replaced by an

abstract W1"-(gauge)-bundle B over AI, thus stressing the formal analogy with 'in-

ternal' gauge theories. Given Al, then B is fixed up to strong bundle isomorphisms.

due to the following observation ;
For any two (orientated and time orientated) Lorentz metrics g, g' on M there ex-

ists a strong automorphism of L11, s.th. L0 M --+ L9,M [41: correspondingly for

conformal 1. and 2. order structures.

ii. Using an invariant 4-form on B similar to 0-4 ( in sect.5, and Cartan deriva-

tives on B to construct l4'1 -invariant Lagrangians, it is straightforward to get

the general field equations for matter fields and Cartan connections T on B.
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The geometrical interpretation of T then is given via an induced embedding
j : B - L2M replacing j in (11).

iii. There is a clear meaning of first and second order conformal spin structures.

iv. As an example for an invariant matter Lagrangian on B without use of the extra
field 0 in ii., we mention

L = \/2,(T*7°ki(Vjq + nhbi') - y'qk)e+ herrn.conj.

1 2
with 4-spinor P =: (4,, ',)T, generators k' of K" in the standard SU(2, 2)-representa-
tion and 'degree of homogeneity' n = -2 of 41. This yields an WV1 -invariant equation

of Weyl type (cf. [1]) for the 2-spinor 4' on B with torsion term
QikIOk A 0' DO',

&'i(D i + 2• ki) g' "0 ,

2

and the gauge freedom to choose V, arbitrarily.
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DIFFERENTIAL GEOMETRY OF SPACETIME TANGENT BUNDLE

HOWARD E. BRANDT
Harry Diamond Laboratories, Adelphi, Maryland 20783, USA

Both string theory and the quantum mechanics of the vacuum polariza-
tion in accelerated frames determine a universal upper limit on allowable
proper acceleration relative to the vacuum. 1 - 6 If the limiting accelera-
tion is universal, then it must apply invariantly for all observers. The
latter requirement defines maximal-acceleration invariant phase space as
a fiber bundle in which spacetime is the base manifold and four-velocity
space is the fiber manifold. 4 In a coordinate basis, the implied struc-
ture of the bundle metric, GMN, is that of the diagonal lift 1 of the
spacetime metric, guV, namely,

gP + gaýA V Anu

G nN l , (1i)
G.MNA

Amy gmn

where Av = povXFi V is the gauge potential, and F`hv is the spacetime
affine connection. A point in the bundle manifold has coordinates
[xM; M=O, .... 7) = (xIJ,xm; P=0,1,2,3; m=4,5,6,7) 2 {x1W,Pov•; D=0,1,2,31,
where xW and v- are the spacetime and four-velocity coordinates, respec-
tively. Greek indices referring to spacetime range from 0 to 3, lower
case Latin indices referring to four-velocity space range from 4 to 7,
and upper case Latin indices referring to a point in the bundle range
from 0 to 7. Any lower case Latin index, n, appearing in a canonical
spacetime tensor or connection is defined to be n - 4 implicitly. The
length yo is of the order of the Planck length, namely, Po = c 2 /a 0 =
(0G/c 3 )§/2na , where ao is the maximal proper acceleration relative to
the vacuum, c is the velocity of light in vacuum, A is Planck's constant
divided by 2n, C is the universal 8ravitational constant, and a is a di-
mensionless number of order unity.1,4-6

In an inholonomic basis adapted to the affine connection, 4 , 7 the
bundle metric has a simple block diagonal form with the spacetime metric
in both the base and the fiber, and the Levi-Civita connection coeffi-
cients, (8)FMAB, of the bundle manifold are given by 4

(8) I'i = (I ) g •ga , = I ,X

a ua 6  ua}= X + - gaq,ý) (2)
(8) rw (8) =i -j(Fa + 11 + n Wu (3)

ab = F ba b +HU ba ab

(8)F ab c r a Wab + Tb0a) , (4)

(8)mm m -H m (5)
a =I (F m R a - R 6 (5)
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(pm -jT m+T 1
(8 )m = 5(T bm + Tmb) m (6)

(8)Fa b mba} +(T'bm Tmab) (7)

(8) r - = Pj0lgmn(a/avag + 3/3vb - /vngab) n (8)

ab b nb

Here (0 .} and RU 1 are the Christoffel symbols in spacetime and four-
velocity space, respectively, and in the anholonomic basis, the following
notation is implicit: ,• E 3/axW -a PA" a/aAv. Also Fa = POvXRaX1V is
the gauge curvature field, where R X, is the spacetime Oiemann curvature
tensor. The field Tauv is given by

TB WV = 1{ } - Poola/3vvA W (9)

In general, the spacetime base manifold of the maximal-acceleration
invariant fiber bundle is non-Riemannian. Recently, as a very special
caS" a Riemannian spicetime manifold was considered for the base mani-
fold, and it was shown that in this case the bundle manifold is the asso-
ciated tangent bundle, and relationships were investigated between the
natural lift of spacetime geodesics and geodesics in the spacetime tan-
gent bundle.7- 9 Also, a Riemannian Schwarzschild-like spacetime was con-
sidered which is a solution following from an appropriate action defined
on the spacetime tangent bundle. 5 ,6 Possible modifications were calculated
to the canonical red shift formula for a Schwarzschild spacetime. It is
of interest to consider more general base manifolds, such as Finsler
spacetime.10

If the spacetime manifold is a Finsler manifold, then

guv(x,v) = /a2/vvvVL2 (x,v) , (10)

where L(x,v) is the fundamental function, a scalar on the spacetime tan-
gent bundle. 7 ,1 0  The Finsler spacetime metric is also homogeneous of
degree zero, and it follows that

va(Iav + fVlU) = va(fl +1 + a) =0 (ii)

If the spacetime affine connection, Fpha, is of the Levi-Civita
form, and the spacetime manifold is Finslerian, then Eqs.(2)-(8) are
readily shown to be of the same form as the well-known Levi-Civita con-
nection coefficients for a generic tangent bundle of a Finsler manifold
(Eqs.3.12a-h of Ref.9). The connection coefficients are consistent with
Cartan's theory of Finsler space, provided the gauge curvature field,
FUa6, is vanishing. Furthermore, if the spacetime metric is independent
of the four-velocity, then the coefficients reduce to the form corre-
sponding to a tangent bundle of a Riemannian base manifold.7-9

To further characterize the differential geometry of the spacetime
tangent bundle, it is of interest to consider the following exterior
differential of a one-form w:
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dw E d(pov dxU) 2 ABdxAAdxB (12)

If the spacetime connection has the Levi-Civita form, and the spacetime
is Finslerian, then using Eqs.(1) and (11), one obtains

B A% _6 ( b - AKa A bK

B= a -A b K a(13)
A 8 _Ab

a a

and one verifies that

A DB 6 AB (14)

Thus, the spacetime tangent bundle of a Finsler spacetime manifold is
almost complex, with almost complex structure given by Eq.(13).7,9,11

Next, it is of interest to consider VEJAB, where VE is the covariant
derivative involving the Levi-Civita bundle connection, (8)FABC. Using
Eqs.(2)-(8), the components of VEJAB, in the anholonomic frame adapted to
the spacetime affine connection, reduce to

VJ ½(Fa8 _ V8 +fl -8 •S) ,(15)V E i = R C-FC +ag a E - R 'E(5

V E b = 1(Tbca - Tac b (16)

V cJia = - I(T'Ea T TaES (17)
b Fb + ) (18)

cab - a Em ac a E aE

V e T a T(T e a Te T _ ) , (19)
V e ab= ½(ea + lebc e -bea) ,e(20)

Ve a 12(FeaB + Ha e - RBea) (21)

v J b (Teb Tb +Tb Tb )(22)
ea ea ea a e ae

For the Finsler spacetime manifold, all possible contributions in
Eqs.(15)-(22) involving combinations of ROLeJ and TOB can be shown to be
vanishing. It follows that if the spacetime manifold is Finslerian, and
the gauge curvature field FOCLB is vanishing, then Eqs.(15)-(22) are also
vanishing, and one concludes that 7 ,9

VEJAB A 0 (23)

Eq.(23) is the condition that the spacetime tangent bundle be Kahlerian.
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Applications of sections along a map in Classical Mechanics
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*Departainento de Fisica, Universidad de Oviedo, 33007 Oviedo (SPAIN)

1. INTRODUCTION, DEFINITIONS AND BASIC NOTATION

We "rediscovered" the concept of vector field along a map when studying the converse

of Noether's Theorem in time-independent Lagrangian mechanics as a way of taking

into account non-point transformations [1] and it had also been used when looking for
a geometric interpretation of the time evolution K-operator relating Hainiltonian and
Lagrangian constraints for singular systems [2]. In a recent paper [3] it was also proven to
be very useful for an alternative introduction of basic objects in Classical Mechanics, and

giving a geometric meaning for the "total time derivative" or to objects like the Legendre

transformation, the 1-form Oj, and the Euler 1-form bL in the Lagrangian formalism. It
allows to work in a geometric way with non-point transformations and is the appropriate
tool for the geometric version of the Second Noether's Theorem [4] allowing a geometric
definition of the evolution K-operator. It also provides the generalization for dealing

with (even singular) Lagrangian containing higher order derivatives [5] and has also
application in geometry as in the theory of Ehresmann nonlinear connections [61.

Let ir: E - Ml be a fibre bundle and 0: N -* M a differentiable map. A section along
oP is a map a: N - E such that roa = 0. The set of sections along o will be noted EO(7r).

When E is a vector bundle the set E(,(r) is endowed with a C'( V)-moduile structure.
Of a particular interest are the vector bundles rMw: TM -- A , r 1p:(T*M)^P Al.

and p' : (T*M)^P ,,, TM 1 1, and in these cases we will denote these sets X(o)
E,,(rm),AP(0) = E- (irp and VP(0) ",= •o(pM), respectively. When N = M and
6 = id the set X(id) coincides with X(M) and the set A'(id) reduces to AP( Al).

Interesting examples are the following: Let 1: R -M be a curve in Al. The tangent
vectors y define a section ": R - TAI of 1M lalong ". The restriction of X ( .EX(M) on
the curve -" is also a vector field along y. The generalization if tlesc exainple are: Let

0 be a map from N to Nf. A vector field Y E X(N) defines a vector field along 0 by
composing it with the tangent map: TO o Y E X(O). Similarly, when X E XT(M) the

restriction X 0 0 of X on the image by 0 is a vector field along o. Similar things can
be told for forms. If Al is a p-foriii in V. the restriction I o 0 of ,3 oil the image by 0 is

a p-form along P. Giveii a E A'(W), T*p o a is a p-form in N. The pull-back by O of

,3 E A"(M) is obtained by iteration of both processes o*(5() = T*0 o,3 o 0.
When E is a vector bundle and {fa,) a local basis of E(ir), then {ar,, o } is a local

basis of ,(7(r), and (T E E(7r) can be written as a = 0 0) with (` E C>(N).

In the above case, taking local coordenates (z A) in N and (.r') in M we have

XE X(0) X = X o 0 and a C- A'(o) a • o,)(dr'o)
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where X' and o, are functions in N.
There exists a canonical section along 7r in each vector bundle 7r: E -- Al. which

is given by the identity map in E. When choosing local coordinates (W.',q ) in E
and a local basis {o ,} ,of sections for 7" such that Y'(( c) = t,(7r(( )), for f E E, thenl
the local expression of C is C = y`(a. o 7r). The most important cases in Classical
Mechanics are those of E = TM or E = Al. Then C reduces in these cases to
the "total time derivative" T (in the time-independent formalism) and 00', the 1-form

along 7r corresponding to the 7r-seniibasic Liouville 1-form 0. Notice that when 6 is a
submersion, every s-semibasic p-form in N ao may be identified to a p-form along 6, oa.

The coordinate expressions are

'r ( o r, 1) and 0' = p,((Id' o 7r ).

Vector fields along Q act on functions on Al giving rise to functions oi. N. If X c X((6)

and 71 E N then X(i ) is a tangent vector to Al at the point o(n ) which acts oil a function
h E C'(Al) by (Xh)( n) = X(n)h. The Leibnitz rule for tangent vectors implies that

X(hl) = 6*h Xl + 0*lXb. A map satisfying this property is called a 0*-derivatioii (of
degree 0). Pidello and Tulczijev [7] generalized the theory of Fr6licher and Nijenhuis
for these new derivations (see also [6)).

In the time-dependent formalism it is ususally considered ,iT : E = R x Q -- R and
the k-jet bundle ,Ir is R x T'Q. The vector fields along 7rk+l.k. Tik') are defined by
Ttk) ojk~ = (ika). o •. Va E Z( it). In local coordinates the local expression of TV •

is: T(k) _ o '•+t k 0 +_=oqbi()• o, k+i.tk•

If Z E X(,z l,) for every integer number k there exists Z(k) E -T( 7rk1k+, projectable

onto Z"), I = 0.1 ..... A - 1. namely. 1k, Io Z =) o 
1

.+
7
-+),+i and chtaracterized by

Z O = Z and for any contact 1-form d) C C1 71(0,.). , k -1) C C () ik+i ). If Z = Z t ,q , q.

is the 'local expression of Z C XT(R x Q), then Z Z•i Z + Z,-j c, + (dT; I Z+

v'dTf -Z) Z•

2. SYMMETRY IN TIME-DEPENDENT LAGRAN(IAN MECHANICS

Time dependent Lagrangian Mechanics is based on iL =iT,,d(-)l, E A'(R x T 2Q),
with local coordinate expression

aIndt(-)• A (R x TQ) given by (I) = dL o S - Ldt z A'(R x TQ), which in hlcal

coordinates reads 0 = -(dq' - i'dt) + L d(.
We recall that a Cartan symmetry is a vector field Z E X(R x TQ) such that there

exists a function F E C-(R x TQ) satisfying £z(-,, = dF, or in an equivalent way if
i(Z)dO I. = dG, where G = F - i(Z))-) t,: then G is a constant of the motion and Z is a
dynamical syiitietry (i.e.,/ Lz = h117). Carttal symmetries which are I -jet prolongation

of a V'ctor field in R x Q, i.e. Z = X1, are called Noether symmetries. We airni
to express the symmiietry properties in ternis of the Lagrangian. So we introdncte the
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following definition: A ir-vertical X E .T(7rO) is said to be a generalised symmetry of
the Lagrangian L iff there exists a function F E C'(R x TQ) such that dx, L = dT(1)F,
where X' E X(7r 2 1 ) is the 1-prolongation of X. Then, it is possible to show [8]:

Theorem: If X E X(rio) 7r-vertical is a generalised symimetry of a regular La-
grangian L, then the function G = F- O(X) is a constant of the motion of the system
defined by L. And, conversely, if G is a constant of the motion of such a system, then
there will exist a generalised symmetry X of L with associated function F = G + 0'(X).

This generalised concept of symmetry leads in a natural way to a geometric version
of the Second Noether's Theorem: let {Xk}k=o,...,R be a family of ir-vertical vector

fields along 7r], 0 and let also E be an indeterminate function in R. Then, X, will denote
the 7r-vertical vector field along 7rio X, = Ek 7rt(d•-e)Xk E X(ro), where dk means

dke
t---£if k 5 0 and d'T_-

The it-vertical vector field along 7ri,o. Xý E X(7rto), is said to be a gauge symmetry
of L E CC(Jirt) if X, is a generalized symmetry of L no matter of the choice of the

arbitrary fumttions e. :.... there exists a function F. such that d\(lL = dT,) F. This

is equivalent to say that 6Lv(X, o rr2, 1 ) = -dT(,)G, with G, E C'(R x TQ) given by
G, = F, - 0'(X,). It can then be proved that:

The Second Noether's Theorem: If the above vector field along r~j), X, is a

gauge symmetry of a Lagrangian L, then L is singular. Moreover. the identity

R

Y,' -= i +2,k+2(--dT)k ak E Cý(.jR+
2
ir) = 0,

k=0

holds if and only if X6 is a gauge symmetry and the corresponding function F, can beR •k
written as a sum F, = o(idz)F&.

3. OTHER APPLICATIONS

Given a Lagrangian function L E C'(TM) we associate to it a Poincar&Cartan
1-form OL = S*(dL), the Legendre map FL : TM - T*A' and the time evolution
operator KL : C'(T*M) - Cý(T-W). They can also be redefined as sections along
maps: The 1-form 0L is semihasic and can be seen as a 1-form along T, OL C A(r).

(OL/=v')(dq' o r). It is identified in this way with the Legendre map.
Let X be the natural diffeomorphism between T*(TM) and T(T*M). with coordinate

expresion X.(x, v,p,,p,,) = (xp,,, v,p,). Then K = X odL maps TM in T(T*M) in such
a way that TT. Ml o K = FL, say, K is a vector field along FL. In coordinates, K is
given by

K = v (ro YFL + "L ( a o .L

and it is very useful to relate constraint functions arising in the Hamiltonian and La-

grangian formulations respectively.
Finally we want to point out that vector fields along maps are also relevant in the

study of degenerate systems: Let (N, w) be a symplectic manifold and 0: P -- N of

constant rank. Given a 1-form o in P, we look for a the set of points in which a solution
of ir(*w) = a exists, where F is a vector field in P, i.e., we are interested in the
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subinamfold i(.: C -* P of P in which such a solution F' E .(C) does exist, namely
ir,( 0 ic)*-) = ito.

The above problem may be splitted in two. First we study the conditions for the
existence of X E X((O) such that ix' iia and then we determine the conditions for X
to be image under To of a vector field in P. This is equivalent to the original problem
because of the relation 1 Too--' = ir( *•'). The second step is but the condition for the

solution to be tangent to P.
Using a well-known result of Linear Algebra we see that the equation i~v,.: = o

ha~s a solution with X G .t(O) in p E P iff it satisfies (z.o(p)) = 0 for all z C T P
such that ip6(z) = 0. Remark that if X is a solution and Z E X(O) is such that
ý(o(p))(Z(p)) E IerT 0€. Vp E P then X + Z is a solution too. When o is exact.

0 = dF, if for n C uInag o C N the subinanifold 6-l(n() is connected. then the above

condition is equivalent to F to be o-projectable, namely there exists F E C'(. N) such
that F*(P) = F.

The generalization to the case of a presymplectic manifold is: the eqquation i . n
admits a solution in p E P iff (z.to(p)1 = 0 for any z C T P such that Tro(z) C rad(&).
where rad(w.') = E TN t -'.') = 0 Vi Em TN}.

Once the condition holds in P we look for the existence of a vector field F in P
such that TQ o F = X. which has a solution iff the equation Tpo(F(p)) = X(p) has
solution for any p E P. This is equivalent to (X(p). A) = 0 for any A of To,*(,N such

that TPo(A) = 0. or in other words iff (t. X) = 0 for all , G A'(0) su.-h that T*co o = 0.
This gives rise to an inunersed submanifold i I: P, - P of P and we repeat the preceding
steps.

If the image by o is aki innmersed subnaam:ifold j:; N - N of N. then a similar
algorithm is used for finding a solution in Nt). If ( is a constraint function for N. then

"( is a constraint fuiction for P. This is a generalization of what happeins with the
theory defined by a singular Lagrangian when 0 is the Legendre transformation.
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1. Introduction

Regge calculus [1] has been around for more than 30 years, still its
applications have been rather limited. We enlarge Regge's original
description of the metric field by the addition of a connection, in order to be
able to set up a first order formalism, where the metric and the connection
are varied independently. This formalism would be evidently closer to
normal gauge theories of the Yang-Mill type, although there is of course 'he
n-bein field which makes Einstein's theory very different from Yang-Mill
theories. We choose as the gauge group the Poincare group as the most
prominent example among the numerous attempts to formulate Einstein's
theory as a gauge theory [2]. In this theory we encounter in general torsion, a
subject which has so far been neglected in Regge calculus (see Ref. [3] for
an exception). If torsion becomes important at the subatomic level, as it is
sometimes suggested, then it is of course interesting to study approximate
solutions to the field equations on a small scale lattice, and this can be
conveniently done by using Regge calculus.

2. Teleparallel Theory

First we want to show how the pure translational gauge theory arises
on simplexes. A translational gauge theory can be regarded as a special
case of the full Poincar6 gauge theory, where one chooses the Lorentz
gauge connection to be trivial everywhere [4]. The frame field e is now no
longer locally determined only up to local Lorentz transformation but rather
fixed up to an equivalence class of global Lorentz transformation, which
adds in the 4 dimensional case six degrees of freedom to the frame. One
defines the teleparallel connection wT by requiring that the frame is parallel
transported along itself, De=O. This condition induces w-r through

wT = e-le(1)

which has no curvature, because from De=O follows that D2e=O, hence wT
is integrable. To state it simpler, the components of the vector relative to one

*permanent address: Institut fOr Theoretische Physik, FU Berlin, Arnimallee
14, W-1000 Berlin 33, FRG
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frame stay the same in any frame and define in such a way an absolute
parallelism [5].
For the simplicial manifold one has to define an orthonormal frame e inside
each simplex. The frame determines the edgelengths of each simplex by

l2ij=elijebil~qab (2)
where we define

eaij:=fea .

The condition that the edgelengths on the common boundary of two

simplexes 0c1 and 0Y2 agree can be written as

12ij(e(a0)) = 12ii(e(0C2)) for all (ij) in a1 r 0a2:=012.

The knowledge of the 10 edgelengths is not sufficient to define the 16

components of the frame. In [61 we held e constant on each simplex ar, but
this can be regarded as a special case of the more genera: assumption that

e is allowed to vary linearly in a. This will give rise to a constant WT
according to (1). If we consider only metric compatible connections, then
frames on a point of the boundary of two adjacent simplexe3 are related by a
linear, isometric, orientation preserving mapping. These connections have

been investigated by us before [6]. Let us recall that two vectors v(xal) and

V(x0(2) are called natural parallel if they can be obtained by parallel transport

from the same vector in T(x0ai2), the tangent space at x. The subscript x

refers here to a common point of the specified simplexes, i.e. a point on 0.12.

The parallel transport LC of the Levi-Civita connection F can then be defined

as a linear, isometric, orientation preserving map from T(x0a) to T(x0 2 ) that
respects natural parallelism. The parallel transport w of a general metric
connection MC, that in general carries torsion, is a linear, isometric,
orientation preserving map. It is related to an orthogonal matrix Qabin the
following way:

MC(ea(xa1)) = Oab(LC(eb(xal))) (3)

This somewhat awkward expression results from the fact, that while the

metrics in 01 and 0c2 agree on 012, they still can differ in the normal direction

to 012. In the case when we cover 01 and 02 with a common metric, LC is
represented by the identity map and we can simply write

ea(,0l) = Oabeb(xy 2). (4)
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The matrix 0% can at most vary linearly on a12, due to the initial assumption

that e changes linearly on every simplex. A constant matrix Oab on 012, as in
reference [6], can be obtained by imposing either the condition that

e(o)=constant, or requiring that wT(a1)=wT(02) on 012. Oab represents the
integrated contortion one-form K. Because MC has no curvature, the
Einstein-Hilbert Lagrangian LE-H vanishes identical and is not suitable for a

te~eparallel theory. Because schematically R = Rp + KAK + (total
divergence)=0, where Rr is the curvature of the Levi-Civita connection, one

alternative is to use instead RF =-KAK in the Lagrangian to obtain an
Einstein-Cartan analog of LE-H.

3. Poincar, Gauge Theory

The second way to generate torsion is via the connection, this time
regarded as independent rotational degree of freedom of the Lorentz part of
the Poincare group. Inside each simplex, where we have a differentiable
manifold, we augment the Levi-Civita connection F with a metric compatible
contortion one-form K which has therefore values in SO(3,1). To preserve
the piecewise linear structure we require that K is constant in each simplex.
This time we impose no boundary conditi( because this would be to
restrictive. We make use of the simplicial aiine coordinates of Sorkin [7].
Given are n+1 barycentric basis vectors ei, together with a barycentric dual

basis ei, which satisfy lei = lei =0 ,and _ei®ei = 1l, i=0...n.

The inner product is normalized according toSn 1i--jnl
<ej,ej>=ýi := •

"n+1

Sorkin has shown that the metric gij is expressible in affine coordinates as

ii = 12 mn6nm ij. (5)

The affine coordinates define an affine frame e as an invertible map from the

affine space An to Rn. The inverse relations are eaieib = 6ab, eiaeaj =&i, with

a,b =1 .... n, and i,j=0,1,....n. Also, like usual, giffqabeaiebj. For the tor'-on free

case F vanishes in each simplex 7. The general connection one-form can be

written as w = F + K. In each simplex we express K in affine coordinates by

applying it to the affine vector basis, K(ei) = K. Because of linearity we find

'hat =0. In each simplex the curvature two-form is R = dK + KAK = K'K.
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The contribution SK of the contortion to the Regge action SR takes therefore
the following form:

SK = jKafAKfbAeCAed~abcd = IVOl((a)Kiaftkjfbcmedn:iimnFlabcd

=1VOl(0)[Kijlrngn(nm - kdlkjln•gnm] . (6)

One can show that the contribution of K on the n-1 simplex boundary is a
complete divergence, so that we only have to consider contributions from the

interior of the simplex. The variation of SK with respect to kiJk leads in the

source free case to RiJk =0, whereas 5S/812 ij (S:=SR +SK) leads, after
insertion of K=O, to the standard Regge equation [3], as is expected from the
continuum result. The use of the simplicial coordinates simplifies the
variation of Sk with respect to lij, which will become important for treating
nontrivial spin-matter distributions. One should add, that it is possible to go

over to a true first order formalism and use the affine n-beins eai(o) instead
of the edgelengths lij 2 . This would be closer to the gravitational continuum
formalism of exterior forms. The inclusion of Dirac fields as spin sources is
necessary in order to study realistic effects of torsion on space-times. In this
respect it might be also interesting to formulate the higher derivative
Lagrangians of Hehl [8] on the Regge lattice in order to obtain dynamical
torsion. Although curvature square terms are difficult to formulate on
simplexes, this is not so for terms which are quadratic in the contortion.
Further studies are under investigations.
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A symplectic derivation of the dynamics

of any smoothly deformable medium

E.Binz

Introduction

Let M and N both be smooth orientable manifolds. M, thought of a body consisting of a
deformable medium, is supposed to be compact. N shall be Riemannian. A configuration of
the medium is a smooth embedding of M into N. We will show that the equation of motion
of such a medium moving and deforming in N can be derived in the realm of symplectic

geometry on the configuration space E(M, N), as in the Hamiltonian case. Moreover from
this equations naturally splits off a generalized wave term. Generalized means here that
the Laplacian is configuration dependent. External force densities are neglected here.

1. Geometric preliminaries

Let M be a compact, oriented, connected, smooth manifold and N be a connected, smooth
and oriented manifold with a Riemannian metric < , >, assumed to be fixed. A configura-
tion j in the smooth Fr6chet manifold E(M, N) of all smooth embeddings of Ml in N (cf.
[Bi,Sn,Fi]) defines a Riemannian metric re(j) on M by setting

m(j)(X,Y) :=< TjX,TjY >, VX, Y E F(TM).

(More customary is the notation j* < , > instead of rm(j).) We use F(E) to denote the
collection of all smooth sections of any smooth vector bundle E over a manifold Q. Let
V be the Levi-Civith connection of the Riemannian manifold (N, < , >). The Levi-Civitt
connection V(j) of m(j) on Al is obtained as follows: If Y E r(TM) then we set

Tj(V(j)xY) := VX(TjY) - (V-(TjX))'"

for all X. Here I means the normal component with respect to < . >. Instead of

(Vx(T 1X)) I we write S(j)(X, Y) and call S(j) the second fundamental tensor of j.

The metric < , > on N induces a "'Riemannian structure" 9 on the configuration space
E(MI, N) as follows: For j C E(M. N), let p(j) be the R ienannian volume defined on Al
by the given orientation and the metric iu(j). We set

90(1 2 := I < 11, 12 > 11(J)Q.(j)(11 ,1.2 )

for any two tangent vectors 11,12 E T, E(11, N) = {E C"(AI, TN) Ir., o I j } abbre-
viated by C'(AI, TN), where rN : TN -- N is the canonical projection. It is clear that
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G(j) is a continuous, symmetric, positive-definite bilinear form on C•(M, TN) for each
j E E(M, N).

2. A metric B on E(M,N) and its associated one- and two-forms
The dynamics of deformable media to be introduced later relies on the metric 6 on the
configuration space E(M, N), a DiffM-principal bundle (cf. [Bi,Sn,Fi]). This metric will
be based on a density map p: E(M, N) -* C'((M, II?) supposed to satisfy p(j)(p) > 0
for any j E E(M,N) and any p E M as well as a continuity equation

dp(j)(k) =- 2trm(j)dm(j)(k) Vj E E(M,N) and Vk c Cr(M, TN)

with tr,(j) being the trace formed with respect to rm(j) (for the existence of such maps
cf. [Bi]). The symbol d denotes the differential of maps of which the domain is a Frechet
manifold and which assume values in a Frdchet space. The metric B is then defined by

B(j)(l1,1 2 ) p(j) < 11,12 > p(j)
Al

for each i E E(M, N) and for each pair 11, 12 E C(11(, TN). This metric depends smoothly
on all of its variables.

The Levi-Civitis connection and the one- and two-forms associated with 1 are based on

dB(AC ,,k 2 )(h) = (5(j)((TAi,(h))v'r', KA2) + B(j)((T)C2(h))r"' KI)

holding for any two KI,K 2 E r(TE(M,N)) and any h E C'(M.,TN); 7crt means the
vertical component formed in T 2 N. This shows that the covariant derivative

FV: F(TE(M, N)) -, r(TE(M, N))

given by

Vk&C(p) = (T(k(p))) VI, k E TJE(M,N) , VpE M and Vj E E(M,N)

for any choice of £ E FTE(M, N) is the Levi-Civith connection of B. Here T1£ denotes
the tangent map of the vector field £ on E(M, N) at 1. The one form 05 on TE(M, N) is
given by

Os(l)(k) := -13(j)(l,TrtE(k)) = -13(j)(l.Tr,, o k).

Here 7r- : TE(M, N) - E(M, N) is the canonical projection. The two - form wo associ-
ated with B reads as



729

wB(l)(k,,k 2 ): = dO,(I)(k,,k 2 ) = B(j)(ke' t , TJN kl) - B(j)(k", t T~rN ok 2)

=/P(7N o 1)w'(ki,k 2 )p(7rN 0 1)

for any two kj, k2 E CN(M, T 2 N) and any I E C.y(M, TN). Here 2 is the pullback of the
canonical two - form on the cotangent bundle T*N of N by the metric <, > on N.

3. One-forms on E(M,N) as constitutive laws

The sorts of constitutive laws describing the quality of a deformable medium we have in
mind, will be special one-forms F on the configuration space E(M, N), in accordance with
the definition as given e.g. in [E,S] and [Bi]. They are precisely those which yield a well

defined force density 4D : E(M,N) -4 TE(M,N) on M.
On the Frdchet manifold A'E(M, TN) of all smooth TN-valued one-forms covering em-
beddings we have a natural metric oj, called the dot metric (cf. [Bi] and [Bi,Fi]), which
is nothing else but the Dirichlet integral. The one-form F on E(M, N) is said to be g-
representable if there exists a smooth section a : E(M, N) - A'I(M, TN) of the bundle
A' (M, TN), such that

F(j)(1) = Ja(j). V/y(j) = qj(j)(a(j). VI)
Al

for j E E(M, N) and I E C,(M, TN). The qo-density a of F is called the stress form.
For the definition of the dot product in the integrand and for the proof of the following
theorem we refer to [Bi], [Bi,Fil and [H61.

3.1 Theorem:
F is oq-representable iff it admits a smooth vector field R : E(M, N) -- TE(M, N), called
a constitution field, for which

F(j)(1) = J < A(j)-(j),I > P)

Al

holds for all variables of F. The map A(j)7h(j) E T7E(M,N) is the (internal) force
density at the configuration j E E(M, N). Vica versa, if 1$ : E(M, N) -- TE(M. N) is a
smooth vector field satisfying the integrability condition for the problem

A(j)-(j) = P(j) Vj E E(M,N)

then F determined by R is (3-representable with stress form Vh. If dim M = dim N, then
T given by T(X,Y) := (V(j)xy(j), dJ o Y) for any X,Y E FTM is a stress tensor of
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which (P(j) is the divergence for any j E E(Af, N). Thus H and T describe the medium

equivalentiy.

As an example of a constitutive law we consider the derivative dA of

A := [#.(j) Vi E E(M, N),

Al

called the volume of M determined by m(j). The derivative can be represented as

A(j)() T -V(j)IP(J) = (j)(A(j)j,) Vj E E(M,N). (3.1)
M

A(j)j is defined as follows: Let V* denote the covariant divergence, then

A(j)j = -V*(Tj) (3.2)

for some j E CT(M, TN) determined up to a harmonic field along j (the integrability

condition of (3.2) is satisfied). Clearly A(j)j is pointwise normal to Tj(Mf) C TN as one
immediately deduces from the theorem of Gauss. j can be chosen such that it depends
smoothly on j. Since S(j)(X, Y) := (Vx(Tj)Y)' is symmetric in X and Y, we find

dim Al
V*(Tj) =-tr S(j) - S(j)(Ej, Ej)

E,..., Edim m being a moving orthonormal frame on AI. The vector field tr S(j) along j
is called the mean curvature field. Clearly Tj and Vj are identical.

Let F be any constitutive law with constitutive field 'H. We will split off dA from F.
based on (3.1): Recall that L?(.M , TN) is the space of all vector fields I of M along j for
which f < I, I > p(j) = j11112 is finite. Then taking the component of A(j)-(j) along) in

M
L'(M, TN) for each j yields

A(j)7-(j) = a(j). A(j)j + A(j)"I:(j) (3.3)

for a well defined a(j) E fR and some Iii(j) E Cj7Z(M. N) for which "ii(j) is orthogonal

to A(j)J in L2(M, TN). By looking at (3.3) we have immediately the following:

3.2 Theorem:
For each constitutive law F, the constitutive field 7" determines uniquely a smooth map.
the capillarity a : E(M, N) - JR given for each j E E(A, N) by

aap) := n(j)(situnueyit
and splits uniquely into
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Ri(j) =a(j)-J_ + h-i (j) Vi E E(M, N).

Here 7R1 has vanishing volume sensitive part, is L 2 -orthogonal to A(j)j and varies smoothly
with j.

4. The dynamics determined by a constitutive law
Let F : TE(M, N) --.. 1 be constitutive law with a smooth constitutive vector field
-H E r (TE(M,N)). The (not necessarily exact) work form WF : T 2 E(AI,N) -- JR is

given by

WF(1)(k) :=- dEki,(l)(k) - (7r*F)(1)(k)

for any I E TE(M,N) and for any k E T 2 E(M,N) with ekjn(j)(I) := 18(j)(l,l). The
dynamics determined by F is defined by the unique vector field 2F for which

wB(XF, X) = WFr(') VX' E FT 2E(M, N).

Its existence is established in the following which is easily verified:

4.1 Theorem:
Given a constitutive law F on E(M, N) with constitutive field 7R then

XF(1) = S•o 1 + p(N )- (A(7rN 0 l)R(rN 0 VIE TE(M) N)

where vert denotes the pointwise formed vertical lift on N determined by V and where S
is the spray of <, > on TN.

The theorems below are also immediate, the second one is based on theorem 3.1.

4.2 Theorem:
The equation of a motion a : (-A, A) -- E(M, N) subjected to F with constitutive field
7R E F(TE(M, N)) and with any initial data is given by

d &(t) = I
Tet motin op(a(t)) A(•,(t)) '/(a )).

The motion a is free i.e a geodesic iff F = 0.

10
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4.3 Theorem:
Let F be a constitutive law with constitutive field R". Any motion
a (-A, A) -* E(M, N) (with any initial condition) is subjected to F iff

a(a(t)) - 1
(t) = ( -(t)) A(,(t))U(t) + t A(,,(t))hi,(o(t)) Vt E (-A, A)

Moreover the balance law

dgi. (a(t))(&(t)) = a(o(t)) , dAF (a(t))6(t) + irý F, (a(t))or(t) Vt E (-A, A)

holds true. F, is the constitutive law associated with 7i, the volume insensitive part of 7X.
If N is Euclidean then 5(t) = a(t); if in addition I + dimM = dimN and V(a(t)) is the
positively oriented unit normal field along a(t) then

A(-(t))a(t) = H(a(t))A(a(t))

with H(a(t)) being the non normalized mean curvature of a(t).
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On the role of symmetries in PDE - problems

E. Briining

0. Introduction: It is fairly well understood that and how by various mechanisms the
presence of a compact symmetry group in a PDE - problem typically induces a

considerable simplification . This happens for instance in the symmetric Ljusternik -

Schnirelman multiplicity theory (reference [1] and references there), the principle of

symmetric critically [6], and the symmetric bifurcation theory [4].

In contrast to this standard role it has been discovered and partially understood
recently that and how the presence of a non compact symmetry group can add a new

complexity to the problem leading to a considerable complication [2, 5, 3, 11. This we want

to explain here for the following class of eigenvalue - problems for systems of global

semilinear elliptic operators, i.e. for the problems to determine a real number A such

that the equation

- A u(x) = A g(x, u(x))

g: IR , n > 3, N > 1, g(x,0) = 0 a.e. (0.1)

admits a solution u = u, : R- •

We decide to look for solutions in the space E of finite energy functions

U : "R .1 K(u) - IDu.i1 < 
(0.2)

E is defined as the completion of bý (UK"; •) with respect to the energy norm

2* _ 2nf jDfll2 . Note that E c L (IR" ;R') ,2'* 2n

We rely on a variational approach (constrained minimization) and assume accordingly

g(x, y) = L(x,y) , G = potential of g , G(x,0) = 0 a.e. (0.3)

g, G are Carath~odory - functions.

On the domain

D(V) = {u E E I G(u) E L,(,n)} , G(u)(x) = G(x, u(x)) (0.4)

we define

V(u) d G(u)dx. (0.5)
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1. Constrained minimization: The symmetry group.

For a nonempty level surface V'1(c) = {u E D(V) I V(u) c} denote
I I¢(K,V) = inf {K(u) I u E V'1(c)} (1.1)

M = Mj(K,V) = {u E V' 1(c) I K(u) = I1 (1.2)

S = Sc(K,V) = = (v) E V"(c)' I lim K(vj) = Ijpoo

(1.3)

The symmetry group • = (K,V) for (0.1) is defined by

S= {4,: D(V) -. D(V) V(4b u) = V(u), K(4u) < K(u) V u E D(V)} (1.4)

and it follows immediately
u E M * = {du E Y} CM (1.5)
1 = (vj) E S , % ¢) E Y¢ 11 ý(v) = (¢vj) E S . 0

Case studies show that Y can contain a compact subgroup (e.g. rotations), a
noncompact subgroup (e.g. translations), and some discrete elements (e.g. spherically

symmetric rearrangement of functions). In the local version of (0.1) one shows by means of

compact Sobolev embeddings

S C = {v E SI v = w - lim vj() E V'(c) for some subsequences}

but in our global version because of the action (1.6) of the symmetry group the following
subclasses of the space S of minimising sequences for (1.1) can occur :

C 2 = {v E S v = w-limv ) V'(c) for every subsequence}

C = { E S • = (%) E Y E() C1}

C4  Ev S I(v E C2 V E

The occurence of these subclasses C2, C3 , C4 , adds a new complexity to this

minimisation problem. The subclass C2 occurs whenever the symmetry Y has a

noncompact subgroup corresponding to unbounded orbits in the underlying Euclidean

space R"".

Recall that by the Lagrange multiplier theorem every minimiser u E M which is a
regular point of V' 1(c) is a weak solution of(0.1), i e. it satisfies

K'(u) = A V'(u) (1.8)

for some A = A(u) E it , if K', V' denote the Frdchet derivatives.
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2. The concentration functional Our growth restrictions for the potential G are
that Vy E n almost all xE R

2•*/p 2*/q

IG(x, y)( _ A(x) + Bt(x)ly1 [IyI - 1] + B 2(x)Iy, [IyI > 1] (2.1)

with 1 < p S 2*, 1 < q < 2*; A E LW(Un), B, E Lp'(1R),

B2 E L (Rn), and if p = 1: ll'(r)Bill 0 -4 0 for r - oo where

B(r) = {x E [R I [xII S r} and where the prime denotes the H61der - conjugate

exponent. And similar bounds for g but with exponents lowered by 1 . It follows

D(V) = E and V E W'(E) (2.2)

Lemma: F S -, I is well defined by

Fc(V) =li (lir (inf 1ill , 4' vj i))11) (2.3)

and satisfies
0 <_ Fc(v) S A(y) - sup hI (vj)ll• (2.4)

F y(0v) = F,:v) Vv E S VýEJ' (2.5)

and one shows

Theorem : F,(v) = 0 iff 3 ý E ;I such that u = !(v)

satis"-cs the concentration condition (C)

V > 0 3r > 0 : sup II-(r) G (ui <))II t (C)i Dr

Therefore Fc is called the concentration functional. It follows

Lemma: Fc(v) = 0 * v E C3

and thus

Thcorem : There are minimizers for the constrained minimization problem (1.1.), i.e.,

M f *. If V'(c) contains only regular points every u E M is a weak solution of

(0.1), i.e., u satisfies (1.4).

" ""IL == . .. imImiammInI Inir i
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Remarks: (a) it is known how to implement that V'1(c) contains only regular points
[1, 2]. (b) By an extended version of elliptic regularity theory [1] one can also obtain

classical solutions of (0.1.). (c) In the presence of a symmetry group of scale
transformations Ta: E -, E leaving e"' invariant and satisfying for all

a > 0 and all u E D(V)

V(Tou) = os V(u) for some s E IR

K(Tau) = a")'s K(u) for some 0 < y < 1

one can proceed similarly to show that every A > 0 is an eigenvalue of (0.1) even under
much weaker growth restrictions on 0, allowing D(V) j E . Then in particular the

existence of a solution of the system of global classical field equations (A = 1 in

0.1)) follows.
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SECOND-ORDER DIFFERENTIAL INVARIANTS FOR THE
POINCARE, GALILEI AND CONFORMAL ALGEBRAS IN

MANY-DIMENSIONAL SPACES

Yegorchenko Irina
Institutc of Mathematics of th( Ukrainian Acadtmy of Sri(ncf

Repin Shred 3. Kiev 4, USSR

We investigate differential invariants in the framework of symmet, y analysis of dif-
ferential equations. Knowledge of differential invariants of a certain algebra or group
facilitates classification of equations invariant with respect to this algebra or group.
There are also some general methods for investigation of differential equations which
need the explicit form of differential invariants for these equations' symmetry group.
Differential invariants were considered by S. LIE [3]. TRESSE [3) had proved the
theorem on the existence and finiteness of a functional basis of differential invariants
for a Lie algebra.

Speaking about differential invariants we mean absolute ones. Necessary defini-
tions can be found e.g. in [3, 3].

We adduce here a basis of second-order differential invariants for the invariance
group of the tree wave equation and describe sets of invariants for the invariance
group of the free Schr6dinger equation and for some of its subalgebras. The conformal
algebra AC(1. n) is defined by its basis operators

a

D = x.p, + upu, p = -2-- r = 1. 2. m

K", = 2.r,,D -. r~x~p,.

Here i is the imaginary unit, it. v take the values 0.1 .... n; the surnmation is implied
over the repeated indices, if they are small Creek letters. in the following way:

X'x =.r.r" =x2 - .-...-. r, g., diag(1.-I ..... -1).

We put that .x. and .r' are equivalent with respect to summation not to mix up signs
of derivatives and numbers of functions.

Statement 1. Any absolute differential invariant for the Poincare algebra AP( 1. n)0
(p,. J,) of order < 2 for a set of m scalar functions u = (?d. ui ...... ?I) is a
function of the following expressions:

,,•, R•(, ,. L ). •r
R ,S• ,. k )
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k= 1. n+l1; j=0. k: r=L .... o.

We designate as Rk. Sjk invariants of rotational group in Minkowski space

,/II k'tI1211 2P pp10'j + ..• .

p The rule of summation for Greek indices is as assumied above.

Statement 2. A basis of second order differential invariants for algebra .4((1.,0

and for a scalar function u contains n + 1 elements e.g. of the formn

1. when A = 0:

u. Sk(u,,,)(u ) 1.... n:

2. when A 5 0:

-Sýk(m,_)Uk( 2 /1\-), k= L ... n:

where

9 A•"- -+ (1)- U)( . 1, + )

k(0..) = 0.. 0.•2,3 ... .

Definition. Tensor, 0, and 9,b of order I and 2 Fre called covariant with r -,pvct to
some algebra I if

VO= (1~,0, + 0-9,O5 + 17,0

L = ( Y,s.-\). a,b.c= 1. .

X, aie first-order differential operators, P3. (7) are sotte functions. T'.. ,- are

skew-sytnmetric tensors.

It is easy to show that the expressions ,'k((,-). R..9,,.O,,). where 0,, 0., are

L-covariant tensors. are relative invariants of this algebra. Fturther we adduce
tensors for which p, o•, = 0 and Sk.Sý..k. Rk are absohlue invariants.

I. . . . . - "G un n i im ] I Ii i.
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Such covariant tensors for the conformal algebra AC( 1. ) and a set of m scalar
functions u' are of tile form

1. when ,\ 0:

(• = t'/o: - ul,,f,, )( ,' )'"'

9r = (o I )2!\ -I (Ai,,, + 1 - )o./o -

2. when A = 0:

Hlere we do not assume summation over r.

The Galilei algebra .4(; 2( 1 ) which i the s1 v out r algebra of the free Schr6dinlger
equation is defined by basis operators [31

o .0
PO = ) , = I J =. G~ ~p. , / p, ;ix

J = i(i.C, O c"d). P) 2tpo j 1) + .t A [ '

.,4 = tJpo -t.r'•p, +,\t I + -. I: x,"= A...

AG(l, o) = (po.p1 ,.],.. G.I ,). , ;i( I. o) (po . .l..1. * .. l).

To simplify the form of invariants we introduce tie chan.e, of dependelnXt1. variable:

Vý = expl. hno(D) = tan'(lmi./l(e.).

For tile algebras listed below we adduce. only invariatit, depending oni (, q),. 0,t
and absolulel. covarianit ten,,rs:

1. A(G(l.I). 1 o $0:

f", = ,1 + 2,, .+ 0 , P ,

2.'t(;'z( in). in # O:

2 .1 .GI( .. 1 0:

0). 1l, vJ(.11 " .1•"- ,1('" • q" \ (). •[ ,,f)•( }•' ( * 0+
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3. AG 2(1,,n). 0$ : A=-n/2:

N,- A -1 -2 M -. 3 1

exp(- V+t- V,2 ' \V2' - 1

J n

where summation over lowercase Latin indices is as follows:
, ~~~xox• =- +± + .. +.,.2 , V\1  %w2m¢, + @• + OJ'•

XaX =.\. x2+ +.1 , = 12im.\. + MD.,+.(P

A-2 + '12,

Examples of various Poincare and Galilei invaruant equations for scalar fields can
be found in [3]. With the described bases of invarants it is possible to construct wide
classes of nev ýnvariant equations.
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ON COMPLEX NONLINEAR RELATIONS FOR THE WAVE MECHANICAL DESCRIPTION OF

THE DYNAMICS AND ENERGETICS OF CONSERVATIVE AND DISSIPATIVE SYSTEMS

9ieter Schuch

Institut fdr Physikalische und Theoretische Chemie, J.W. Goethe-Universit~t,

Niederurseler Hang, 0-6000 Frankfurt-Main 50, Federal Republic of Germany

In wave mechanics, the information about the state and dynamics of a system is

contained in a generally complex state vector or wave function and can be ex-

tracted by suitably chosen operators. The time evolution, as well as the energy

of the syctem, are determined by the Hamiltonian operator H , which can be ob-

tained from the classical Hamiltonian function via so-called canonical quanti-

zation. Thus, the differential equation governing the dynamics of the system

can be written in the form

ihF = ti P = 2 AMT+VY (1)2mn

which is the well-known linear time-dependent Schrbdinger equation (SE), con-

taining the conservative potential V. The energy of a system described by this

equation is a constant of motion and the evolution is reversible in time.

Attempts to include dissipative forces, such as frictional forces which trans-

fer mechanical energy into other forms, like e.g. heat, thus opening the pos-

sibility of having an irreversible time evolution, face several difficulties.

In particular, a corresponding wave equation cannot simply be obtained via ca-

nonical quantization, because, for dissipative systems, a classical Hamiltonian

with the same physical meaning as in the reversible theory has not been known

until recently [1].

In earlier works 12-51, we have shown that it is possible to obtain a satis-

factory wave equation, starting from Newton's form of classical nmechanics and

using three axioms taken from experimental experience: (I) the uncertainty prin-

ciple or criplementarity, (2) the occurrence of interference phenomena in expe-

riments with material systems, and (3) the correspondence principle, specified

in the form of Ehrenfest's theorem. This formalism was first proposed by Made-

lung and Mrowka [6,7) in order to "rederive" the SE for didactical reascns. We

extended the method by adding a diffusion tern) to the differential equation for

a distribution function p(ý,t), thus changinq the reversible continuity equation
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p + div ji + div(p•) = 0 (2)

into the irreversible Fokker-Planck-type equation

0+ divO+jD)=p+div (pv-DAp = 0. (3)

This equation for the wave-intensity-like quantity p can be separated into

equations for the complex wave-amplitude-like quantity Y and its conjugate

complex, using the additional condition
-D P = ' (n P - <In p>) ,(4)

p

where <...> = f *...iTd; denotes mean values. The resulting wave equation

is the nonlinear Schrbdinger-type equation (NLSE)

hT= A + V + y (n-)) , TY

where the logarithmic nonlinearity is connected with a linear-velocity-depen-

dent frictional force with friction constant y. Properties of this equation,

special consequences of the additional nonlinear tern, and exact solutions

are described in detail in Refs. [2-51.

Using the most simple, but also most important examoles, namely, the rne-di-

mensional free notion Ecid tne one-dimensional harmonic oscillator, it -1i1l te

shown that, for the usual reversible as well as for the frictionally camped

irreversible case, it is possible to describe the dynamical properties ccn-

tained in the time-dependent (linear and nonlinear) S~s equally well v.' a set

of Newtonian equations of motion. However, these equations are coupled in a

unique way, which is connected with a rather unusual "conservation of angular

momentum" in a Ou'mOv. plane.
m

For the potentials Vý anu V •- wx: it is possible to obtain Gaussian sha-

ped wave-packet-type (WP) functions as solutions of the usual SE as well as

of our NLSE. The 1rt-ttictc aspect is expressed by the fact that the -s:,''

of the WP follows the classical trajectory; the wav. aspect is contained in

the WP width . The equations of motion for these two dynamical properties are

not independent, but uniquely conneLted.

A Gaussian WP solution of the reversible SE (1) can be written in the form

'1̀ (x,0 = NL (W ep { i [ýE) j2 <(p) i + K()] . (6

where = x - <x>= x - n(t) , i.e. the maximum of the WP is at the position of
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the classical trajectory, <x>= n(t). NL is a normalization factor, <p>= mn,

and the purely time-dependent term K(t) can be considered as a phase factor

that will not be relevant for the further discussion. The width of the WP,
<R2>11 is connected with the comp~ex quantity y(t) =y(t) + yI(t) in front

of the quadratic term ý2 in the exponent via

2fi h IM (R2 a2([ (7)

Inserting WP (6) into Eq. (1) yields the usual Newtonian equation for the

mean value of position, determining the path of the WP maximum (for V =0,

in all following equations the terms containing w disappear),

TI + W2 1 = 0 (8)

where overdots denote time-derivatives.

In order to determine the time dependence of the WP widtn, the cc'm:ksL.

(quadratic) ýiu;L,•ia. equation of Ricatti-type

2 C) 2 = 0 C

has to be solved. This means that a coualed pair of differential equations

has to be solved. From the imaginary part of Eq. (9) follows

25 1 C,
SY- _ I

inserting this into the real part of Eq. (9) finally lead- to the (real)

Newton-type equation
11IU• + W_2 ct - (1

ci3

for mt= [(2m/•i)< 2>] 1L , which is up to a constant factor equivalent to the

WP width.

Thus, Eq. (11), which formally differs from Eq. (8) for the WP maximum only

by an additional inverse cubic term I/ct'3 , determines the time dependence of

the WP width. Equations (11) and (8) can be solved analytically.

The corresponding equations for the NP solutions of our NLSi are

71 + 7i1 + W2 71 =0 (10)

for the WP maximum (particle asoect) and

+ . ,, (2 Y2 c
T +" 4 •- - (13)
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for the WP width (wave aspect).

In the case of the reversible SE, the connections between the dynamics of the
particle and wave aspects can be found by linearizing the Ricatti equation (9)

with the help of the ansatz

-y = , (14)

yielding the linear Newtonian equation

+ + 2A -0 (15)

for the compeex quantity u + i z (similar relations for the NLSE are given

in Ref. [81).

It can be shown (for details see e.g. Ref. (8]) that the imaginary part of A

is directly proportional to the classical trajectory and thus to the position

of the WP maximum,

ZPoo (16zp)
p - =x)=]() (16)

Furthermore, real and imaginary parts of A are uniquely connected via the rela-

tion

zu -u z=. (17)

A simple way to show the connection of 2 and G, or X, with the width of the WP

can be given, if X is written in polar coordinates in the complex plane,

U. •+i Z =' e , (18)

with (1= (Q2 +z2)1/2. The logarithmic time derivative of this quantity yields

-.. +ip . (19)
. cl

Compad-'n with Eqs. (14), (10) and (7) shows that the absolute value of A is

identical with the quantity ,t that is proportional to the square root of <xl>

and that I (20)

is valid. Thus, via c12 =6: + z= (2m/lý)<> knowledge of 2 (from the classi-

cal trajectory) and thus a (from Eq. (17)) also yields <x½>. On the other hand,

knowledge of a2 yields 9 , and thus via integration the the phase (p of X. Se-

paration of A in real and imaginary parts yields 2 and thus the classical path.

The important relation (20) can be proved again, using the relation connecting
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z and 6. Inserting G=ctcos p and 2=csin P in relation (17) yields

A A (21)zu - uz = { 1,(1

thus proving Eq. (20).

A remarkable similarity exists between the motion of the quantity X in a cc,,-

ptex plane, where X characterizes the dynamics of a c.i-d&:,c'v',aL problem

and the motion of a particle in a t.ca ttev-di;ezs-L,;zae plane under the influ-

ence of a central force.

Relation (20), 9 = , corresponds to cC,'seac act , c40,.L t -, ,tLr in

a compexc plane, a property which has i,- ceatsic.aZ , . The (real) New-

tonian equation (11) for c. corresponds to the radial equation of the two-diren-

sional motion in real space, where the 1/>13 term corresponds to a centrifugal

force!

Regarding the energetics of the discussed systems, it car be shown (for details

see forthcoming publication) that the difference between the mean value of -he

Hamiltonian operator and the corresponding classical ener.y, the enercy fluctu-

ation

can be considered as a ramilcnian function fzr the fýIutua~ion of Pcsitior

<x-> or c,, i.e. the -P width, respectively.

The corresponding Lagrano'.an, expressed in terms of u, Y , . and I reaGs

2[_(e~~ee) h (d:-, a:¢-cL - ca:c: )

The canonically conjugate -roaentum for the radial part is civen by

P-

and the Euler-Lagrange equations yield the radial equation %ll).

The canonically conjugate momentum for the angular part, cien bl

is not only a constant of motion, but due to the validity o' relation 2O0

it has the specific value

P• =26)
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So, the angular momentum for the motion of A in the complex plane is not only

conserved, but it is also a half-integer of l, whereas orbital angular momenta

in quantum mechanics usually are multiple 'ntegers of M. However, half-integers

of 1 are known from the spin, a quantity that has no classical analogue, simi-

lar to the angular momentum of the complex quantity A.

For our NLSE, an energetic invariant similar to (22) exists, that allows to

set up an equivalent Lagrange-Hamilton formalism for the position and momen-

tum fluctuations including dissipation.

The equations of motion describing the wave aspect are rather similar for the

SE and the NLSE, however, one important difference should be pointed out. Con-

sidering the equation for Y , it becomes obvious that due to the coefficient

(b) 2-Y
2 /4) of the term linear in m for our NLSE, it is possible to compensate

the effect of the extcrnal potential, if the "perturbation", expressed by the

parameter y, fulfills w=y/2. In this case, m and thus <'2> and the current in

the density equation (3) for the damped oscillating system behave like the cor-

responding quantities of a free particle without any friction. So, the addition

of a dissipative term cannot only be destructive, but on the contrary it can

also create a new kind of ordered coherent phenomenon, like a current in the

density equation, that, given the same external conditions, would not be pos-

sible without the perturbation. Possible connections with macroscopic quantum

effects will be discussed elsewhere.
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GRADIENT STRUCTURE OF GLOBAL ATTRACTORS FOR

DISSIPATIVE NONLINEAR NONAUTONOMOUS

PARTIAL DIFFERENTIAL EQUATIONS

Tepper L Gil and W. W. Zachary
(bmputational Science and Engineering Research CGnter

olward University
Washington,LC 20059 USA

1. Introduction

In a recent paper [31,we proved existence and finite-dimensionality of global
attractors for some classes of dissipative nonlinear nonautonomous partial
differential equations (KINAPIE)..While some results are known for attractors
in nonautonomous cases , very little is known about the detailed structure of
global attractors in this situation compared with the state of knowledge for
autonomous situations . In the latter cases, the simplst structure for global
attractors is obtained for so-called gradient systems. For these systems,
Lyapunov functionals exist and, under suitable conditions, the global attractor is
the union of the unstable manifolds of the equilibrium points. In the present
contribution,we discuss some aspects of a gradient structure for some classes of
INILNAP)Es. Examples illustrating the theory presented herein can be given in
terms of the classes of reaction-diffusion equations and nonlinear wave
equations discussed in [3].

2. Definitions and preliminary results

Following the formulation in [31, let u denote a solution of a DNLNAPIE in a
real Banach space B such that u(t-K) represents a solution at time t-4s (t _>0, s E R)

corresponding to given u(s)= 0 - B at time s. We consider a two-parameter family

of maps, called processes 121, V(ts) with the properties V(0,s)0--0,

V(t-0,s)0=V(0,s-t)V(t,s)0 for sE R, t,0 >0,4 E B.We shall be especially interested in
distinguished processes W related to solutions of the M-NAPLE by

W(ts) 0 =u(t-+s), u(s)= 0 . Let V be a process on B and let t E R. We call the E

translate of V the process Vtt,)4?(c(t)V)(ts)4=V(t,ti)$, for tŽ0, sE R. 1enote by
Qo(R,B) the Banach space of all bounded continuous functions from R to B. A

process V on B is called alto ost perimdic if the set {VT(ts)0, te R) is precompact in

Go(R,B) (as a function of the parameter sE R) pointwise in t00 and OE B. The
closure in Q,(RB) of the set of translates of an almost periodic process V with the
above sense of convergence is called the hullof V, 1tV).
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In [3,41 invariant sets were defined in terms of a skew- product structure for
PEEs in an anaiogous fashion to earlier work on nonautonomous ordinary
differential equations. To define this structure, consider the mappings

R(ts)(0,V)=(V(ts)p, a(t)V), VE H(W), OE B, SE P, tO.
In order to discuss nonautonomous gradient systems, we need three

fundamental concepts: unstable sets, backward extensions of almost periodic
processes,and an analogue for nonautonomous systems of an equilibrium point
of an autonomous system. The existence of backward extensions was proved in
[31. It is convenient to defme nonautonomous equilibrium points (as we shall call
them) in terms of properties of Lyapunov functionals. We define these in a
similar manner to those of Dafermos[2l for compact processes, a class of
processes closely related to our almost periodic processes.

SLU7NITIOV2./. Let V be an almost periodic process on B. A map L: I<B--R is
called a Lyapunov functionalfor V if:

(i) the one-parameter family of maps L(s,): B--R, sE R i
equicontinuous,

(ii) for fixed SE R, l(t-+sV(ts)O) is a continuous nonincreasing function oft

which is bounded from below and L(t-,V(t s)'.) __ L(s) for all t -0, sE P,

and IP belonging to an appropriate dense
subspace B of B,

(iii) if {tn IcR+is a sequence such that {Vtn is convergent in the topology

defined on the previous page, then the sequence {l_(t-ls-+tO)1is also

convergent for all sE R and all OE B.
A limiting Lyapunov functional generated by L is a map :L: RYIBAxV)---R

constructed as follows: for 7E H(V), SER, 0 E B, L(ZSO)=limL-(s-lt,) as n-- +

where (t)cR+ is any sequence such that Vtn-- Zas n-4 +- in the topology
defined at the beginning of this section.

IIRNITlOV22. ven V, Land Las defined abov,, ,ve define the subset P of B
to be the set of all extensions U of V as the process Z associated with the

extension U as in the relation U(t-O0,; )=2(ts•;UL(Os,1)) for t > 0, 0,s E P, runs

over IAV) such that L(4Z,U(as4))=O for all GER with L(Zs4)=fim sup l/t

[L(Z7-+s4tS,)) - L(Z s 0) 1.

P is nonempty[21 and is the analogue for nonautonomous gradient systems of
the set of equilibrium points for autonomous systems. We will apply the
preceding definitions to the distinguished process W. We say that a forcing
function f is admissible if ROt) is compact in (b(R,B). Examples of functions f
which satisfy this condition are given in [3,41. We only note here that this class
includes functions that are almost periodic from R to B.
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The backward extensions U need not be unique. In [31 we obtained backward

uniqueness from the injectivity of the maps ,•t )O=W(t,s*,),hE 1i0.The utility
of these maps is a consequence of the fact that, if the solutions of the OIN'4LNAPEE
are unique and depend on the forcing function f in a Lipschitz continuous

manner, then there exists a one-to-one correspondence between he lRf) and

VE I(W) such that W(t,s;h) = V(t,s;,f) for all tŽ0 and se R In 131, we proved
existence of global attractors for nt(ts) assuming, among other things, that the
maps S have similar properties.

3. Nonautonomous gradient systems

We now indicate that, under appropriate hypotheses, the global attractor of a
nonautonomous gradient system coincides with the union of unstable sets of
elements of P. Cur results will be seen to be generalizations of corresponding
results for autonomous gradient systems [I1I

We first consider the structure of the mappings S in neighborhoods of
nonautonomous points.For the distinguished process W and one of its backward

extensions U, define the unstable set of X by M(X)=(Wcz B: Us-,f) is defined for

0!-0 and IU(Osyf) - Xl -* 0 as 0 - -eI and a lifted unstable set of X by
M(X)=I(W,U): WE• M(X))I.

DUINITIOV 3.1. Let XE P and fix YE H(W) or, equivalently, he HRf). We say that

S(s,;h), for fixed sE P, is hyperbolic at X if the following conditions are satisfied for

each Ž 2!0:
1) in some neighborhood Oof X, S(s,u;h) has a Frechet

differential S`(s,uih) for uE Q S(s,u;h): 2--B,
2) the linear operator S(suh) is locally l-hIder continuous in u,
3) the spectrum of S(sX;h), a(S(sXh)), does not intersect the unit circle
with center at the origin.

XE P is called hyperbolic if for any t Ž0, sE P, and he f-f), the mapping S(t~sh) is
hyperbolic at X and:

4) the invariant linear subspaces B1+, B- corresponding to subsets of
c(S(t,s;h)(x)) in the domains (IM ),{IXIJd ),respectively, are independent of

t,s, and h and dim B+<+-o.

TIFlfREM 3J Suppose that {rr(ts), t!0 1 satisfies the following conditions..

x(t,s):BxH(W) - BxH(W) (t >0, sE R) is continuous,

there exists a continuous Lyapunov functional with the properties listed in
Definition 2 2,
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(3.1) for any t .0,7t(ts) maps any bounded set of BxliIW) into aprecompact set,

ir(t,s) is uniformly boundedforO <_ t < -b,

the set {)[icP is finite and each Xi is hyperbolic.

Then the set XA-io(X) for XE P is the global attractor of {7r(ts)}.

Theorem 3.1 holds for a large class of nonlinear parabolic equations.
However, it is not valid for hyperbolic equations as it stands because (3.1) is
generally not satisfied in that case. We have formulated a modified version of
Theorem 3.1 which covers such equations. A proof of the continuity of [rt(t~s),t
->OIhas been given in [3]
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Linearizing a Nonlinear Paradigm:
Universal Description of KAM-Tori and Cantori

H J. Schelinhuber and H. Urbschat, Fachbereich Physik and ICBM,
Universitit Oldenburg, D-2900 Oldenburg, FRG

1 Introduction

In 1887 Poincare formulated the first ideas about chaos in nonlinear dynamical
systems. A decisive step towards understanding such systems was achieved by IKol-
mogorov, Arnold and Moser through their celebratedl KAM-Theoremn (19541-1963).
which describes the complemnentary *%organization of chaos and order. Since that t inue
a lot of work has enlarged our knowledge of the subtle de(tails of nonlinear dynam.-
ics. In this article we present a niew approach to infinite invariant sets. which paves
the way to a universal description of KANI-Tori and their leaky counterparts. the

so-called Cantoni.

2 Phase Transitions in Twist Maps and Frenkel-
Kontorova. Models (FKM)

Twist maps provide us with some kind of mathematical laboratory, which hlcps isý

to study RAM-Tori and Cantoni. An area- preserving twist map has the form

r. +I r ' + oKJf(On), (

0', 0 + r,, + Kaf(O,j. 2
where K is the nonilinearity p~aranmeter and f (0 + 1) = f (0). A\wellknown example
is the "Standard Map" with f (0) = -Lsiz('2,rO). 'There the most stable RAM-Torus

is the "Golden TForus" with rotation number

lrn ( u11 = 1)0 0y*
n-.,

Greene. [11 calculated the crit ival value K,- 0.9716.... where thle torus breaks uip to

becomue a Caut or is v; -t a second -ordler phi ase t-a ns it ionl

A physical model that, is'directly linked to irea-p[re-serving t wist nimps is the -Froik-cl-

Konto -ova Model". It conscst~s of anl infinite chiain of har-nioiuicallv coupled particles-
iii an external periodic potential. The energy is given bw

E( Zý1 I (?,l- ?,'+ KV(11,),

-,Z2

WhIIere V ( -I- I) V(?I).
I Isiiig t he suibstit utions: 0,, ss r"(m d ) - 11" - 1, ;a1id 1' J I I) amid (2)
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can be interpreted as the stationarity condition of the FKM. KAM-Tori and Cantori
correspond to incommensurate groundstates of this model, having irrational mean
lattice constant

w lira UN -( .N
(N-N,)--( N - N'

Here the "Lock-in Transition" [21 of the physical system with increasing K corre-
sponds to the torus break-up mentioned above.
We recently extended the FKM by adding higher harmonics in the potential arid
found several novel phenomena 133 like "recurrence of K1AM-Tcri". Furthermore,

second-order phase transitions between different Cantorus phases can be observed
and some potentials even support quasi-first-order Cantorus-Cantorus transitions.
But the technical problems in calculating and identifying groundstates numericallv
are almost forbidding, since there exist vast numbers of metastable states. So we
tried to construct an analytical method to deal with groundstates in general zed

FKM.

3 Cantorus Configurations in Piecewise Parabolic
Models

The first nontrivial analytically solvable FKM was discussed by Aubry [,4], and
Percival (5]. It is a piecewise parabolic model, whose formal solution can be found
using a "Lattice Green's Function". We extended this model to an "NI-parabolic
model" with potential

= mill{ p({ ; 72)}; (co
m)•Z

p(rn; U) = (71( - 70,1 + 7),,.

and the periodicity condition h,,+MA h,. In the case Al - 2 [6) we have a model
with one order parameter VZ, (fraction of particles in odd wells), and the energy per

particle of an w-Cantorus configuration is given by
K

' -h(l - ') + z(:, ;tK') + const.

Sis a convex, continuous, highly nondiffeientiable function. which 'urns out to be
universal for all M-parabolk models!
Minimizing 12 with respect to ., directly yields the inconmmensurate grou ndst ate.
This model allows analytical calculation of the sequence of discontinuous Cant orus-
Cantorus transitions, occuring when h (or K) is varied (see Fig.l).
Furthermore, the existence of novel phenmiena like incommensurate defects and an
infinite number of metastable Cantorus configurations can be proved.
In the general case, A! > 2, the corresponding energy per part iMe is

NI-i ,f-I f-I I

.... ' -I) > , + C( : r, ,.) + i,st.
,~ =I Iz~s rt.s

1
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where the order parameters {1,'} are the fractions of particles in the m-th type
of parabola. Calculation of the Cantorus groundstate boils down to searching the
unique minimum of a convex M-dimensional surface.

C!,

Fig.l: The "devil's staircase"-dependence
of V) on h in the 2-parabola
model (K = 0.03). -1.0 .

4 "Parabolization" of Arbitrary Potentials

An arbitrary periodic potential V(x) can be approximated with an M-parabolic
potcntial P(x) using the nonlinear "parabolic contact transformation" (see Fig.2)

1

-Vx =x)- - v'(), (i0)

K K

Here ý(x) describes the parabola vertex, h(f) is related to the parabola height and
K is a free parameter. It is possible to construct an arbitrary close M-parabolic
approximation; thus we can handle the groundstate problem with the method de-

scribed in the previous section.

Remarkably, the limit M -+ o can be performed rigorously and leads to an inte-
gral representation for the energy. With hm ý h(f), ?,,m (f) (particle density
function) and 0(ý) := f • (i7)dq we get

; = h()O)(ý)dý + - j (,i,w;O(q) - O(,f))dijd. + const. (12)

The first integral on the right side represents the linear potential term depending on
the individual model. The second term with the universal "devil's-bowl functional"
g describes the nonlinear elastic energy.

Defining A(x):= -19'(x) and

A(ý) := h(ý) - A(,,,; 0(,j) - 0(ý))dqdý. (13)

we can derive a precise criterion for identifying Torus and Cantorus groundstates:

S= 0 , 4,( )> 0 (14)
"•• _Ž0 , .
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(A(() = 0) A (V)(ý) 0) describes criticality, i.e., Torus-Cantorus or Cantorus-
Cantorus transitions.

Fig.2: Parabolic contact transformation:
A potential V(x) and the corresponding
approximating 6-parabola potential P(x).

0.0 6.0

5 Conclusion

We have shown that the problem of determining the incommensurate groundstate
in arbitrary FKM can be solved, in principle, by "Linearization", i.e., using a sutfi-
ciently good "Parabolization" (parabolic contact transformation) of the given poten-
tial. The resulting convex problem has to be treated by an optimization algorithm.
The inverse problem is directly solvable, i.e., given a Can/Torus groundstate, we
can immediately calculate the corresponding M-parabolic potential.
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INTEGRABLE SYSTEMS

RELATED TO MEMBRANES

,Jens Hoppe
Institutc for Thtorchtal Physics. Unircr.sity of K'aHsruhf

P.O.Box 6980. D-7500 Karlsruhf

The dynamics of a relativistically invariant bosonic membrane moving in D di-
mensional space-time can be describe(d (in the light-cone gauge-) by [0]

D0-2

where x, and p, are time dependent functions on some two dimensional compact
manifold .11.11 denotes a parameterization on .11 (for simplicity, we will restrict
ourselves to Al = T: so 0 = (..)0.2r] 2 ). and

{1x,.Xj} := (aOxao9x, r.., = 1.2 (2)

Actually. (1) must be supplemented by the constraint

D-2

K A {.r.p}=0 (3)

in order to really coincide with the (Mass) 2 of the membrane. but we will forget
about (3) from now on. The equations of motion following from (1) are

ýi, = 
2 r.r., {Ix,'x,}H}. (4)

In 4 dimensions (D - 2 = 2).

1H= JdQ(p2 + p' + k2{x, Y12). (5)

If one treats further one of this fields as non-dynamical, one obtains

H = -I IdfQ(p' + k 2{x,,} 2 ). (6)

where ; is now an external time independent field. Eq. (6) is a particular case of a

class of 2 + I dimensional field theories,

H1 fd((p2+AF2({x.w})). (7)

FF"= oF' 2 o E R (8)

which are natural generalizations of a class of 1 + 1 dimensional integrable theories

[0]. and for which one may easily write down an infinite set of Poisson commuting
conserved charges.

Q. (n),J (p-P~ ) 11 E N 9

0 if i is odd
(-( = (i).A m = +(o+ 1). (10){ 2k-1+,,112k-3+o) .+I) if i = 2k
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One simply has to note that the equations of motion (corresponding to (7)).

Af= .{{.'.•.}F' 2({.,})(o + I) (11)

are equivalent to

L =(abca OLdaLCM a.6. c= 1.2,3 (12)

L p(+,m2) + c( 3)F({r,.}) (13)
M l -f(,. 3)F'({x.,.,}) (14)

f'2 - off" = A2  = -f'. (15)

So

Q f d f d L

is automatically time independent. It is also not difficult to show that they are in
involution:

= -Q ('a) (n) A, A n, i f

(i +j - 1)+n +i - -j- 1)
-(n- - i)(nm - i - I)j(j + o - I) - ( j, -jon -j - 1P( a - I-

=0 (17)

Finally, one should note that in fact

Qkt := LdJ d (18)

27r

is conserved for all k, I E N
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Abstract

A Complex form of Hamiltonian (Birkhoffian) Theory is introduced and
is based on a dual pair of n dimensional unitary spaces with a corresponding

dual pair of hermitean metric tensors, hab and hob such that hah• = 6b.. A 2n
dimensional complex phase space is defined with anti-hermitean metric tensor

M = ( ih -h ) The n x n block structure of M and the relation betweenh ih] )

M and h seem to be new, and only the special case of real antisymmetric
M has been used previously to define a generalised phase space (or dynamic
space), and to define a generalised Poisson bracket in Birkhoffian theory. Un-
like the most general form of Birkhoffian theory, not just one pair but two
pairs of canonically conjugate variables are defined in a generalised Hamilto-
nian (or Birkhoffian) sense for the most general complex form of Hamiltonian
(or Birkhoffian) theory.

Some remarks and speculations are made about the role of h in the de-
scription of constrained dynamics and the curvatures of configuration space

and phase space.
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1 Introduction

Linear dynamical systems are well-known to be simpler in complex. rather than
real, phase space [1]. Analytic extensions of Lagrangian and Hamiltonian functions
of complex variables of the forms (q' + iqIO), (40 + iq4i 0 ) and (p" + ipt') have been
defined [2[, but the effect of complex variables of the form (p0 + iqa) in the Pois-
son bracket formulation of Hamilton's equations, does not seem to be well-known [3].

2 Complex Phase Space

A complex form of Hamilton's equation for a function F(z) and extended Hamilto-
nian K(z, i, t) in complex phase space is

F(z) = 2(a 0F)z== (a&F)4ib(---b) -- [F,KgC (1)

where z' -p 0 + i ' for a 1,2,3,... ,n; the Cauchy-Riemann operator is
= ( + i and [ , ). is a sesquilinear product which satisfies

[F, G]c = -[c7, F-- (2)

and
[[F, G]•, Hip + (cyclic perms of F, G, H) = 0. (3)

In (3), the Poisson bracket can be expressed in terms of the sesquilinear product as
follows [F, Gjp = !([F, G], - [(, P•[) by use of (2) and

[F, G] = I + i6-) , (4)

where z = (p:q) C R2,, (real phase space); p, v = 1,2, 3,...,2n; and(0
is the fundamental symplectic tensor; also det(wAV + i2,6) 0.

Hence (2 , 3) are complex forms in the special case 01= w-", T" 8 P' of the

Lie-admissible algebra axioms [21 as follows:

-T -() = T',(z) (5)
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and
[[F, G]., HI. - [F, [G, H]1], + (cyclic perms of F, G, H)

= [[H, G]., F], - [H, [G, F],]. + (cyclic perms of H, G, F), (6)

where

F(x) = 61-- = (F) (Q"'(x) + TI"(z)) =) [F, B[. (7)

is a Birkhoffian generalisation of Hamilton's dynamical equation for a function F(x)
and Birkhoffian B(x, t) in real phase space.

3 Dual Unitary Phase Spaces /1 and /*n

A more general form of a Birkhoffian dynamical equation corresponds to the gener-
alisation of (1) to

F(z) = 2(0.F)z• = (8aF)4ihab(z)(5bK) [F, Kit9  (8)

whcre (2) is satisfied for hab(x) = gab(X) + if ab(x) if gab = gba and f" = -f, also
(3) requires

hab (a 0 hcd) had (-h''). (9)

It follows that

[F, K],, = a (F "() ) + iT"'(z)) (10)

-f -g
where ( ... ... I T = -wQ, and hence

ih -h-

M - + iT = . ... ... (11)
h iih

is singular.

If z' = p* + iqa E U", (a Pa + iQ. E "U*' and dza = habd(b, then

[F,K], = IF, 4i K) = (a') 4i zaK) (12)

Hence Darboux's reduction of S1" to wl can be realised locally by either one of
the two pairs of variables (pa, Q.), (P', q.) which are canonically conjugate in the

senses Co=2i (0), i- = 2i (5K), and [.,xb]'c, = 2i6W = [z-,(b•]c.
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4 Dynamical Systems with a Constraint

For a dynamical system with fiat configuration space variables {za; a = 1, 2, 3,... , n}
and a single constraint O(x) = 0, then [0, ]C = 4i Ea I 1271 0 in general. A well-
known method[41, gives the singular tensor

4ih b = [zn, zblc = [z,, zblc - [z0, d]I[€, zbj'/[¢,, ¢c

= h~"'hb" ([C0,, (b,]c - [C0,, €]14' Cb,'b/[0, 61.)

Hence h06  •([b (b]c - [C.0•, ]1, 4h/[#, €]•) is also a singular tensor. The
choice (C = then gives h~b = 

8
ab - 8n

6
b, so that a dimensional reduction of phase

space can be carried out to define an unconstrained dynamical system which is non-
singular in the sense that

h 0 h' = 6' for a,b,c = 1,2,3,...,n - 1.
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Bifurcation of Periodic Systems of
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Consider the singularly perturbed nonlinear system

•"= f(ry,) (1)

yt = g(.r.y1s).

where,• is -mall real parameter, xr and y are n7 and m dimension vectors respectively,
f and g are a and m dimensional vector functions respectively. We suppose that

(HI)when = 0, the system

. = (x.ry,0), (2)

0 = g(x,yO)

has a closed orbit F0 : x = u(t), y = v(t), where u(t) and v(1) are continuously
periodic vector functions with period T(we say. they are T-periodic).

In this paper we regard ý as a bifurcation parameter and discuss under what
conditions system (1), can bifurcate a limit cycle from closed orbit F0 .

We denote f(u(t), v(t), 0) by f(t). -f(u(t ), v (t). 0) by f,(t) and similar meanings
are atteched to fM(t), f(t), Mg(t), g5 (t) and g,(t). Then, the variation system of (2)
with respect to closed orbit Fo has the form

d= 4(t):, 
(3)

where A(t) = f1 (t) - f,(t)g;1(t)g.r(t).
We also assume that
(H2)vector functions f, g and their Jacobian matrices f_, f g, f, g9. g5, g, are

all uniformly continuous and of C(2) in all arguments.
(H3)every eigenvalue of the matrix function g,(t) has nonzero real part for all

t (0 < t < T).
(H4)the inverse matrix function g;'(t) exists and g.1 (t)g,(t) has continuous and

bounded first. derivaties.

Theorem 1 Suppose that (H1)-(H4) hold. If system (3) has n - 1 characteristic
exponents with negative real parts. then for z sufficiently small, system (1) has a
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"stable limit cycle Uýo(.) ntar the clostd orbit 1'0 of syst In (2). which trd, to If, a.,
0.

For proving our theorem, we are going to use a new local coordinate system near
closed orbit Io. We claim that

Lemma 1 Lt f(d) be a continuously pt riodic u-rttoor function and belong to ("(21
For all d. J!f(d)J(I _ 6 > 0. Thtn thl ,, i.s a F-ptriodic n ( 01 - 1) niatrirfunction
S(O) such that Q(i)) (f()). S(d)) is a rtgular matrix fuction. and -S.'(m) rxist,,
it is also T-pfriodic.

In fact, put f(t) = col. (f1 ().f,() .. f(z)). Since [() is a rontinuous!v
periodic function, we can assume that flf( d)I < .l. where .11 is a positive constant.

If n = 2. we take 5(,))= (-") ' Then Lenmma I follows.

If n > 3. since f G (E(2) the curve .r = f(i) given by parameter d in space
B? can not fill the entire space. Therefore. there is a ray starting from the origin
which does not intersect with the curve ,r [ f(). So we can suppose that this

ray coincides with Xi-axis. and hence we have f-j_.2(d) > 6 > 0. where , is a
constant. Let ( f2 (tJ) 1fz)

1 01 ... 0
0 1 ... 0

0 0) ... I

where v > - > 0 is a constant. Then we have

det Q(1) = de(.f().(,)) f,(,)) , f(d)
J=

2

< M - 14o < 0.

that is. Q(d) is a regular matrix funvt ion.
Because of the construction of ,(z). we know that it is T-periodic and

exists, it is also T-periodic.

When Lemma 1 holds, we set Q'(d) = P(,) - () %)% ,here p1 ()). 1))

are respectively I x n and (n - 1) x n matrix function. They are also T-periodic.

Lemma 2 Under the hypothsfs(H11)-(H4) the following curve coodinath trans-
formation

X = u(i)) +.(0),

y I'() - gyl'(f)gx(d)S(d) +z7 (41

defines a set of neui coodinalfs (i, II .. ... .- . . ) at hast in a neighblrhood

1 70 of to.
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In fact, from (4) we see that 0 = 0. 0i = and d = . Jn closed orbit Fo. By
Lemma 1, there is a matrix function .)(d) such that Q(d) = (f(d).S(d)) is regular.
Theree, the Jacobian of transfortatiota (4) on closed orbit FO satisfies the inequality

/ ix aýx / o
, , ) ,(d) 0 1 t)

e ) = *, I Q(I>0.

By continuity, it follows that transformation (4) can be satisfactorily performed at
least in a neighberhood Uo of F[.

Lemma 3 In U0. transformation (4) carries syshim (1) into the folloawing syst.in

dý B(d)ý + B( d)q + G(,r q, t). 5)

Id I + F(Ic.d. s,•)

di) 1 + I(,., j. d.. )

uwhcrc B(t) ) P2(d)(.(,))S(d) - A'(ad)). A(d) = fpd)-f5 (d)g•'(d)g1 (d). B(,)) =

P2 (d)f 5 (d). C(d)= g 5 (d). F(ý. il, a,�)= 0()111 + 1771 + - l). ;(4. d-,) = 0(1ý` +
,qJ2 + 1cl), H(ý. q, d..) = 0(1l1l + 1112 + I•1). .lor-o,(.,. function.. F. G and

H are all continuously diffcrcntiablf in all argtynuint.,. T-ptriodic in d, and for
anyg- > 0, there arc constants . A111. 2- 11 , > 0 siuch that IIF(O.O.d. ,)f < .Mis.
j[G(O.O.)',•)!I < .12-. J!H(00.0.d.•)l < -1.3- for all d(0 < d < T).

Now accoding to the center integral manifold theory (Setf0. 0])and the hypothe-
ses of Theorem 1. we have

Lemma 4 Under hypotheses (H1) -(H4) thtr( are a nuighbcrhood U1 C Uo of l-
and a manifold Al satisfying ihat

(i)M can bt rcpriscntatcd in U, by

q 0(ýd-Ot
6
)

where 0 E C(2), and

lim(, d.-) 0 uniformly in •;

(ii)M is invariant with rospect to system(5):

(iii)all bounded solutions of systun(5) which bWlong (ntirtly to Ui li? on A.

Thus,we can substitute (6) into the first equation of (5) and deal only with the
following regular differential ecuation

d _ B(d)ý + B(d)O(r,), E) + H( d.,,),O,s) 'f x(7)

dO 1 + F(ý. d,( z). d, E)
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Lemma 5 If system (3) has n- I characteristic exponFnts with negative real parts.,
then all characteristic exponents of tht following sys4-m

d ( O 
(8)dd

iC B(d) was given in Lemma 3, hare real parts I.,s then zero.

N\w let , = ý(o,,) be a solution of (7) satisfying the initial condition

ýo = "(ýo.O,€) (9)

and define the Poincar6 mapping N'(-o.): xl"1  f? - •,?,-' as follow'::

'V(ýoE) = (•€o.T,) - 0T
=exp X( ( d,. d. -).O ddO.

Notice that o 0•( , 0) is a solution of the variation equation system

d-d { o00)) 0-X.(•. d, =(ooo..••od,O0)).

meanwhile,

Da (B(d)) + B1())( d0)-4+ Cý. o(ý. d.0). .)
o4=0 -• I + F (C. d. .0), 0.O) -L•o

- B(d).

D'.P((o, :)joI = exp (fT .((d0). d,) =exp T R()d)

And combining with Lemma 5, we have

Lemma 6 If the hypotheses of Theorem I hold, then for • sufficiently small, there
exists &e = •o(e) such that &o(0) = 0 and 0(,) 0, i.e. the orbit F6(,) of (7)
started from point (•o(e),e) near [o of(2) is a closed orbitand F4,(,) tents to 1o as
e-0.

Moreover, for E sufficiently small. thf moduli of all cig nvalues of the differential
operator at point (o(e), e) for Poincare mapping are less then 1. and hence, the
closed orbit I'o is a stable limit cycle.
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We propose to investigate the stability of real stars with the catastrophe theory.
which shos that the real stars may have a mass like the neutron star. The latter
depends on the charge of a spin-zero particle. A difference and a role of short-range self
interaction and long-range Coulomb interaction in the forming of a star are discussed.

Recently we proposed to study the stability of boson and neutron stars[l], using
the method developed in the theory of solitons by one of authors[2]. This application of
the nonelementarv catastrophe theory based on the classification of singularities of the
smooth mappings. The mapping has been created by integrals of motion of Einstein
equations, which are the star mass and the star charge. The procedure of the catastro-
plie theory, which we are applying. is practically reduced to the finding of bifurcation
diagrarn. which describes the functional dependence of the conserved quantities with
respect to each other [2.1]. For the common case of two values M and N the bifurcation
diagram is represented by cuspidal curve. Each of these cusps is associated with some
surface, so called the Whitney surface [2]. The bifurcation diagram corresponds to crit-
ical points of some catastrophe manifold. One of authors has shown[2] that the critical
points of the minimum correspond to the stable soliton and that the critical points of
the maximum correspond to unstable soliton. In [1] this ideology has been applied to
cases of boson, neutron stars and white dwarfs. In the early universe. scalar particles
played an important role. In that time it could be possible that clouds of these particles
created stars under their gravitation field, so-called boson stars [31. The largest part of
suggested (lark matter consists of boson stars[31. The boson star may consist of many
particles and have very heavy mass like the neutron star. The latter depends upon
self interaction between bosons [3.11. The boson star is stable at small densities. The
instability will appear at some critical density. This result has been obtained with theaid of perturbation theory [3]. One may show that the point of instability corresponds to

a coalescence of maximum and minimum in some mass-central density-charge surface
[1] (catastrophe manifold).

Recently. the Higgs particles interacting with gauge field have been studied [4].
The gauge field may be considered as electromagnetic field trapped by star. In this
case the bosons having a charge will interact via electromagnetic forces. In four dimen-
sional universe this in,.raction may have attractive or repulsive character. Since the
star corresp)onds to stationary solutions of Einstein equations, the effective interaction
between bosons in the star will be repulsive as for nonrelativistic case. Because of this
repulsive interaction between bosons there exist a critical charge of bosons. which cor-
responds to Coulomb instability of the star[4]. This instability is simply an expansion
or a dispersion of the star. The problem of collapse calls for a special attention. The
studying of charged stars allows to understand a nature and a role of different interac-
tions in the forming of real stars. The special question is what kind of forces (long-range



767

Coulomb or short-range strong interactions) is more important in the increase of the
star mass beyond the Chandrasecar limit. A charged boson star is described we by a
self-interacting scalar field t coupled self-consistently to their gravitational field and
to U( 1)-gauge fields having the Lagrangian

1 = - JT g IRj+ g ' (D 5, (Dj4) - U(($)*')] - -VfFgIF5,,F' , (0.1)

2, 4
where K = 87rG is the gravitational constant in natural units, g the determinant of the
metric g,,/u, v = (0, 1, 2,3), R the curvature scalar, and U(($)*ý) the self-interaction
potential. Because of the coupling between the scalar field and the U(1) Maxwell field
AP, it is convenient to introduce the gauge and generally covariant derivative for the
Higgs field D5,4 = 8,,$ + ieA,4$ , where g is the coupling constant. Further, we have
the field strength tensor F,. = 8•,AA -OA, .

From the principle of minimal action, we obtain the coupled Einstein-Maxwell-
Klein-Gordon equations:

Rpý - 1 gR = -KT,.($, A.) , (0.2)

DM$p + O = 0, (0.3)

17 0,( f IF" t %5"'ID.1) 4' (DA. f$ 04

where
T ',.($, A0 ) = (DO.t)*(DOA-) - FA FVN - 1"' -£($ A,) (0.5)

is the energy-momentum tensor and [:JrI is a covariant U(1)-d'Alembertian.
The static, spherically symmetrical metric

,Is 2 
= eu(r)dt2 

- e(r•)dr 2 - r 2 (dO2 + sin02 Od), (0.6)

in which the functions v = v(r) and A = \(r) depend on the Schwarzschild type radial
coordinate r. For the boson field, we make the stationary ansatz

P(r, t) = S(r)edW (0.7),

which describes a spherically symmetrical bound state with frequency w. To have only
electric charges for the scalar field, we make the following choose for the gauge field

A, (r,t) = (Co(r), 0, 0, 0) . (0.8)

Because we have a coupled system of ordinary differential equations.
Analogous to the uncharged boson star, we use the Tolman mass

M := 4r7 [2(w + eCo) 2 S2Ce-" + e-A-MC•2 
- U1 e (+A)/ 2 r 2 dr. (0.9)

0
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For the charged boson star, this expression does involve derivatives, in contrast to the
boson star [3,1].

A second "'integral of motion" arises from U(1) symmetry.

Q = eN = 47re J -V)/ r2S2(6 + eCo) dr . (0.10)

0

The diagram (1I, N) is the bifurcation diagram (see, Fig. 2 in Ref.[1[). This
diagram plays the decisive role in the determination of the stability of the charged
boson stars. In catastrophe theory this diagram is a skeleton of a catastrophe manifold
(a multidimensional surface). The bifurcation diagram shows critical points (minima
and maxima) of this surface. At the cusp, the minimum and the maximum coalesce.
According to Whitney theorem, we may distinguish three type of objects on the surface:
1. Regular points 2. Fold points 3. Cusp points. Every cusp is produced through a
projection of a Whitney surface on some plane (MN). The lower (upper) branch of the
cusp represents the projection of minima (maxima) of the Whitney surface. We connect
the stable solution of the Einstein equation with the lower branch, which is associated
with a minimum. Intuitively this solution will be stable under small perturbation. On
the other hand the solutions, associated with the upper branch will be unstable under
some perturbation, which grow exponentially and destroy the star. We may say that
at the cusp's point the one instability appears or disappears. Therefore, if we found a
stable solution the all instabilities may be classified. Thus the method allows to find
the star stability without consideration complicated equations created by perturbation
theory.

Probably, the discovery of the catastrophe theory method [6,5] allows to consider
the stability of multicomponent realistic stars. Here the complication of Einstein equa-
tions increases. The number of motion integrals increases. We should also consider a
very complicated equation of state. But the catastrophe theory method may solve this
problem and therefore it opens a new era for using the superpower of transcomputers.

Notice, there should exist oscillating charged boson stars. A variable electric field
in such stars produces a magnetic field with creating a star radiation. Therefore it exists
a significant bigger chance to discover the oscillating charged boson stars.

In [3] it was shown the importance of boson stars which is so massive as neutron
stars provided the self-interaction between the spin-zero constituents is short-range.
This fact follows from an asymptotic behavior of the maximal mass from the self-
interaction constant a [3]

11~x-0.22 a /2 MP3(0llM max '•- -' -0 -. (0.11

For a - 1 and m = "IN ( the boson mass equals the mass of a neutron) we have an
upper limit Mar - MChandras..kha, = Mlt/m N. The same dependence was found for
the charged boson szar but for the particle charge c

"AM r-1 a (0.12)
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ecrit depends from the additional self-interacting strength. Hence, for e =,rit -
(m/Aipj) 2 and m = ,nN we get =maz = IChandraaekhor with the same answer like in
the case of the uncharged boson star. Hence for a - I the mass of charged boson stars
equals the mass of neutron stars. There may exist so gigantic stars as they are found in
[3] if we choose e = eril - (M/'Jlp1) 4. We conclude that the choice of the electric charge
produces the same effect like the self-interaction written through a. Table 1 shows the
analogies.

Electric field self-interaction

e=0
= crit a -C

e * [eti -- (rn/Mlp,)2, ecral - (rn/A'lp, )4[ a 1
e f [Crgi -- (rn/Alp,)4, Ccit - (m/Alp,) 6 [ k 1
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Generalized Coarse-Graining and Irreversibility
in Classical Dynamical Systems

Ralf Quadt
Institut ffir Theoretische Physik. Universitit zu Koln

Abstract The operational approach in terms of POV measures and instru-
ments is applied to the statistical description of classical dynamical systems.
e.g., ergodic systems. Coarse graining of dynamical systems is defined by
means of a class of POV measures which induce stochastic mappings (linear
state transformations). Some different models of coarse graining for dynamical
systems are introduced and the possibility of characterizing the instabilities of
mixing dynamical systems is analyzed.

This paper is a summary of [1]. Starting-point of our discussion is Ruch's funda-
mental work [2], which develops basic concepts for the description of irreversibility.

1. Notion of Observable, Instrument and Coarse graining
Let(Q, E. p,) be a measure space with phase space Q, a-algebra E and measure

p. States are represented by positive norm-1 functions in L 1(Q.E. it), that is the
space of absolute integrable functions on Q. Lý(Q, E. p) denotes the space of all
p-essentially bounded functions on Q.

An observable e. on some measurable space (Q. ) is a normalized positiVw-
operator-valued (POV) measure on E, that is, an observable is a mapping 1:
L,, (,,, .p)+< with the properties:

- •(0) = 0, •(Q)=

-- {,ILEI, Ai n A.=0 for i 5 j: f (U EI) = - EI()

The a-algebra S is the set of all possible outcomes of (-measurement. A state pC
L"(9, E, p)+ and an observable e define a probability measure p,: E --+ [0, 1], A
PK(•') = fa pe(a)dp, (F absolutely continous w.r.t. p,). p(A) is the probability for
the outcome A, if the system is in state p.

Ordinary observables in classical mechanics are represented by measurable func-
tions on phase space fl. Every measurable function f : 9 --ý R defines uniquely
a projection-operator-valued (PV) measure, that is a special POV measure, P1 :
B(f(Q)) ý-* - = fall characteristic functions in L'(Q, E. p)}. A POV measure f is
a PV measure if and only if f(A) 2 = •(.) for all S E S.

Coarse graining interpreted as a restriction of the measurement of phase space
volumes, i.e., not all phase space cells can be measured accurately, is defined by
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means of a class of POV measures c : E --+ L (Q, 2.p)+1 (t abs. cont. w.r.t. p).
e(A) represents the smeared phase space cell A, resp. \i E . In this case the
probability measure pp : E --+ [0, 11, % '-* p•(A) = f1. pc(A)dju = f, ýdp induces a
positive, linear, trace preserving (in short stochastic) mapping 41, : L)(Q, S,)-

L'(, E p) p- % = fi-

On the other hand the dual 4" of a stochastic mapping 4) defines a POV measure
-0 L '(Q,,p)+1 with E := {A E Ejp(A) 01.

An instrument is an operation-valued measure I E --+ C(L'(Q,E, p))+<I on

some measurable space (Q, E) defined such that

- 1(0) = 0, I(Q) = 4D_, 4D)z is a stochastic mapping

- -{AiJE, A, n , = •0 for i j : I (UtE• -E1 )(,

Two simple examples of instruments are given by (i) 1(,) :(,)p =

and (ii) X(A) : ((A)p = O.Tp \;. In the case (i) one observes the POV measure EP.
and the initial state p is not changed (()D = id), in the case (ii) e is observed and
the state p is changed into 4) p, i.e., the system is open.

In the special case of measurable space (Q, E) the measurement performed by
an instrument I can be interpreted as coarse graining.

Consider now two concrete POV measures V', which are important in further
discussions:

a) Let {A1 },ii be a partition: A j A,= 0 for i $ j, (_ Ai, = ,. < 0C

":- .- L'•(f,), , 1,<. \a '- q•Nx\) = S ii(AnA4"%'-El n1(A,) 'a,

b) Let (Q, 8(Q),pH) be a measure space. where Q denotes a locally compact
abelian group, 8(Q) the Borel algebra and pn the Haar measure:

,t --+ L'if(,,380).PH)+1 . \a '

S= •1(Y f i z )(Y)dp,(y) = (A *-.f)(x).f E

2. Instability Measures for Mixing Dynamical Systems
Given a dynamical group {it}tER (it is an isomorphism), itp" = p" for a fixed

state p*.
{it}tER is p-mixing, if

VPE L1'(0, 2,),+ Vg E L' (,,E. i) : li_(i,m,,) = (p*,g).
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A family {4 ,alc,EI of stochastic mappings is called statistically complete, if the
span of the joined ranges of the POV measures is u-weakly dense in L'(Q, E, P).

A single t is statistically complete iff 4P is injective.
Theorem Let {4P},IEl be a statistically complete family. 4),p" = p* and {?t}tER
a dynamical group. Define the family {140} >o by (Do := V o it. Then:

Va,- I Vp E L'(QE, it)+: lim JI4P - P" II = 0 == {,},tER is p*-mixing.

Any measurable mapping K : Q x 9- R+, fI K(xy)dp(x) = 1, defines a sto-
chastic kernel and thereby a stochastic mapping 4) by 4)p(x) = f1i K(x, y)p(y)dp(y)

for p E L 1((,E, p). Furthermore, if the functions g,(y) := K(x.y) for fixed x E Q
are bounded (a~e.), one can prove the converse:
Theorem Let {iO}tR. be a p*-mixing dynamical system. 4) a stochastic mapping
defined by a bounded stochastic kernel. 4>p = p'. and {f )t}t>O given by Ot := 1 o it.

Then
Vp EL'(fQ, E,p)+: lim 1 40,p-9 -p --0.

By the first theorem every injective stochastic mapping C. bp" = p*, can be
interpreted as an instability measure for mixing dynamical systems {it}tER. Fur-
thermore such a 4 establishes a semigroup

{W~t}f-_>, 1't:= 4bo ito 4D', I t : 4P(L (l. E. i)) -- , )(L'(Q, E. p)).

{Wt}t>_o represents the macro dynamics on the coarse grained state space ,MP:
4(L'(QE,,p)). The semigroup property ensures the monotonic derease of the func-

tion 11 Wtp - p* 11, p E M04+. which therefore is a H function, as any other convex

function of pt = Wtp, too.
Examples:

(i) Let {A•',?t be a partition: A, n Al = 0 for i A, = t, <
(p.xao)

Thus one defines 4P. : LI(Q, E, it) -- L'(Q, E, p). 4>(p) = ",tl
with stochastic kernel KI(x,y) = "iEJ ' XI-(x)\4,(y). Then the family

{4b,},,i. where a runs over all partitions, is statistically complete.
(ii) Let (fl, (•),p-) be a measure space with locally compact abelian group Q.
Define ff : p , 4ofp, (4)jp)(x) = fn P(Y)f(y - .r)dp(y) with

K(x,y) := f(y - x) for f E L(( ),S )+.

I)1 becomes injective for such f E L•(Q,8(f),pH)•, for which the "'Fourier"

transform f does not vanish on the character group of Q. J is exactly the Fourier
transform in the case of measure spaces (Rn, 1(R ), ILL) and (X'i[0, 1], I,/UL). The

Gaussian distribution for infinite- and f(x) = -le- for finite measure spaces are
examples for such functions. For finite measure spaces any injective 4)f defines an
instability measure. The inverse 4bf1- is not positive, i.e.. an "unphysical" mapping.
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3. Relation to other Entropy Functions
In the following let (Q E,lI) be a finite measure space with u(Ql) = 1. Let
R+ --- R be a strictly convex function, satisfying 77(1) = 0, limt_, i•r(t)

and V, := {f E L'(Q, ,/.)+ I faq(f)dp < oc}. Define .,, : -, R, p
S,,(p) = fj- i'(p)dp. Then one can define for a fixed stochastic mapping lb the coarse
grained entropy S,.o : p ý- S•,,(p) = fp j(Dp)djt.

Theorem Let {4't})t' be a family of bistochastic mappings. i a strictly convex

function satisfying the assumptions introduced above. Then:

Vp E D,,: (lim 1 4btP- = 0 <* lim j q(4'Np)d = O)0

This establishes:
Corollary Let 4D be a injective stochastic mapping, 41 = 1. {ItitaR a dynamical

group and q any fixed entropy function. Then:

Vp E D,7 : lim S,,.,(itp) = 0 =:> {it}tcR is uniform mixing.

In that case every coarse grained entropy function S,, can be interpreted an
instability measure for mixing dynamical systems.

4. Generalized H-theorems
In general the semigroup property fails in case of {14'}Qto. 4o, = 4)c o it. Hence

one is interested to introduce a sufficient criterion which ensures the monotonic
decrease of entropy functions. Monotonic decrease of mixing distance furnishes in a
natural way a sufficient criterion:

A given family {Dt}tt>o, 4'tPp = p*, of stochastic mappings is monotone for a
fixed p E L(Q, E, t)':

VO E R+ Vt' > t IIo',p - 'P > opP - 3PII

3 B•' 0(I'. t) E ST(L1) : (Pt, = 4' t'p = 'W-'. t)P 1 O ,p(t' t)o4Dtp & i'P(t'. t)p= = p"

The equivalence follows from [3]. The existence of the stochastic mapping t ',. 0)
guarantees in the case of finite measure spaces that every convex function induces

a H function. An example is given in the following theorem:
Theorem (0?, (50),pH), PnH(Q) = 1, where Q is a locally compact abelian group.
{4t't>o0, 4)t := tf o it, where (4'jp)(.r) = fjp(y)f(y - x)dp(y). and (itp)(.r) =

p(St-'x) for a group {St}tER with ItH(St-A) = IIt(A). A E 5(Q). Then:

VpE L'(0,3(5),.PH)+ Vt' > t 3v,,(t',t) E ST(L')

Pt, = Yt'p = i',(t', t) 0 $tp. t4'P(I', t)l = 1.
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1. Introduction

The biogeophyvsical ecosphere is the union of the earth's eco-
systems and is divided into soil-bound or terrestrial ecosystems,

in aquatic. limnological. marine or cryogenic ecosystems, in atmo-

spheric and finally in ecosystems related to volcanic nature.

Ecosystems are catalytic feedback nets of mutual dependences.
We consider here terrestrial ecosystems only. with main emphasis

on forests in diverse types and specifications. Our results

should be applicable as well to fields, cultivated by tillage and

pasture.

A forest is usually composed of man, living and also

of anorganic constituents, for example the subsystem of trees

of different species. The observables of these subsystems are
biotic ones. like functions of the biomasses of certain spe-

cies, as well as abiotic factors, like thermodynamic quantities
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(temperature. humidity etc.) and other macroscopic physical or

chemical observables. like concentration of reactants, wind

pressure and velocity or solar radiation intensity.

To the best of the author's knowledge. it was first E.H.

Kerner 1 1 ], who noticed that the interaction potential, if

dependent on the biotic observables, instead of the positions

of particles in a gas, can be treated as in physics, leading to

a useful statistical mechanics of ecosy stems, where dynamics

or equilibrium of probability distributions on the phase space

of those subsystems is considered.

2. Subsystem Dynamles

The interaction of the abovementioned observable functions of

the biomasses or of related biotic observables. and the abiotic

factors, all abbreviated by qi, i = 1,....2n. is postulated to be

given by an equation of motion of first order

2nd - U'_' F. (I)
_ qi .) q Idt j C)l

where U is the interaction energy from many-body potentials,

and F is an antisymmetric, non-singular matrix. The equations

of motion can be derived as Euler-Lagrange equations, from

well-defined Lagrangean ( 2 ]. containing the interaction ener-

gy U, which turns out to be an integral of motion. and a

Hamiltonian flow does exist 1 2 ], is, however, not straight-

forward to deduce from the Lagrangean. It is important to

note, that the usual Volterra - Lotka eco -subsystem -dynamics

I I ] is a particular example of an equation of type ( I).
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S~3. Equilibrium States and

the Thermodynamic Limit

The canonical ensemble is defined by the Gibbs state of the

Hamiltonian. The Gibbs measure is associated to the norma-

lized weight function

Z exp( - f ,U((p).(q)) ) (2)

where .j,((p).(q)) is one of the previously introduced Hamilton

functions and the p's are the canonically conjugated momenta.

In [ 2 ], and [ 3 ]. we consider. partiall) based on [ I I

and [ 4 ]. finally three different Hamilton functions, which are

consistent with the principles of classical mechanics. It turns

out. that the equilibrium states are all unitarily equi.alent. and

the free energies are equivalent either. This gixes with (2) a

unique notion of what is known as ecological equilibrium.

Furthermore, using the theory of metric cones of interactions

1 5.6 1. we are able to prove rigorously the existence of the

thermody namic limit for the free energy and the mean correlation

functions in a weak, measure-theoretic sense. almost everywhere

with respect to the metric on a very large class of interactions.

For the particular Volterra-Lotka one-body potentials. we give

explicit expressions for the limit free energy and the limit Gibbs

state L 2.3 1.

A comparison of the equilibrium Volterra-Lotka probability

distribution with biomass measurements in a beech forest is given

in 1 3 ].
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INTRODUCTION
Dynamical models which capture the primary features of information processing

and adaptive behaviour in living nervous systems have often been described by irre-
ducible multi-neuron interactions of multiplicative character [1,2]. In fact, it is well
known that s- napses not only modify the membrane potentials of dendrites but also
those of other synapses. Moreover, models with high-order interactions have impressive
storage capacities increasing with a power of the order of the interactions. Hence. the
stability of the stored information is expected to increase dramatically if high-order
effects are taken into account.

1. THE MULTI-CONNECTED NETWORK MODEL

The model network consists of a set of N interacting binary thieshold units ai
which are only capable to take the value +1 and -1 for unit i "active" or "non active".
respectively. We assume that each neuron i can interact with Ki other units of the
network with 1 < Ki < N - 1, while self-interactions are excluded. The state of neuron
i at time t is then specified according to the deterministic threshold rule

ai(t + 1) = sgnlhi(t)j i = 1.....N . (1.1)

The net internal stimulus hi(t) is defined in terms of a polynomial Ki-th order expansion
of the rommonly used linear superposition of the weighted input states

h, t) 0j (t) +... Z cijC,,~1  (t) _' + (+) i .aja (t)
01) 00,<_ <(j•,) (1.2)

= Co + C,(t) + ... + C,,(t)

where the sums are only taken over those K, neurons that intei. ct with neuron i.
In order to achieve faithful storage of p arbitrary patterns 51, ... , SP E {1, 1 }N

as fixed points of the dynamics (1.1) the coupling coefficients can be determixed by the
natural extension of the classical Hebbian learning rule to order Ki via

P

cti, ... j = Z sil s:1 s ... sp . (1.3)
p=1
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Note however, that an s-order contribution in eq.(1.2) contains (1') constants. Due to
this rapidly proliferating parametrization high-order networks have often been believed
to be impractable for real-world applications. In fact, optimizing a network with all pos-
sible high-order terms is clearly unfeasible, although the optimization problem has been
successfully attacked by admitting only a strongly reduced pattern-specific interconnec-
tivity [2,3]. In this report we will demonstrate how suitable summation techniques for
the inclusion of high-order terms can completely eliminate the proliferation problem.

2. HIGH-ORDER CONTRIBUTIONS AND POLYA POLYNOMIALS
It is straightforward to evaluate a modified s-order contribution in eq.(2.2)

-C E = .e,.",oa,(t)"'.i,(t) , (2.1)
01•)... (j, )

which consists of K' terms. The auxiliary quantity e, defined in (2.1) contains "diago-
nal" terms specified as those of which at least two indices jl,....j, are the same. These
terms are redundant since they already appear in lower-order contributions. Inserting
(1.3) in (2.1) and interchanging the order of the summations leads to the simple form

p,= Z c,,,•j j = •3 •'~s
) .. 

(2.2)
= PS", (E ="', i sj,,,.

01(J) (0.) 021(j)

The corresponding desired s-order contribution C, can then be evaluated via

C,= h ci,... ). a...oaj = '.C, Det (,o,) (2.3)
00)<... <(j,)

with C, taken from eq. (2.2). The s x s determinant in (2.3) eliminates all "diagonal"
terms with two or more indices coincident, while the statistical factor s! takes care of
symmetric terms. Defining "generalized" overlaps of a current net configuration a(t)
with one of the prescribed patterns S"

mV(t) = Z[S aj,(t)]a , (2.4)

0,)

direct evaluation of the r.h. side of eq. (2.3) yields the following results for small s:

C, S- Zs([mJ] (2.5)

p 1

C2 = Z T s [I(m '!) - M2'] (2.6)
JA= I
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P

C3 = l ( - 3m~mn' + 2m3J (2.7)

and p

S - n[(in) - 6(mr)'2mr + 8m•'m' + 3(m")2 - 6mn] . (2.8)

For arbitrary s it can be easily shown that the quantity C, can be written as

P

C. = : Si")%(mO ..... m,1) (2.9)

with

m.m) = a ,)m" (2.10)
(_o) t11

The sums in (2.10) are performed only over those s-dimensional vectors_ = ( 0j.a,) E

N, whose components are solutions of the partitioning relation

101,, = S , (2.11)
1=l

while the coefficients ai(, . ,s), satisfying the sum rules

-y(,,...,,) = 0 and F Iy(aj, ... ,a1[ = s! (2.12)
(_a) (_Ž)

are given by

Y......... o) = s!/[I-I(-1)'5'+I(II)aI!] .(2.13)

L=1

The quantitiy m,(mi,...,ma) is a generalized PolyA polynomial [4] of the symmetric

group S,, where the signs of the corresponding cyclic permutations (- 1)1 +' have been

included.

For arbitrary s the total number of solutions P(s) of (2.11) can be given in terms

of the recurrence relation [6]

P(s) = ! U(l)P(s - l) , (2.14)

where the divisor function u(I) is the sum of the first powers of the divisors of 1. Note

that in the large s-limit P(s) behaves asymptotically [6] like

P(s) = e4-• ,- (2.15)
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Finally, the generating function of the Polyi polynomials allows to calculate the sum of

all individual s-order contributions, i.e. the total net internal stimulus hi(t) eq.(1.2), in
the thermodynamic limit:

C. Sexp'} (2.16)

Note however, that, though eq.(2.16) is a beautiful formal result, practical neural net-
work applications often work within a fixed single order adapted to the "order" of the

problem [7] such that the corresponding s-order contribution (2.3) is of practical value.

3. HIGH-ORDERS AND FERMION DIAGRAMMATICS

Combinatorial group-theoretical considerations reveal also that there is a one-to-
one correspondence between an s-order contribution C. (2.3) and certain s-cell diagrams
obeying fermion statistics which may be drawn in a plane. (Substituting the determinant

in (3.9) by a permanent would correspond to Boson statistics). Each of these diagrams
is uniquely defined by an s-dimensional vector a = (ca,..., a.) satisfying (2.11) which
specifies the grouping of the s cells into a product of exchange dusters, consisting of
a, 1-cycles, a 2 2-cycles, ... and a. s-cycles. The magnitude of the statistical weight
factor 7(al, ... , a,) equals the number of ways in which s cells can be distributed into

al exchange clusters, containing I cells each, for I = 1,..., s. Figure 1 shows all possible
cluster diagrams up to order s = 7 described by s filled dots and the corresponding
exchange lines. The latter only appear in closed polygons such that those cells belong-

ing to a definite exchange cluster are connected through a closed loop. These cluster
diagrams have also been used in the description of non-interacting fermions or bosons
within the recently developed correlated density matrix formalism [5]. The exchange

lines reflect the statistical correlations imposed by the Fermi- or Bose symmetries of the
wavefunctions with respect to particle exchange.
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Fig.1: All possible cluster diagrams for s=2, s=3,..., s=7.

4. CONCLUSION
We have shown that the problem of controlling high-order contributions in net-

works equipped with multi-cell interactions can be successfully solved with combinatorial
group-theoretical tooles which have long been known in Polyi's theory and the theory
of boson and fermion diagrammatics.

Computer simulations reveal convincingly that the retrieval performance of the
network, especially its discrimination capability, increases substantially if high order
contributions are consistently included, i.e. if redundant "diagonal" terms are elimi-
nated.
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Geometry of feed-forward networks
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Abstract

A geometric approach to the generalizing ability and representational prop-
erties of feed-forward networks is established. Feed-forward networks are con-
sidered as mapping networks. It is shown, that any set of training examples
induces a foliation of their weight spaces. This intrinsic geometrical struc-
tur allows deeper insight into the role of different training patterns and the
structure of the solution set.

1 Introduction

The intention of our approach is to extract those mathematical structures inher-
ent in feed-forward networks, which lead to deeper insight into their generalizing
properties, the organization of the solution set, the formation of internal represen-
tations. etc. For these networks the foliated structure of their weight spaces and the
orbit' structure of internal and other symmetry groups are of relevance. Its only
in a second step, that these results will be applied to practical questions like the
developement of more effective learning algorithms. In this paper we will reveal the
foliated structure of the weight spaces.

We will concentrate on two-layer feed-forward networks with continuous, non-
linear units. The case of more than one hidden layer will be tractable in a straight
forward way. We consider these nets as mapping networks [1]. Correspondingly,
in section 2 we describe their behavior in terms of input/output maps which are
parametrized by elements of the weight space.

In section 3 it is shown that associated with a given set of training examples
there is a foliated structure of the weight space. The set of all possible generaliza-
tions of the training set is characterized by a specific leaf, the solution set of this
foliation. The concept of (almost) independent training examples is introduced. For
an (almost) independent training set the solution leaf is (generically) a submanifold
of the weight space. It is shown that a feed-forward network with a q-dimensional
weight space can generalize at most q independent training examples. In section 4
the relevance of the foliated structure with respect to effective learning dynamics is
shortly discussed.
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2 Mapping Networks

In the following N(1, h. im) denotes a two layer feed-forward network with I input
units, mi output units and h hidden units, i.e. a total of n = 1 + h + m neurons. We
choose siernoidal transfer functions and the standard activation function; i.e. the
discrete activation dynamics is given by

a,(t + 1) := voj(t)"+-Oi ,=1+± 1. n (1)

where wi, denotes the weight from unit j to unit i, 0, the bias, a,(t) the activation
at time t of unit i, and oi(t) its output given by

00() 0= (ai(t)). (2)

with transfer function I
a~a) .- (3)

For convenience we denote the bias 0, in (1) by ti' 0. i.e. hy the weight from unit 0,
which denotes the bias unit (constant output 1), to unit i. These equations define
the standard setup for backpropagation networks 12], but the explicit form of the
learning rule is not of interest here. Networks of this type can be described as
'mapping net.works' [1]: If the configuration of the net is fixed by a weight vector
w E W4 where W : Rqdenotes the weight space. the behavior of the net can be
understood in terms of an input/output function f, : R' D D , R' from a subset
D of 1-dimensional Euclidean space to a bounded subset f,.(D) of m-dimensional
Euclidean space. The output of the net will be denoted by z = fý,(x) E R'.

Since the behavior of the net will depend on its configuriiun: i.e. on the
weight vector it, E W. it is represented by a function f : It R' R- , the
characteristic function of the net. and we have f,(x) := f(i. .r). Here f(w,x) is a
Cx-function of both x and i.

Under supervised learning the net is trained on a training set r := {xy"),l
I ..... r of r desired input/output pairs. Thus the training set is a set of points
(x 5 ,y,) E R' x R', and the task of a learning procedure is to adjust the weights
w,) of the ne. in such a way that the graph of the function f = f(w. x) matches the
points (x", y") of the training set. From this point of view learning is nothing but a
type of curv, fitting [3]. In the following we assume that T can be perfectly learned.
and we stress the following geometric view:

Definition: Given a net with characteristic function f and a training set r. A
generalization of r is the graph of an i/o function f,. matching the points of r: i.e.
it is a submtnifold graph(f,) C R' x R- with r C graph(f,,). The corresponding
it E I is called a solution for 7. The solution set S, is the subset in I' given by

S w {, E WIr C graph(fý,)}. (4)
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In general a given network will be able to produce different generalizations of
a given training set. They correspond to different weight vectors w E S, inducing
different i/o maps f,., all satisfying

f•(.rT ) = ,7.. (.rT ,,yT ) g r (5)

3 Foliation of the weight space

For the sake of notational simplicity, we restrict our description to networks N(I. h. 1).
i.e. to nets with only one output unit. The results will be strictly generalizable to
nets with m output units, replacing R valued functions on IV' by Rm valued maps
on 11'. Let 7 denote a given training set and assume, that the network N(1, h, 1)
is able to find a solution for r. Any training example (x",gy") E T induces a map
f W - I _- R 1 given by

fTM(w) := f(wrx). (6)

whith I := (0.1). Observe that the map f" depends only on the input vector x" of
the example (x".y Y) E 7.

From the network model (1)-(3) it follows, that the functions f" induced by the
training examples are submersions. This follows from the fact that dfr(w) 5 0 for
all w E W. Here df" denotes the exterior derivative of f" (i.e. dfg may be viewed as
the metric dual of the gradient vector field Vfr on W [4]). So every z E I is a regular
value of f ". Since df " is a closed one-form. it defines an involutive distribution DTM
on W given by the kernel of df " and generates a regular, codimension-1 foliation ._F1
on I'1 [5]. The leafs of "r are denoted by N_. z E I. Recall that the vector fields X
belonging to the distribution DT" are tangential to the leafs N,.

Furthermore. it follows, that the training example (x", y") E r defines a distin-
guished leaf of _T", i.e. a codimension-one submanifold NTM of W, given by

S:=(fr)-(y ) , (7)

and we have the following

Statement: Every training example (XW.yT) E r generates a codimension-1 foli-
ation PT. an.I defines a distinguished leaf .V of this foliation.

Of course, to every it, E N" there corresponds an i/o map f R' : -• R- whose
graph matcheýs the training example (xr", y") E R1 x R m .

Now, consider a second training example (.r'. y') E 7. V 6 p. The corresponding
function f' generates a regular foliation Yv and a distinguished leaf N'. Suppose
NA, n N, is not empty; then every w E NTM n A'L defines an i/o map fý, whose graph
matches both examples (xP, y"). (xr. y') E R1 × 111.
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Because of dimensional reduction, an interesting situation occurs if the two sub-
manifolds N" and .V" intersect transversally. i.e.

TW\" + T.V" = T,, I. w E .VE N". (8)

Here TWN,%' denotes the tangent space of the submanifold N" at the point w E A".
In this case codim(N\ n N") = codimn(N") + codlrn(\'") = 2 [4].

The condition that the leafs .N" and N\ intersect transversally means, that
df"(w) and dfu'(w) are linearly independent for all w E .E " Nn N\. Or, differently
stated, the differential 2-form df" A df" on it' is non-vanishing on the intersection.
i.e. df" A df'(w) $ 0 for w E .' := -" n N'. Here o A 3 denotes the wedge
product [4] of differential forms o and 3 on It'.

Correspondingly. with respect to all r training examples of r we define the r-form
' associated with r by

,,;, : =d(f A ... A drY (9)

If all the leafs of the r foliations ,7". intersect transversally the r-form ,, will be
non-vanishing on II'. We will use this differential form to characterize the training
set 7.

Definition: A training set r 7 {(x". y")} of size r is called independent. iff the
corresponding one forms df1 ..... df' are linearly independent in every point u, E IV;
i.e. iff cw,) # 0 for all w E U'. It is called almost independent. iff,,',(w) $ 0 for
almost all w E I1'. and dependent. iff the corresponding 1-forms df' ..... dl' are
linearly dependent in every point ?v G It'. i.e. iff c,(w) = 0 for all u' E W.

Definition: A point w E It' is called a critical point for r. iff #I() = 0. The
critical set C, for r is given by

C,- := {u: E 11 ,.,(,') = 01. (10)

This means of course, that on the critical set C, the gradients df" of r are linearly
dependent. If r is independent the critical set is empty; if r is almost independent.
C, has Lebesque measure zero in 1I'. If the size r of the training set 7 is greater
than the dimension q of the weight space IV'. the critical set is the whole manifold
W.

Let r ={(r•.y)} denote an independent training set of size r. Since o. is a
closed r-form: i.e. d.,, = 0. it defines an involutive distribution D), and correspond-
ingly generates a regular codimension r foliation F. of IV [5]: i.e. the leafs are then
codimension-r submanifolds of II'.

If r is almost independent, the distribution ID, will not be involutive, and the
corresponding foliation F, will be singular: i.e. its leafs are not of equal dimension.
In fact some of the leafs may not even be submanifolds of II' [.5].

The leafs NV... of the foliation F,. are parametrized by r values :i,..., 5
r E I. In

fact a leaf N. .. is just the intersection of the leafs N,. ..... ,. N, of the codimension-1



788

foliations F" [5) corresponding to the r training examples {(e, y")}: i.e.

N1 ...... = ., nf ... n ., . (11)

In particular, if A ...... N" denote the codimension-one submanifolds (7) asso-
ciated with the r training examples of -r, then the solution set S, for r will be given
by the intersection of these submanifolds, i.e.

S, :=N• ... n N'. (12)

To show, that S, is generically a codimension-r submanifold of W, we define the
map f T W - Ir by

f(w) := (fi'(W). Pf(w)) (13)

The solution set S, is then given by

S. = (yi ..... yr) (14)

If T is independent. then f, is a submersion and generates the regular foliation
Fr•. In this case the solution set S, is a leaf of this foliation. i.e. a codimension-r
submanifold of W.

If r is almost independent, then the set of critical points of f, is of measure
zero in IP by Sard's theorem [4]: i.e. the generic situation is. that the r target
values (y' ..... y) C P correspond to a regular value of f,. But then S, is again a
codimension-r submanifold of It.

Statement: If r is an (almost) independent training set, then its solution set S.
is (generically) a codimension-r submanifold of 11'.

If r is an independent training set of maximal size r = q, then the corresponding
"regular foliation F, is of codimension q: i.e. the leafs of F, are the points of IV.
This gives us an upper bound for the 'capacity' of the net under consideration:

Lemma: A feed-forward network with a q-dimensional weight space W can gen-
eralize at most q independent training patterns.

In general, this maximal storage capacity will not be available, since internal
symmetries of the net and external symmetries inherent in the problem (the training
set) will reduce the dimension of the effective weight space (see the last section for
an example).

4 Foliations and learning

The process of learning can be described by a dynamical system, i.e. a vector field
Y on W [6]. The problem is. that W is of very high dimension. We may use the
foliated structure of IV to reduce the dynamics to an effective weight space of smaller
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dimension. The argument goes as follows: An effective dynamics shall move from
leaf to leaf. finally reaching the solution set S7 on the solution set S,; i.e. the flow
of the vector field Y shall move across the leafs. An interesting dynamics then will
be one on the quotient space

A, := WI•-, (15)

of W with respect to the foliation FT. The space A, is defined by the following
equivalence relation R. C IV x W:

(uw, 0') G R7 .ff U,% u" C Nz\- .E (16)

Assume in the following that r is independent. The corresponding foliation .,77 is
then regular and the quotient space A, can be given a quotient manifold structure [5].
Furthermore the foliation Y7 then can be represented by a submersion ,, : W - M,
where %I denotes a r-dimensional manifold and r is the size of -r. Together with
the canonical projection 7r : V --+ A,. given by 7r : w -, [w], where [w] denotes the
equivalence class of w with respect to Rr. we get the following commutative diagram
for the bijection ql:

/_1

A, M

The submersion ; is in our case given by the map f, : I' -. Rr defined in (13).
The quotient space .4, corresponds to the set of indices for the leafs of J-, and it is
isomorphic to the output space 11 I= c Rc .

A learning procedure is then effectively given by a vector field Y on M. This
dynamical system (Y- 1) should be convergent, and the point m . (y'....yr) of
M given by the r targets yO must be an asymptotically stable equilibrium point of
this dynamics. Although this representation might not be of practical use (there are
non-linear coordinate transformations involved), it will help to describe the training
dynamics in analytical terms.

5 Conclusion

Although the foliated structure of the weight space gives considerable geometric
insight into the general structure of the solution set and the critical set with respect
to the given training data, it will develop its full strength when combined with
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symmetry arguments, i.e. with group theoretical techniques. The foliated structure
will be useful] for the construction of an effective learning dynamics for almost
independent training sets.
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